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@ Stopping criteria and g-order estimation

@ The Newton Raphson

Given F : D C R" — R"
Find z, € D for which F(z,) = 0.

which has F(z,) = 0 for z, = (1,-2)T.
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The Newiton Raphson

The Newton procedure

o Consider the following map

2 347

i+ 2 + 7
F(z)= ("7
@ <11+12+l>

we known an approximation of a root gy =~ (1.1, —1.9)7.

o Setting @; = 2y + p we obtain !

1351\ (2.2 1083 -
F(zo +p) = ( 0o ) + ( P ) (g;) +0O(pl*)

if a0 is a good approximation of a root of F(x) then O(||p|*)
is a small vector.

means (O(x)

The Newton procedu

o Considering
—0.05576 2.0111 12.0668 A/ 2y
Rt = (o) + (4 P9) () + ouar)
o Neglecting O([|q||*) and solving

0.05576 20111 120668\ (a1 _
(o)« (0 ) (3) o

we obtain g = (~0.0055466, 0.0055458)"
o Now we set @2 = a1 + g = (1.000015, —2.000015)"

varsble

incar problems in 1 i

o Neglecting O(||p

1351\ | (22 10.83\ (p1) _
(53 (7 ) ()=

we obtain p = (—0.094438, —0.105562)".
o Now we set

) and solving

1.005562 )

F=atp= (—2.005561‘2

n Raph

The Newton procedure: a modern point of view

The previous procedure can be resumed as follows:

@ Consider the following function F(). We known an
approximation of a root @.

@ Expand by Taylor series
F(@) = F(o) + VF(xo)(x — @0) + O([lx — x|

@ Drop the term O(||z — xo||*) and solve

0 =TF(zo) + VF(zo)(x — )

Call z; this solution.

@ Repeat 1 — 3 with @1, @, a3,

Non-linear problems in .
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The Newton procedur: ern point of view Standard Assumptions

In the study of convergence of numerical scheme, some standard
regularity assumption are assumed for the function F(x).

Algorithm (Newton iterative scheme)
Let x assigned, then for k = 0,1,2, ...
@ Solve for py.:

Assumption (Standard Assumptions)
The function F : D C R™ +— R"™ is continuous, differentiable with
Lipschitz derivative VF (). ie.

VE(zy)pi + F(wk) = 0 |VF(@) - VF()| <7z -y| VeyeDcR

@ Update

Lemma (Taylor like expansion)
Let F(x) satisfy the standard assumptions, then

Thi1 = Tk + Pk

IF(y) ~ F(@) - VF@)(y — )| < T [o ~y|* Ve.yeDCR’

From basic Calculus:
Lemma (Jacobian norm control)

1

F(y) - F(o) = | VE(e+t(y—2))(y )
0 Let F(x) satisfying standard assumptions, and VF () non

singular. Then there exists § >  such that for all ||z — @,|| < &

subtracting on both side VF(z)(y — @) we have
we have

F(y) - F(z) - VF(z)(y — ) =
W) )=V 27! [VF(@)| < [VF ()| < 2|VF@)|
/U [VE(z + t(y — x)) — VF(2)] (y — =) dt and

and taking the norm 271 ||VE(z)~!|| < ||VF(z.) || < 2| VE() |

st
IF(y) - F(x) - VF(2)(y - =)]| < /U 7t ly - =? dt

Non-linear problems




The Neviton Raphson

Proof.

From standard assumptions choosing 7d < 27! | VF(x.)||
[VE(@)|| < [VF(2) - VE(z,)[| + [ VE ()]
< vl =@l + I VF ()|
< (3/2) | VE(z,)| < 2(|VE(.)||
again choosing 70 < 271 || VF ()|
[VE(@J)| < [[VE(2y) = VE(@)[| + | V(@)
< vl -2+ [IVE()]
< 27H||VE ()] + || VE()|
so that 271 ||[VF(z,)| < || VF(z

Proof.

From the continuity of the determinant there exists a neighbor
with VF(z) non singular for all || — .|| < 4.
|VF(z)"' — VF(a.) |
< [|[VE@) | IVF (@) ~ VE(@)| [|[VE ()|
<z — @ [ VE@) | | VE )|
and choosing & such that 74 || VF () !|| < 27! we have
[|VE(x)™! - VE(z,) || <27 | VF(z) ||
and using this last inequality
98| < [[FFG) " - TF@) |+ [ VF @)

< (3/2)[VF@) || < 2[[VF@)™!|

Using last inequality again

[VE@)|

< |[VE@@)™' = VF(z) || + [|[VE(@) |
< 27V ||VE(@) Y| + [|VE(@) Y|
so that

27|V (@)7!| < [|VF(@) |

choosing & such that for all |z — x| < § we have VF(x) non
singular and 76 < 271 |[VF(,)|| and 76 | VF(x,)~!|| < 27! then
the inequality of the lemma are true. u]

Non-ln

Theorem (Local Convergence of Newton method)

Let F(x) satisfying standard assumptions, and @, a simple root
(i.e. VF(x,) non singular). Then, if |zo — .|| < § with C5 <1
where

=7 || VP
then, the sequence generated by Newton method satisfies:
Q oy —m || <6 fork =01,

@ ki1 — 2l < C llwy — .l

Q limy, .z = Ty

fork=0,1,2,3,...

o The point 2 of the theorem is the second g-order of
convergence of Newton method.

ar problems




The Newton-Kantorovich Theorem

Proo
Consider a Newton step with ||z — .|| < § and

Tpy1 — T = T — T4 — VF (i) " [F(ap) — F(z,)]

= VF(z;,) "' [VF(2}) (@), — x.) — F(zy) + F(z.)]

taking the norm and using Taylor like lemma
ks = @) < 271 ek — .l | VE @) 7|
from Jacobian norm control lemma (slide 12) there exist a  such
that 2| VE(z) || > [|VF(@.) || for all [lzy — @.]| < 6.
Reducing eventually § such that 73 ||VE(z.) || < 1 we have
ek = zull < 7 [|[VE(@) | S llzk = zull? < [l — @]

So that by induction we prove point 1. Point 2 and 3 follows

trivially. =18

Nonvlinear problems in 1 variable 7

The Newton Raphson

Theorem (Newton-Kantorovich)

Let F: D C R™ + R" be a differentiable mapping and let zy € D
be such that VF (xq) is nonsingular. Let be

B(wo,p) = {y | [lzo -yl < p},
o = ||VE(zo) ' F()||

Moreover
o B(xo,p) C D;
o ||VE (o)} (F(z) — F(m))|| <w |z — || forall xeD;
@ ki=aw<27L;

If the radius p is large enough, i.e.

Then: “

“The Newton Kantorovich Theorem

Theorem (cont.)

o F(x) has a zero ., € Blay

);

o The open ball B(x, p) does not contain any zero of F\(.

different from @,
o The Newton iterative procedure produce sequences belonging

to B(x, p) that converge to x.;
o Ifk < 27! then for Newton's method, we have

2623
lle = zll < 75
where
3 V1-—2K A 1-k—V1-2k

w K

varsble

incar problems in 1 L

[@ P. Deuflhard and G. Heind
Affine Invariant Convergence Theorems for Newton's Method
and Extensions to Related Methods
SIAM Journal on Numerical Analysis, 16, 1979
[ Florian A. Potra
The Kantorovich Theorem and interior point methods
Math. Program., Ser. A 102, 2005
B J.M. Ortega
The Newton-Kantorovich theorem
Amer. Math. Monthly 75, 1968.




The Newiton R Globalizing the Newton procedure

o Newton method converge normally only when @ is near @, a
root of the nonlinear system.

o A way to make a more robust non linear solver is to use the
techniques developed for minimization to make a globally
convergent nonlinear solver.

@ In particular if we consider the merit function

L 2
) = 5 [F(@)]
we have that f(x) > 0 and if @, is such that f(z,) = 0 than
we have that
@ =, is a global minimum of f(x);
@ F(z.) =0, ie. is a solution of the nonlinear system F(x)
o So that finding a global minimum of the merit function f(x) is

the same of finding a solution of the nonlinear system F(x)

n Rapt

Is dj. a descent direction

Lemma

The direction d computed as a solution of the problem

VF(z)d + F

is a descent direction.

Consider the gradient of f(x) = (1/2) |[F(z)|:

@) 10IF@)° 1 9 <~ o ~OF(@)
dm 2 Om ’2@.;“”) ’; ;

this can be written as  Vf(xz) = F(z)" VF(x)

© We can apply for example the gradient method to the merit
function (). This produce a slow method
@ Instead, we can use the Newton method to produce a search
direction. The resulting method is the following
@ Compute the search direction by solving
VF(zx)dy. + F(2i) = 0;
@ Find an approximate solution of the problem
= argmingo | F(ay + ady)|
© Update the solution @y = @y, + axdy.
@ The previous algorithm work if the direction dj, is a descent
direction.

n Raphsor

a descent direction?

Now we check Vf(x)d:

Vf(z)d = F(z)" VF(z)d

= —F(z)!VF(z)VF () 'F(z)
~F(2)"F(=)
=~ [F@)|* <0

This lemma prove that Newton direction is a descent direction.




[IVF (@) 1P ()|
= IVE (@) 1 TE ()]l

> ||V

so that, if for example || VF(z)~!|| is bounded from below then
the angle 6, is strictly less then /2 radiants. By the Zoutendijk
theorem then the globalized Newton scheme is globally convergent B

@ The Frobenius matrix norm

incar problems in 1 variable

he globalized Newton method)
k — 0, @ assigned;
f—F(z);
while || f|| > e do
— Evaluate search direction
Solve F(x)d + F(x) = 0;
— Evaluate dumping factor A
A~ argmin, . [F(z + ady)|?
— perform step
T —x+ \d;
f—F(x);
k—k+1;
end while

by line-search;

The F

enius matrix n

Definition

The Frobenius norm ||-||» of a matrix A € R"™*™ is defined as
follows:

Al = (ii‘fﬁ,)w

i=1 j=1

is a matrix norm, i.e. it satisfy:

Q ||Allp>0and ||Al|p=0+= A=0;
Q [AA||p = A1 A]lp:

O | A+ Bllp < |Alp+ Bl

Q |AB|p <Al 1Bl

The Frobenius norm is the length of the vector A if we consider A
as a vector in R"™"

Non-linear problems in .




The Frobenius matrix norm

The

The Frobenius matrix norm

The first two point of the Frobenius norm |-[| - are trivial, to prove
point 3 and 4 we need two classical inequality:

Cauchy-Schwartz inequality
n n 1/2 ; n 1/2
Sans(Sa)(S0)
i=1 =1

i=1 i=

The inequality is strict unless a; = Ab; for i =1,2,...,n.

Triangular inequality

(Beest) (80 ()"

The inequality is strict unless a; = Ab; for i = 1,2,...,n.

Proof of |AB|p < | Al |Blp
By using Cauchy-Schwartz inequality with

A RA.,)2> v
(3 )
(Cra)eym)”

i=1 k=1 =1 k=1

= | Allz 1Bl

sl - (3 (

=1 k=

(2 (

=1 k=

IN

incar problems in 1 variable

The Frobe|

Proof of A + Bl < Al + 1Bz
By using triangular inequality

n 1/2
14+ Bl = (30 (s + 807

n 1/2 n 1/2
<(xa) +(xm)
ij=1 igj=1
= Alp+IBlp-

Let u,w € R™ column vector then the following equality is true:

[luw™ || < el 1wl

2
[ I

I
\g!

Non-linear problems in .




Lemma

Let A € R™™ and @ € R™ column vector then the following
inequality is true:

Az, < || Al |,

By using Cauchy-Schwarz inequality

m

4zl = 21 (X 40m)' < > (iA?,) ()

1 i=1

2
= || Al 2[5

Nonlinear problems in 1 variable

The Frobenius matrix norm

Let A € R"™™ and vy, vy, ..., v, € R™ a base of orthonormal
vector for R™, then

.
A% = > [l Avk 3

k=1

consider a generic vector @ = 101 + - -+ + Ay, and notice that

(i’: uw[) u = (i mﬂ;{) f: avj | = szwlv,u,
k=1 k=1 i=1

k=1j=1

m
= E U =u
k=1

(cont.)

Let a,b € R" and z,y € R™ orthonormal vector. i.e. x7y =0
and |}y = |yll, = 1, then the following equality is true

[laz™ + by [ = llall3 + [B]3

n_ m
llaa™ + by = 323 (auzs + uay)?
=1 j=1

= 30D (e} + 12 + 2ah)
i=1 j=1

2 2 2 2
= a3 ll[l3 + 1813 [1y]l3 + 2(a”b) (="y)
NG

Thus

I= kav[
k=1

Using this relation we can write

[lAll7 = AI] = HA (Z vkvf)
k=1

where wy, = Avy. Using the previous lemma we have

A2 = S 2 _ - Awi|2
Al =" llwil3 = 3 [l Avel3
k=1 k=1

S el

k=1

2

2
F

F




© The Broyden method

The Broyden method

Algorithm (Generic Secant iterative scheme)
Let zy and Ay assigned, then for k = 0,1,2,...
Q@ Solve for py:

My (px + zx) = Axpy + F(zp) = 0
@ Update the root approximation
Thi1 = Tk + Pk

@ Update the affine model and produce Ay .

The Broyden method

The Broyden method

o Newton method is a fast (g-order 2) numerical scheme to
approximate the root of a function F(x) but needs the
knowledge of the Jacobian VF(x).

@ Sometimes Jacobian is not available or too expensive to
compute, in this case a numerical procedure to approximate
the root which does not use derivative is mandatory.

@ The Newton scheme find successively the root of the affine
approximation

Li(@) = VF(@y,)(@ — 21) + Fz)) = 0
o Substituting the Jacobian in the affine approximation by Ay,

Mi(z) = Ap(@ — @) + F(ay) = 0

and solving successively this affine model produces the family
of different methods:

The Broyden me

© The update of My, — Mj.,; determine the algorithm.
@ A simple update is the forcing of a number of the secant
relation:

Mipi(@a1-0) = Fl@ppae),  (=12,....m

notice that My (z411) = F(ajs1) for all Ay,

Q If Ay € R™" and m = n and dy = Tpy1_¢ — Tppq are
linearly independent then we have enough linear relation to
determine Ajy1.

@ Unfortunately vectors dy tends to become linearly dependent
so that this approach is very ill conditioned.

@ A more feasible approach uses less secant relation and other
conditions to determine M, ;.

5
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The Broyden method

The Broyden method

@ The update of Mj, — M. in Broyden scheme is the
following
O Myp(wp) = F(ay);
@ My () — M () is small in some sense;
@ The first condition imply

Apsr (@ = Tpi1) + F(@pi) = Flag)

which set n linear equation that do not determine the n?
coefficients of Aj.q.
@ The second condition become
Mis1(@) — Mi(@) = (A1 — Ag)(@ —p)

| M1 (@) = My(@)l| < [ Arr = Axl e — 2]

where ||-] is some norm. The term ||z — 4] is not
controllable, so a condition should be [| Ay 41 — A is
minimum

Nonvlinear problems in 1 variable

The

The Broyden me

de

@ Defining
Yy = F(xpq1) — F(xy), 8k = Tkl — Tk

the Broyden scheme find the update Ay, which satisfy:

O Apiisk = Yki
@ | Ars1 — Ayl < |B — Ay for all B such that Bsy, = yj.
@ If we choose for the norm ||| the Frobenius norm ||-||
n 12
2
e = (3 4)
ij=1

then the problem admits a unique solution.

With the Frobenius matrix norm it is possible to solve the following
problem

Let A € R™" and s,y € R" with s # 0 and As #y. Consider
the set

B={BecR""|Bs=y}

then there exists a unique matrix B € B such that

|[A-B|p<|A-C|p forall C € B
moreover B has the following form
(y—As

B-A+

sT's

i.e. B is a rank one perturbation of the matrix A.

incar problems in 1 variable

First of all notice that

I
——ys' €B {
sTs
so that set B is not empty. Next we reformulate the problem as a
constrained minimum problem:

n

1
argmin = Y (A — By)?
awgmin 5 > (A= By

subject to Bs = y.
=1

The solution is a stationary point of the Lagrangian:

il £ ; 2
GBN =Y (4~ By + Za(z Bysi— yl)
ij=1 i=1 =1




Non-linear problems in 1 variable

The Broyden method

The solution of Broyden problem

taking the gradient we have
d
9B,

9(B,A) = Aij — Bij + Nis; =0
d =
9B =3 Bysi — ;=0
i =
The previous equality can be written in matrix form
B=A+xs’ Bs=y
so that we can solve for A

y— As

Ts

Bs=As+2Asls=y A=

s

next we prove that B is the unique minimum

Let B’ and B” two different minimum. Then (B’ + B") € B
moreover

If the inequality is strict we have a contradiction. From the
Cauchy-Schwartz inequality we have an equality only when
A-B'=\A- B") so that

a- %(B’ +B"

1 1
<a-Bl 4 a5,

F

B - \B'=(1-))A
and
B's—AB's=(1-\)As = (1-MNy=(1-)\A4s

due to As # y this is true only when A =1, i.e. B' = B’.

incar problems in 1 variable

Non-lnear problems in n variable

&)} 4

The solution of Broyden pr

Proof.

The matrix B is at minimum distance, in fact

(y— As)s” y— As)sT
18- allp = |4+ O=g0 4] |
F F
for all C € B we have C's = y so that
Cs — As)s” ssT
18-l = | S22 — |- 0%
F F
i
88
< llC - Al 375 | =110~ Al

because in general

ool = (32

=1

1

.
:
>02)" = lul lol

J=1

% n
m%f) . ( S
&

Corollary
The update

(yr — Axsi)sf,
Appr = Ay + =k
slsp

satisfy the secant condition:
Aki18k =Yk

moreover, Ay is the nearest matrix in the Frobenius norm that
satisfy the secant condition.

Different the norm produce different results and in general you can
loose uniqueness of the update.




Th royden problem

The Broyden method

The Broyde The solution of Broyden pr

The Broyden me

Algorithm (The Broyden method)

k — 0; zo and Ay assigned (for example Ay = VF(x));
fo — Flao);
while || fi.|| > ¢ do

Solve for sy, the linear system Agsy, + fi = 0;

Tty = Tk + Sk;

Ferr = F(pg),
Y = fer1— Fri -
Update: Ayiy = A + Mi‘sk)s“
stsi
ke k+1;
end while

algorithm properties

Let F(x) satisfy the standard regularity conditions with VF(z,)
nonsingular. Then there exists positive constants €, § such that if
[lzo — .|| < € and || Ao — VF(z.)|| < 4, then the sequence {ax}
generated by the Broyden method is well defined and converge
q-superlinearly to x,, i.e.

fim N2t =@l o
k—oo |@k — .||

A C.G.Broyden, J.E.Dennis, J.J.Moré
On the local and super-linear convergence of quasi-Newton
methods.
J. Inst. Math. Appl, 6 222-236, 1973

incar problems in 1 variable

Notice that y;, — Agsp = fry1 — fi + fi so that the update can be
written as Ay.1 — Ay, + for18] /s sk and yy, can be eliminated.

Algorithm (The Broyden method (alternative version))
k «— 0; & and A assigned (for example A = VF(x));
f —F(z);
while || f|| > € do

Solve for s the linear system As + f = 0;

T —x+8;
f < F(x);
"
Update: A — A+ 12,
oTs
Eek+1;
end while

Broyden algorithm pi

Let F(xz) = Az — b where A € R"*". Then the Broyden method
converge in at most 2n steps.

Let F : R™ s R" satisfy the standard regularity conditions with
VF(x,) nonsingular. Then there exists positive constants ¢, §
such that if ||zo — x| < € and || Ag — VF(z,)|| < 4, then the
sequence {x} generated by the Broyden method satisfy

@120 — .|| < C ey —a.|*

B D.M. Gay
Some convergence properties of Broyden's method.
SIAM Journal of Numerical Ana , 16 623-630, 1979,




The Broyden method The solution of Broyden problem |

Reorganizing Broyden update

Broyden method needs to solve a linear system for A at each

step

This can be onerous in terms of CPU cost

it is possible to update directly the inverse of Ay i.e. itis

possible to update Hy = A;!

o The update of Ay, solve the problem of efficiency but do not
alleviate the memory occupation

o The matrix Ay, can be written as a product of simple matrix,

this can save memory if the update are lesser respect to the

system dimension.

Application of Sherman-Morrison formula

o From the Broyden update formula

-
e
Ay = Ay D%

SiSk
o By using Sherman-Morrison formula
1 4
-1 -1 -1 T A1
Al = A - A sl Ay

T T A1
B = s sk + 8 Ay frert

o By setting H), = A;." we have the update formula for H:

Hyy = Hy — —H frs) Hy

The Broyden method The solution of Broyden problem

Sherman-Morrison formula

Sherman-Morrison formula permit to explicity write the inverse of
a matrix perturbed with a rank 1 matrix

Proposition (Sherman—Morrison formula)

. 1 T
(Atur”) ' =471 —AluwTA™!
a
where

a=1+v'A"lu

The Sherman—Morrison formula can be checked by a direct

calculation.

@ The update formula for Hj,
1 T
Hy = Hy — EkakHsk H.
B = sisi+ st Hifin
o Can be reorganized as follows

@ Compute zi11 = Hi fisr
@ Compute 3




The Broyden method The solution of Broyden problem

The Broyden method with inverse updated

Algorithm (The Broyden method (updating inverse))
k — 0; mo assigned;
fo — F(x);
Hy — I or better Hy — VF(z)~!;
while || f¢]| > ¢ do
— perform step
s = —Hif
Tl = Tk + SkS
Fri1 = Flap);

— update H
2k = Hifip,
Bre stsk + 8] 2417

Hi= (I- 8 2zka8]) H,

Elimination of

@ A step of the broyden iterative scheme can be rewritten as
dp = —Hify.
Tpy1 = @ + di
Jerr = F(@rs)
zit1 = Hyfr

zi1df )

Hyy = (I 2%
ke ( dldy +d] 241

@ you can notice that z; and d. are similar and contains a lot
of common information.

@ It is possible exploring the iteration to eliminate zj from the
update formula of H, so that we can store the whole
sequence without the vectors zj “

Jution of Broyden probl

If nis very large then the storing of Hj, can be very expensive.

Moreover when 7 is very large we hope to find a good
solution with a number m of iteration with m << n

@ So that instead of storing Hj, we can decide to store the
vectors zj, and sy, plus the scalars 3. With this vectors and
scalars we can write

Hy = (I - frorziesiy) - (I - Brzos]) (I - fozsy ) Ho

Assuming Ho = I or can be computed on the fly we must
store only 2721m + m real number instead of 1” saving a lot of
memory.

@ However we can do better. It is possible to eliminate z; ad
store only 11 + m real numbers

 mad]
dldy + df z.41

—di1 = Hpp1 fron = (1 )kak-l

zpardl )
= (- 2% ),
( dl'dy + df z.41 et

_. Ze1df Zp

=Zhil = p o —

ddi+ d 21

_ dide
dldy +df 20

substituting in the update formula for Hy.,1 we obtain

k1

dyoid?
H;. I+ ——= | Hy
A\l‘*( + d[.dk k 5‘




royden problem

Substituting into the step of the broyden iterative scheme and
assuming dj. known

Tppr = p + die
frr1 = F@ri)

zrs1 = Hifrn

df dy
dpyy = ——— b o
k+1 d[dk+ m k+1
dyprdf
H, =TI+
k+1 < d{»dk

notice that @1, fr41 and zp4 are not used in Hj; so that
only dj. and its length need to be stored.

@ The dumped Broyden method

incar problems in 1 variable
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The solution of Broyden pr

he Broyden method with low memory usage)

k — 0; @ assigned;
f < F(z); Hy— VF(z)""; do — —Hof; lo+— dldo;
while || f|| > e do

— perform step

z — x+dy

f < F(@);

— evaluate Hy f

2z — Hof;

for j=0,1,....,k—1do

2z — z+ [(dF2)/4;)djsa;

end for
— update Hy,y
dpyy = —[l/(t +df2))2;
bey1 = dydii;
k G Ll
end while

Algorithm (The dumped Broyden method)

k — 0; zq assigned;

fo = F(m); Hy— VF(zo)!;

while || fi|| > € do
— compute search direction
dy = —Hpfi; .
Approximate arg min, . |[F(a + Ady)|* by line-search;
— perform step
s = A\dy;
Tl = T + Sk,
Fit1 = Fzgn);
Y = fenn— fi
— update Hy 4,

(s — Hyyp)st
Hyp= Hy+~——— " Hj;
i st Hyyx

k —k+1;

end while




The dump: thod

Elimination of z;
Notice that
Hyy = Hifror — Hifi = 20 +dp, and s = \dy

and

(sx — Hiyr)s)
Hy = H + ——————"H,
k1 & THu &
oy — 201 = doed]
Med] (21 + di)
Aedy — —dp)dl
:(I+(kkT Zpt1 }.)k> .
d{ (241 +dy)

(Zre1 + (1= \p)dy)d] )
= (-2 T ARG ) |y
( dld), + d] z4 k

= Hy+

Eliminati

—dpy1 = Hip i
(zr1+ (1= Mp)dg)df
- (I— k'_riw Hifi
djdy. + dj Zpq1

I— (zre1 + (1= \p)dp)d] -
dldy + d z1 ki

(Zre1 + (1= \o)dw)d] 21
dldy + df z.1

_ (dfdi)zi1 + (M — 1)(df zp1)di

= Zk+1 —

dldy +d] 241

Non-linear problems

ho
Elimination of z

A step of the broyden iterative scheme can be rewritten as
dp = —Hy.fr
T = Tk + Aedi
Srsr = F(xps)
2ke1 = Hifrn

(zre1 + (L= M)di)df
Hypy = (1 2D WO )
k41 ( dTd; + d 2o !

Eliminati
Solving for zj+1

(df zps1)

zkH:*dkH*Td}‘
Tdy,

(dis1 + (A = 1di)
and adding on both side (1 — A)d;

T
Bt (1= M) = (it + (e = V) (14 )

dl dy
dldy + df 21
dl'd;

—(dis1 + (A = Ddi)
and substituting in Hj1; we have

dis1 + (A — Ddy)d]
Hk‘l:(IJr(wl (Tk )A)k>Hk

dld;




T ]

Alg
k < 0; = assigned;
f < F(z); Hy— VF(z)""; do — —Hof; lo+— dldo;
while || fi|| > € do .

T + \pdy Approximate argmin, ., |[F(z + Ady)||* by line-search;

m (The dumped Broyden method

Substituting into the step of the broyden iterative scheme and
assuming dj. known

Tt
— perform step
Firr = Fl@ra) @ — @+ Ay
zpr1 = Hyfiin f < F/‘(Et),H ;
— evaluate Hj,
Aoy — (dldr)z1 + e — 1)(df zi1)d z — Hyf:
" dfldy +df 241 for j=0,1,....k— 1 do
T p
T z =z + [(d]'2) /4] (dj+1 + (A — Vdy);
Hi <I+ W%*U’M)Hk — update Hy,,
dj dy. dis1 = —[lez + (0 — )(df 2)di] /(b + df 2);
notice that @411, fis1 and 24 are not used in Hy; so that bt = d,‘,“d.k,,;
only dj, and its length need to be stored. & k e k+1; 5‘
end while

¢

“The dumped Broyden

Some additio

| reference

B C. G. Broyden
A Class of Methods for Solving Nonlinear Simultaneous
Equations
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A C.G. Broyden
On the discovery of the “good Broyden” method
Mathematical Programming, 87, Number 2, 2000

[ E. Bertolazzi, F. Biral and M. Da Lio
Symbolic-numeric efficient solution of optimal control
problems for multibody systems
Journal of Computational and Applied Mathematics, 185

@ Stopping criteria and g-order estimation

incar problems in 1 variable



onvergent sequences

@ Consider an iterative scheme that produce a sequence {;}
which converge to v with g-order p.

@ This means that there exists a constant C' such that

Jis1 —al < Clag—al?  fork>m
|tks1 — al
—af

Q If limyy oo exists and is say C' we have

|51 — o = Clax —afP  for large k

@ We can use this last expression to obtain an error estimate for
the error and the values of p if unknown using the only known
values.

@ Consider an iterative scheme that produce a sequence {;}
which converge to o with g-order p.

@ If |71 — a| = C |z — a|” then the ratio:

7k —

log
[ —af

and analogously

et

~ log =p(p—1)log C7

|zp — o

@ From this two ratio we can deduce p as

I |742 — @ / b1 —af
og ——— ~
w1 — o

P

in 1 varisble

Stopping crteria and

Stopping criteria g-convergent sequences

Q If |z451 — af < Clzp — af” we can write:

lak — al < |ok = @] + |ar41 —
P

IA

2k — 241 + C o — af

=

IA

|z —al ST

— Ol —al
@ If 2 is s0 near the solution such that C'[zy, — af’ ! < L then

|2k — o < 2|z — k1]

@ This justify the stopping criteria

aksr — ol < 7 Absolute tolerance

|21 — o < 7 max{|a|, [z41|} Relative tolerance

@ The ratio

uses the error which is not known.
@ If we are near the solution we can use the estimation
|z — af ~ [2341 — 2| so that

11— ko]
|2 — x40

k2 —

log ~p

By2 = Toysl [0
Th1 — T

so that 3 iteration are enough to estimate the g-order of a
sequence




@ if the the step length is proportional to the value of f(z) as in
Newton-Raphson scheme, i.e. |a; — a| & M |f(z)| we can
simplify the previous formula as:

e/

@ Such estimation are useful to check code implementation. In
fact if we expect order p and we see order r # p there is
something wrong in the implementation or in the theory!

Nonvlinear problems in 1 variable
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