Non-linear problems in n variable Lectures for PHD course on Unconstrained Numerical Optimization

Enrico Bertolazzi

DIMS - Università di Trento

May 2008

Outline

- The Newton Raphson
- The Frobenius matrix norm
- The Broyden method
- The dumped Broyden method
- Stopping criteria and q-order estimation

The problem to solve

Problem

Given $F : D \subseteq \mathbb{R}^n \mapsto \mathbb{R}^n$

Find $x_{\star} \in D$ for which $F(x_{\star}) = 0$.

Example

Let

$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} x_1^2 + x_2^3 + 7 \\ x_1 + x_2 + 1 \end{pmatrix}$$

which has $\mathbf{F}(\mathbf{x}_{\star}) = \mathbf{0}$ for $\mathbf{x}_{\star} = (1, -2)^{T}$.

The Newton Raphson

Outline

- The Newton Raphson
- The Broyden method
- The dumped Broyden method

Consider the following map

$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} x_1^2 + x_2^3 + 7 \\ x_1 + x_2 + 1 \end{pmatrix}$$

we known an approximation of a root $x_0 \approx (1.1, -1.9)^T$.

• Setting $x_1 = x_0 + p$ we obtain ¹

$$\mathbf{F}(\boldsymbol{x}_0 + \boldsymbol{p}) = \begin{pmatrix} 1.351 \\ 0.2 \end{pmatrix} + \begin{pmatrix} 2.2 & 10.83 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + \boldsymbol{\mathcal{\vec{O}}}(\|\boldsymbol{p}\|^2)$$

if x_0 is a good approximation of a root of $\mathbf{F}(x)$ then $\mathbf{\mathcal{O}}(\|p\|^2)$ is a small vector.

¹Here $\vec{O}(x)$ means $(O(x), ..., O(x))^T$

The Newton procedure

a Neglecting $\vec{O}(||n||^2)$ and solving

$$\begin{pmatrix} 1.351 \\ 0.2 \end{pmatrix} + \begin{pmatrix} 2.2 & 10.83 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \mathbf{0}$$

we obtain $\mathbf{p} = (-0.094438, -0.105562)^T$.

Now we set

$$x_1 = x_0 + p = \begin{pmatrix} 1.005562 \\ -2.0055612 \end{pmatrix}$$

The Newton procedure

(2/2)

Considering

$$\mathbf{F}(\boldsymbol{x}_1 + \boldsymbol{q}) = \begin{pmatrix} -0.05576 \\ 8\,10^{-7} \end{pmatrix} + \begin{pmatrix} 2.0111 & 12.0668 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} + \boldsymbol{\mathcal{\vec{O}}}(\|\boldsymbol{q}\|^2)$$

• Neglecting $\vec{\mathcal{O}}(\|q\|^2)$ and solving

$$\begin{pmatrix} -0.05576 \\ 810^{-7} \end{pmatrix} + \begin{pmatrix} 2.0111 & 12.0668 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \mathbf{0}$$

we obtain $\mathbf{q} = (-0.0055466, 0.0055458)^T$.

• Now we set $x_2 = x_1 + q = (1.000015, -2.000015)^T$

\$

The Newton procedure: a modern point of view

The previous procedure can be resumed as follows:

 $oldsymbol{\circ}$ Consider the following function $\mathbf{F}(x)$. We known an approximation of a root x_0 .

Expand by Taylor series

$$\mathbf{F}(x) = \mathbf{F}(x_0) + \nabla \mathbf{F}(x_0)(x - x_0) + \mathbf{\mathcal{O}}(\|x - x_0\|^2)$$

 \bigcirc Drop the term $\overrightarrow{\mathcal{O}}(||x-x_0||^2)$ and solve

$$\mathbf{0} = \mathbf{F}(\boldsymbol{x}_0) + \nabla \mathbf{F}(\boldsymbol{x}_0)(\boldsymbol{x} - \boldsymbol{x}_0)$$

Call x_1 this solution.

■ Repeat 1 - 3 with x₁, x₂, x₃, . . .

Algorithm (Newton iterative scheme)

Let x_0 assigned, then for k = 0, 1, 2, ...

Solve for p_k:

$$\nabla \mathbf{F}(\mathbf{x}_k)\mathbf{p}_k + \mathbf{F}(\mathbf{x}_k) = \mathbf{0}$$

Update

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{p}_k$$

-linear problems in 12 variable

Proof.

From basic Calculus:

$$\mathbf{F}(\boldsymbol{y}) - \mathbf{F}(\boldsymbol{x}) = \int_0^1 \nabla \mathbf{F}(\boldsymbol{x} + t(\boldsymbol{y} - \boldsymbol{x}))(\boldsymbol{y} - \boldsymbol{x}) dt$$

subtracting on both side $\nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})$ we have

$$\begin{split} \mathbf{F}(\boldsymbol{y}) - \mathbf{F}(\boldsymbol{x}) - \nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x}) = \\ \int_{-1}^{1} \left[\nabla \mathbf{F}(\boldsymbol{x} + t(\boldsymbol{y} - \boldsymbol{x})) - \nabla \mathbf{F}(\boldsymbol{x}) \right] (\boldsymbol{y} - \boldsymbol{x}) \, dt \end{split}$$

and taking the norm

$$\|\mathbf{F}(\boldsymbol{y}) - \mathbf{F}(\boldsymbol{x}) - \nabla \mathbf{F}(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x})\| \le \int_{0}^{1} \gamma t \|\boldsymbol{y} - \boldsymbol{x}\|^{2} dt$$

Standard Assumptions

In the study of convergence of numerical scheme, some standard regularity assumption are assumed for the function $\mathbf{F}(x)$.

Assumption (Standard Assumptions)

The function $\mathbf{F}:D\subset\mathbb{R}^n\mapsto\mathbb{R}^n$ is continuous, differentiable with Lipschitz derivative $\nabla\mathbf{F}(\mathbf{x})$. i.e.

$$\|\nabla \mathbf{F}(\mathbf{x}) - \nabla \mathbf{F}(\mathbf{y})\| \le \gamma \|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in D \subset \mathbb{R}^n$$

Lemma (Taylor like expansion)

Let $\mathbf{F}(x)$ satisfy the standard assumptions, then

$$\|\mathbf{F}(y) - \mathbf{F}(x) - \nabla \mathbf{F}(x)(y - x)\| \le \frac{\gamma}{2} \|x - y\|^2 \quad \forall x, y \in D \subset \mathbb{R}^n$$

Non-linear problems in 11 variable

The Newton Raphs

Lemma (Jacobian norm control)

Let $\mathbf{F}(x)$ satisfying standard assumptions, and $\nabla \mathbf{F}(x_\star)$ non singular. Then there exists $\delta>0$ such that for all $\|x-x_\star\|\leq \delta$ we have

$$2^{-1} \|\nabla \mathbf{F}(x)\| \le \|\nabla \mathbf{F}(x_*)\| \le 2 \|\nabla \mathbf{F}(x)\|$$

and

$$2^{-1} \|\nabla \mathbf{F}(\mathbf{x})^{-1}\| \le \|\nabla \mathbf{F}(\mathbf{x}_{\star})^{-1}\| \le 2 \|\nabla \mathbf{F}(\mathbf{x})^{-1}\|$$

From standard assumptions choosing $\gamma \delta \le 2^{-1} \|\nabla \mathbf{F}(\mathbf{x}_{+})\|$

$$\|\nabla \mathbf{F}(x)\| \le \|\nabla \mathbf{F}(x) - \nabla \mathbf{F}(x_{\star})\| + \|\nabla \mathbf{F}(x_{\star})\|$$

$$< \gamma \|x - x_{\star}\| + \|\nabla \mathbf{F}(x_{\star})\|$$

$$\leq (3/2) \|\nabla \mathbf{F}(\mathbf{x}_{\star})\| \leq 2 \|\nabla \mathbf{F}(\mathbf{x}_{\star})\|$$

again choosing $\gamma \delta \le 2^{-1} \|\nabla \mathbf{F}(\mathbf{x}_{+})\|$

$$\|\nabla \mathbf{F}(\mathbf{x}_{\star})\| \le \|\nabla \mathbf{F}(\mathbf{x}_{\star}) - \nabla \mathbf{F}(\mathbf{x})\| + \|\nabla \mathbf{F}(\mathbf{x})\|$$

 $\le \gamma \|\mathbf{x} - \mathbf{x}_{\star}\| + \|\nabla \mathbf{F}(\mathbf{x})\|$

$$\leq 2^{-1} \|\nabla \mathbf{F}(x_{\star})\| + \|\nabla \mathbf{F}(x)\|$$

so that $2^{-1} \|\nabla F(x_{+})\| \le \|\nabla F(x)\|$.

The Newton Raphson

Standard Assumptions

Proof

Using last inequality again

$$\|\nabla \mathbf{F}(\mathbf{x})^{-1}\| \le \|\nabla \mathbf{F}(\mathbf{x})^{-1} - \nabla \mathbf{F}(\mathbf{x}_{\star})^{-1}\| + \|\nabla \mathbf{F}(\mathbf{x}_{\star})^{-1}\|$$

$$< 2^{-1} \|\nabla \mathbf{F}(\mathbf{x})^{-1}\| + \|\nabla \mathbf{F}(\mathbf{x}_{\star})^{-1}\|$$

so that

$$2^{-1} \|\nabla \mathbf{F}(\mathbf{x})^{-1}\| < \|\nabla \mathbf{F}(\mathbf{x}_{+})^{-1}\|$$

choosing δ such that for all $||x - x_{\star}|| \le \delta$ we have $\nabla F(x)$ non singular and $\gamma \delta \le 2^{-1} \|\nabla \mathbf{F}(\mathbf{x}_{+})\|$ and $\gamma \delta \|\nabla \mathbf{F}(\mathbf{x}_{+})^{-1}\| \le 2^{-1}$ then the inequality of the lemma are true.

Proof

From the continuity of the determinant there exists a neighbor with $\nabla \mathbf{F}(x)$ non singular for all $||x - x_{\star}|| \le \delta$.

$$\begin{split} \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} - \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \\ &\leq \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star}) - \nabla \mathbf{F}(\boldsymbol{x}) \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \\ &< \gamma \left\| \boldsymbol{x} - \boldsymbol{x}_{\star} \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x})^{-1} \right\| \left\| \nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} \right\| \end{split}$$

and choosing
$$\delta$$
 such that $\gamma\delta\left\|\nabla\mathbf{F}(x_\star)^{-1}\right\|\leq 2^{-1}$ we have

$$\left\|\nabla\mathbf{F}(x)^{-1}-\nabla\mathbf{F}(x_\star)^{-1}\right\|\leq 2^{-1}\left\|\nabla\mathbf{F}(x)^{-1}\right\|$$
 and using this last inequality

$$\begin{aligned} \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1}\| &\leq \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1} - \nabla \mathbf{F}(\boldsymbol{x})^{-1}\| + \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\| \\ &\leq (3/2) \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\| \leq 2 \|\nabla \mathbf{F}(\boldsymbol{x})^{-1}\| \end{aligned}$$

Non-linear problems in 11 variable The Newton Raphs

Theorem (Local Convergence of Newton method)

Let F(x) satisfying standard assumptions, and x_{+} a simple root (i.e. $\nabla \mathbf{F}(\mathbf{x}_{+})$ non singular). Then, if $||\mathbf{x}_{0} - \mathbf{x}_{+}|| \le \delta$ with $C\delta \le 1$ where

$$C = \gamma \|\nabla \mathbf{F}(\mathbf{x}_{\star})^{-1}\|$$

then, the sequence generated by Newton method satisfies:

$$\|x_k - x_\star\| \le \delta \text{ for } k = 0, 1, 2, 3, \dots$$

$$\|x_{k+1} - x_{\star}\| \le C \|x_k - x_{\star}\|^2$$
 for $k = 0, 1, 2, 3, ...$

$$\bullet$$
 $\lim_{k\to\infty} x_k = x_{\star}$.

The point 2 of the theorem is the second a-order of convergence of Newton method.

Proof

Consider a Newton step with $||x_k - x_+|| \le \delta$ and

$$\begin{split} \boldsymbol{x}_{k+1} - \boldsymbol{x}_{\star} &= \boldsymbol{x}_{k} - \boldsymbol{x}_{\star} - \nabla \mathbf{F}(\boldsymbol{x}_{k})^{-1} \big[\mathbf{F}(\boldsymbol{x}_{k}) - \mathbf{F}(\boldsymbol{x}_{\star}) \big] \\ &= \nabla \mathbf{F}(\boldsymbol{x}_{k})^{-1} \big[\nabla \mathbf{F}(\boldsymbol{x}_{k}) (\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}) - \mathbf{F}(\boldsymbol{x}_{k}) + \mathbf{F}(\boldsymbol{x}_{\star}) \big] \end{split}$$

taking the norm and using Taylor like lemma

$$\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_{\star}\| \le 2^{-1} \gamma \|\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}\|^{2} \|\nabla \mathbf{F}(\boldsymbol{x}_{k})^{-1}\|$$

from Jacobian norm control lemma (slide 12) there exist a δ such that $2 \|\nabla \mathbf{F}(\mathbf{x}_{k})^{-1}\| > \|\nabla \mathbf{F}(\mathbf{x}_{k})^{-1}\|$ for all $\|\mathbf{x}_{k} - \mathbf{x}_{k}\| \le \delta$. Reducing eventually δ such that $\gamma \delta \|\nabla F(x_{\star})^{-1}\| \leq 1$ we have

$$\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_{\star}\| \leq \gamma \|\nabla \mathbf{F}(\boldsymbol{x}_{\star})^{-1}\| \delta \|\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}\|^{2} \leq \|\boldsymbol{x}_{k} - \boldsymbol{x}_{\star}\|,$$

So that by induction we prove point 1. Point 2 and 3 follows trivially.

Theorem (Newton-Kantorovich)

Let $F : D \subset \mathbb{R}^n \mapsto \mathbb{R}^n$ be a differentiable mapping and let $x_0 \in D$ be such that $\nabla \mathbf{F}(\mathbf{x}_0)$ is nonsingular. Let be

$$B(x_0, \rho) = \{y \mid ||x_0 - y|| < \rho\},\$$

 $\alpha = ||\nabla F(x_0)^{-1}F(x_0)||,$

Moreover

- $a \overline{B(x_0, \rho)} \subset D$:
- $\|\nabla F(x_0)^{-1}(F(x) F(x_0))\| \le \omega \|x x_0\|$ for all $x \in D$;
- $\kappa := \alpha \omega \le 2^{-1}$:

If the radius o is large enough, i.e.

$$\hat{\rho} := \frac{1 - \sqrt{1 - 2\kappa}}{\omega} \le \rho$$

Then:

The Newton-Kantorovich Theorem

Theorem (cont.)

The Newton Raphso

- F(x) has a zero x₊ ∈ B(x₀, ô):
- The open ball B(x₀, ô) does not contain any zero of F(x) different from x_+ :
- The Newton iterative procedure produce sequences belonging to $B(x_0, \hat{\rho})$ that converge to x_+ ;
- If $\kappa < 2^{-1}$ then for Newton's method, we have

$$\|x_k - x_*\| \le \frac{2\beta \lambda^{2^k}}{1 - \lambda^{2^k}}$$

where

$$\beta = \frac{\sqrt{1-2\kappa}}{\omega}$$
, $\lambda = \frac{1-\kappa - \sqrt{1-2\kappa}}{\kappa}$

Proof

The Newton Raphs

- P. Deuflhard and G. Heindl Affine Invariant Convergence Theorems for Newton's Method and Extensions to Related Methods
- SIAM Journal on Numerical Analysis, 16, 1979.
- Florian A. Potra

The Kantorovich Theorem and interior point methods Math. Program., Ser. A 102, 2005

J.M. Ortega

The Newton-Kantorovich theorem

Amer. Math. Monthly 75, 1968

- · A way to make a more robust non linear solver is to use the techniques developed for minimization to make a globally convergent nonlinear solver.
- . In particular if we consider the merit function

$$f(x) = \frac{1}{2} ||F(x)||^2$$

we have that $f(x) \ge 0$ and if x_+ is such that $f(x_+) = 0$ than we have that

- x₊ is a global minimum of f(x):
- F(x₊) = 0, i.e. is a solution of the nonlinear system F(x).
- ullet So that finding a global minimum of the merit function f(x) is the same of finding a solution of the nonlinear system F(x).

We can apply for example the gradient method to the merit

- . Instead, we can use the Newton method to produce a search
 - direction. The resulting method is the following Compute the search direction by solving

function f(x). This produce a slow method.

- $\nabla \mathbf{F}(\mathbf{x}_k)\mathbf{d}_k + \mathbf{F}(\mathbf{x}_k) = \mathbf{0}$: Find an approximate solution of the problem
- $\alpha_k = \operatorname{arg\,min}_{-\infty} \|\mathbf{F}(\mathbf{x}_k + \alpha \mathbf{d}_k)\|^2$ Update the solution x_{k+1} = x_k + α_kd_k.
- The previous algorithm work if the direction d_i is a descent direction.

on-linear problems in 71 variable The Newton Raphson

Lemma

The direction d computed as a solution of the problem

$$\nabla \mathbf{F}(x)d + \mathbf{F}(x) = 0$$

is a descent direction

Is d_k a descent direction?

Proof.

Consider the gradient of $f(x) = (1/2) ||F(x)||^2$:

$$\frac{\partial \mathsf{f}(\boldsymbol{x})}{\partial x_k} = \frac{1}{2} \frac{\partial \|\mathbf{F}(\boldsymbol{x})\|^2}{\partial x_k} = \frac{1}{2} \frac{\partial}{\partial x_k} \sum_{i=1}^n F_i(\boldsymbol{x})^2 = \sum_{i=1}^n \frac{\partial F_i(\boldsymbol{x})}{\partial x_k} F_i(\boldsymbol{x})$$

this can be written as $\nabla f(x) = F(x)^T \nabla F(x)$

Proof. Now we check $\nabla f(x)d$:

Is d_k a descent direction?

$$\nabla f(\mathbf{x})d = \mathbf{F}(\mathbf{x})^T \nabla \mathbf{F}(\mathbf{x})d$$

$$= -\mathbf{F}(\mathbf{x})^T \nabla \mathbf{F}(\mathbf{x}) \nabla \mathbf{F}(\mathbf{x})^{-1} \mathbf{F}(\mathbf{x})$$

$$= -\mathbf{F}(\mathbf{x})^T \mathbf{F}(\mathbf{x})$$

$$= -\|\mathbf{F}(\mathbf{x})\|^2 < 0$$

This lemma prove that Newton direction is a descent direction.

Let θ_{l} the angle between $\nabla f(x_{l})$ and d_{l} , then we have

$$\begin{aligned} \cos \theta_k &= - \frac{\nabla \mathbf{f}(\mathbf{x}_k) d_k}{\|\mathbf{F}(\mathbf{x}_k)\| \|\nabla \mathbf{F}(\mathbf{x}_k)^{-1} \mathbf{F}(\mathbf{x}_k)\|} \\ &= \frac{\|\mathbf{F}(\mathbf{x}_k)\|}{\|\nabla \mathbf{F}(\mathbf{x}_k)^{-1} \mathbf{F}(\mathbf{x}_k)\|} \\ &\geq \frac{\|\mathbf{F}(\mathbf{x}_k)\|}{\|\nabla \mathbf{F}(\mathbf{x}_k)^{-1} \|\|\mathbf{F}(\mathbf{x}_k)\|} \\ &> \|\nabla \mathbf{F}(\mathbf{x}_k)^{-1}\| \|\mathbf{F}(\mathbf{x}_k)\| \end{aligned}$$

so that, if for example $\|\nabla \mathbf{F}(x)^{-1}\|$ is bounded from below then the angle θ_k is strictly less then $\pi/2$ radiants. By the Zoutendijk theorem then the globalized Newton scheme is globally convergent.

Non-linear problems in 12 variable

The Frobenius matrix norm Outline

- The Frobenius matrix norm

Algorithm (The globalized Newton method)

 $k \leftarrow 0$; x assigned; $f \leftarrow \mathbf{F}(x)$;

while $||f|| > \epsilon$ do - Evaluate search direction

 $\nabla \mathbf{F}(\mathbf{x})\mathbf{d} + \mathbf{F}(\mathbf{x}) = \mathbf{0}$; Evaluate dumping factor λ

by line-search;

 $\lambda \approx \arg \min_{\alpha > 0} ||\mathbf{F}(\mathbf{x} + \alpha \mathbf{d}_k)||^2$ - perform step $x \leftarrow x + \lambda d$

 $f \leftarrow \mathbf{F}(x)$; $k \leftarrow k + 1$:

end while

The Frobenius matrix norm

Definition

The Frobenius norm $\|\cdot\|_F$ of a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ is defined as follows

$$\|A\|_F = \left(\sum_{i=1}^n \sum_{j=1}^m A_{ij}^2\right)^{1/2}$$

is a matrix norm, i.e. it satisfy:

- $\|A\|_{\mathcal{D}} \ge 0$ and $\|A\|_{\mathcal{D}} = 0 \iff A = 0$:
- $\|\lambda A\|_{\mathcal{D}} = |\lambda| \|A\|_{\mathcal{D}}$
- $\|A + B\|_{\mathcal{D}} < \|A\|_{\mathcal{D}} + \|B\|_{\mathcal{D}}$
- $||AB||_{E} < ||A||_{E} ||B||_{E}$

The Frobenius norm is the length of the vector A if we consider A

as a vector in \mathbb{R}^{n^2} .

The first two point of the Frobenius norm $\|\cdot\|_F$ are trivial, to prove point 3 and 4 we need two classical inequality:

Cauchy-Schwartz inequality

$$\sum_{i=1}^{n} a_i b_i \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

The inequality is strict unless $a_i = \lambda b_i$ for i = 1, 2, ..., n.

Triangular inequality

$$\left(\sum_{i=1}^{n} (a_i + b_i)^2\right)^{1/2} \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}$$

The inequality is strict unless $a_i = \lambda b_i$ for i = 1, 2, ..., n.

The Following services

The Frobenius matrix norm

Proof of $\|AB\|_F \le \|A\|_F \|B\|_F$. By using Cauchy–Schwartz inequality with

$$\begin{split} \|\mathbf{AB}\|_F &= \left(\sum_{i,j=1}^n \left(\sum_{k=1}^n A_{ik} B_{kj}\right)^2\right)^{1/2} \\ &\leq \left(\sum_{i,j=1}^n \left(\sum_{k=1}^n A_{ik}^2\right) \left(\sum_{k'=1}^n B_{k'j}^2\right)\right)^{1/2} \\ &= \left(\left(\sum_{i=1}^n \sum_{k=1}^n A_{ik}^2\right) \left(\sum_{j=1}^n \sum_{k'=1}^n B_{k'j}^2\right)\right)^{1/2} \\ &= \|\mathbf{A}\|_F \|\mathbf{B}\|_F. \end{split}$$

The Frobenius matrix norm

Proof of $\|\boldsymbol{A} + \boldsymbol{B}\|_F \le \|\boldsymbol{A}\|_F + \|\boldsymbol{B}\|_F$. By using triangular inequality

$$\begin{split} \| \boldsymbol{A} + \boldsymbol{B} \|_F &= \left(\sum_{i,j=1}^n (A_{ij} + B_{ij})^2 \right)^{1/2} \\ &\leq \left(\sum_{i,j=1}^n A_{ij}^2 \right)^{1/2} + \left(\sum_{i,j=1}^n B_{ij}^2 \right)^{1/2} \\ &= \| \boldsymbol{A} \|_F + \| \boldsymbol{B} \|_F \,. \end{split}$$

The Frobenius matrix norm

Lemma

Let $oldsymbol{u}, oldsymbol{w} \in \mathbb{R}^m$ column vector then the following equality is true:

$$\|uw^T\|_F \le \|u\|_2 \|w\|_2$$

Proof

$$\|uw^T\|_F^2 = \sum_{i,j=1}^n u_i^2 w_j^2$$

= $\left(\sum_{i=1}^n u_i^2\right) \left(\sum_{j=1}^n w_j^2\right)$

Lemma

Let $A \in \mathbb{R}^{n \times m}$ and $x \in \mathbb{R}^m$ column vector then the following inequality is true:

$$||Ax||_2 \le ||A||_E ||x||_2$$

Proof.

By using Cauchy-Schwarz inequality

$$\|\boldsymbol{A}\boldsymbol{x}\|_{2}^{2} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} A_{ij} x_{j}\right)^{2} \leq \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \boldsymbol{A}_{ij}^{2}\right) \left(\sum_{k} x_{k}^{2}\right)$$

$$= \|\boldsymbol{A}\|_F^2 \, \|\boldsymbol{x}\|_2^2$$

Lemma

Let $A \in \mathbb{R}^{n \times m}$ and $v_1, v_2, \dots, v_n \in \mathbb{R}^m$ a base of orthonormal vector for \mathbb{R}^m , then

$$\|\boldsymbol{A}\|_F^2 = \sum_{i=1}^n \|\boldsymbol{A}\boldsymbol{v}_k\|_2^2$$

Proof.

consider a generic vector $\boldsymbol{u} = \alpha_1 \boldsymbol{v}_1 + \cdots + \alpha_m \boldsymbol{v}_m$ and notice that

$$\begin{split} \left(\sum_{k=1}^{m} v_k v_k^T\right) \mathbf{u} &= \left(\sum_{k=1}^{m} v_k v_k^T\right) \left(\sum_{j=1}^{m} \alpha_j v_j\right) = \sum_{k=1}^{m} \sum_{j=1}^{m} v_k v_k^T v_j \alpha_j \\ &= \sum_{k=1}^{m} \alpha_k v_k = \mathbf{u} \end{split}$$

Lemma

Let $a, b \in \mathbb{R}^n$ and $x, y \in \mathbb{R}^m$ orthonormal vector, i.e. $x^Ty = 0$ and $||x||_2 = ||y||_2 = 1$, then the following equality is true

$$\|ax^T + by^T\|_p^2 = \|a\|_2^2 + \|b\|_2^2$$

Proof.

$$\begin{split} \left\| \boldsymbol{a} \boldsymbol{x}^T + \boldsymbol{b} \boldsymbol{y}^T \right\|_F^2 &= \sum_{i=1}^n \sum_{j=1}^m (a_i x_j + b_i y_j)^2 \\ &= \sum_{i=1}^n \sum_{j=1}^m (a_i^2 x_j^2 + b_i^2 y_j^2 + 2 a_i x_j b_i y_j) \\ &= \|\boldsymbol{a}\|_2^2 \|\boldsymbol{x}\|_2^2 + \|\boldsymbol{b}\|_2^2 \|\boldsymbol{y}\|_2^2 + 2 (\boldsymbol{a}^T \boldsymbol{b}) \left(\underline{\boldsymbol{x}}^T \boldsymbol{y} \right) \end{split}$$

Proof

Thus

$$I = \sum_{k=1}^{m} v_k v_k^T$$

Using this relation we can write

$$\left\|\boldsymbol{A}\right\|_F^2 = \left\|\boldsymbol{A}\boldsymbol{I}\right\|_F^2 = \left\|\boldsymbol{A}\left(\sum_{k=1}^m \boldsymbol{v}_k \boldsymbol{v}_k^T\right)\right\|_F^2 = \left\|\sum_{k=1}^m \boldsymbol{w}_k \boldsymbol{v}_k^T\right\|_F^2 =$$

where $w_k = Av_k$. Using the previous lemma we have

$$\|\boldsymbol{A}\|_F^2 = \sum_{k=1}^m \|\boldsymbol{w}_k\|_2^2 = \sum_{k=1}^m \|\boldsymbol{A}\boldsymbol{v}_k\|_2^2$$

The Frohenius matrix norm

The Broyden method

The dumped Broyden method

Stopping criteria and q-order estimation

Non-linear problems in 12 variable The Broyden method

The Broyden method

(2/3)

Algorithm (Generic Secant iterative scheme)

Let x_0 and A_0 assigned, then for k = 0, 1, 2, ...

Solve for p_k:

$$M_k(\mathbf{p}_k + \mathbf{x}_k) = \mathbf{A}_k \mathbf{p}_k + \mathbf{F}(\mathbf{x}_k) = \mathbf{0}$$

Update the root approximation

$$x_{k+1} = x_k + p_k$$

ullet Update the affine model and produce A_{k+1} .

The Broyden method

• Newton method is a fast (*q*-order 2) numerical scheme to approximate the root of a function $\mathbf{F}(x)$ but needs the knowledge of the Jacobian $\nabla \mathbf{F}(x)$.

- Sometimes Jacobian is not available or too expensive to compute, in this case a numerical procedure to approximate the root which does not use derivative is mandatory.
- The Newton scheme find successively the root of the affine approximation

$$L_k(\mathbf{x}) \doteq \nabla \mathbf{F}(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) + \mathbf{F}(\mathbf{x}_k) = \mathbf{0}$$

Substituting the Jacobian in the affine approximation by A_k

$$M_k(\mathbf{x}) \doteq \mathbf{A}_k(\mathbf{x} - \mathbf{x}_k) + \mathbf{F}(\mathbf{x}_k) = \mathbf{0}$$

 $M_k(x) \doteq A_k(x-x_k) + \mathbf{F}(x_k) = \mathbf{0}$ and solving successively this affine model produces the family

The Broyden method The Broyden method

of different methods:

• The update of $M_k \to M_{k+1}$ determine the algorithm.

 A simple update is the forcing of a number of the secant relation:

$$M_{k+1}(\mathbf{x}_{k+1-\ell}) = \mathbf{F}(\mathbf{x}_{k+1-\ell}), \quad \ell = 1, 2, ..., m$$

notice that $M_{k+1}(\boldsymbol{x}_{k+1}) = \mathbf{F}(\boldsymbol{x}_{k+1})$ for all \boldsymbol{A}_{k+1} .

- If $A_{k+1} \in \mathbb{R}^{n \times n}$ and m=n and $d_\ell = x_{k+1-\ell} x_{k+1}$ are linearly independent then we have enough linear relation to determine A_{k+1} .
- Unfortunately vectors d_ℓ tends to become linearly dependent so that this approach is very ill conditioned.
- lack A more feasible approach uses less secant relation and other conditions to determine M_{k+1} .

- The update of $M_k \to M_{k+1}$ in Broyden scheme is the following:
 - M_{k+1}(x_k) = F(x_k);
 - M_{k+1}(x) − M_k(x) is small in some sense;
- The first condition imply

$$A_{k+1}(x_k - x_{k+1}) + F(x_{k+1}) = F(x_k)$$

which set n linear equation that do not determine the n^2 coefficients of A_{k+1} .

The second condition become

$$M_{k+1}(x) - M_k(x) = (A_{k+1} - A_k)(x - x_k)$$

$$||M_{k+1}(x) - M_k(x)|| \le ||A_{k+1} - A_k|| ||x - x_k||$$

where $\|\cdot\|$ is some norm. The term $\|x - x_i\|$ is not

minimum.

controllable, so a condition should be $||A_{l+1} - A_{l}||$ is

The Broyden method

Defining

$$y_k = F(x_{k+1}) - F(x_k), \quad s_k = x_{k+1} - x_k$$

the Broyden scheme find the update A_{k+1} which satisfy:

- A_{b±1}s_b = u_b: $\|A_{k+1} - A_k\| \le \|B - A_k\|$ for all B such that $Bs_k = u_k$
- If we choose for the norm ||·|| the Frobenius norm ||·||_E

$$\|A\|_F = \left(\sum_{i,j=1}^n A_{ij}^2\right)^{1/2}$$

then the problem admits a unique solution.

The solution of Browlen problem

With the Frobenius matrix norm it is possible to solve the following problem

Lemma

Let $A \in \mathbb{R}^{n \times n}$ and $s, u \in \mathbb{R}^n$ with $s \neq 0$ and $As \neq u$. Consider the set

$$\mathcal{B} = \{ oldsymbol{B} \in \mathbb{R}^{n imes n} \, | \, oldsymbol{B} oldsymbol{s} = oldsymbol{y} \}$$

then there exists a unique matrix $B \in \mathcal{B}$ such that

$$\|\boldsymbol{A}-\boldsymbol{B}\|_F \leq \|\boldsymbol{A}-\boldsymbol{C}\|_F \qquad \text{ for all } \boldsymbol{C} \in \mathcal{B}$$

moreover B has the following form

$$\boldsymbol{B} = \boldsymbol{A} + \frac{(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{s})\boldsymbol{s}^T}{\boldsymbol{s}^T\boldsymbol{s}}$$

i.e. B is a rank one perturbation of the matrix A.

Proof First of all notice that

 $\frac{1}{a^T a} y s^T \in \mathcal{B}$ $\left[\frac{1}{a^T a} y s^T\right] s = y$

so that set B is not empty. Next we reformulate the problem as a constrained minimum problem:

$$\underset{B \in \mathbb{R}^{n \times n}}{\operatorname{arg \, min}} \quad \frac{1}{2} \sum_{i,j=1}^{n} (A_{ij} - B_{ij})^{2} \quad \text{subject to } Bs = y.$$

The solution is a stationary point of the Lagrangian:

$$g(\mathbf{B}, \lambda) = \frac{1}{2} \sum_{i,j=1}^{n} (A_{ij} - B_{ij})^2 + \sum_{i=1} \lambda_i \left(\sum_{j=1}^{n} B_{ij} s_j - y_i \right)$$

Proof

taking the gradient we have

$$\frac{\partial}{\partial B_{i,i}}g(\mathbf{B}, \lambda) = A_{ij} - B_{ij} + \lambda_i s_j = 0$$

$$\frac{\partial}{\partial \lambda_i} g(\boldsymbol{B}, \boldsymbol{\lambda}) = \sum_{i=1}^n B_{ij} s_j - y_j = 0$$

The previous equality can be written in matrix form

$$B = A + \lambda s^T$$
 $Bs = y$

so that we can solve for λ

$$Bs = As + \lambda s^{T}s = y$$
 $\lambda = \frac{y - As}{s^{T}s}$

next we prove that B is the unique minimum.

Proof

Let B' and B'' two different minimum. Then $\frac{1}{2}(B' + B'') \in B$

moreover
$$\left\| m{A} - rac{1}{2} (m{B}' + m{B}'')
ight\| \le rac{1}{2} \left\| m{A} - m{B}'
ight\|_F + rac{1}{2} \left\| m{A} - m{B}''
ight\|_F$$

If the inequality is strict we have a contradiction. From the Cauchy-Schwartz inequality we have an equality only when $A - B' = \lambda(A - B'')$ so that

$$B' - \lambda B'' = (1 - \lambda)A$$

and

$$B's - \lambda B''s = (1 - \lambda)As \Rightarrow (1 - \lambda)u = (1 - \lambda)As$$

due to
$$As \neq y$$
 this is true only when $\lambda = 1$, i.e. $B' = B''$.

Proof

The matrix B is at minimum distance in fact

$$\left\|\boldsymbol{B} - \boldsymbol{A}\right\|_F = \left\|\boldsymbol{A} + \frac{(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{s})\boldsymbol{s}^T}{\boldsymbol{s}^T\boldsymbol{s}} - \boldsymbol{A}\right\|_F = \left\|\frac{(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{s})\boldsymbol{s}^T}{\boldsymbol{s}^T\boldsymbol{s}}\right\|_F$$

for all $C \in \mathcal{B}$ we have Cs = u so that

$$\begin{split} \|\boldsymbol{B} - \boldsymbol{A}\|_F &= \left\| \frac{(\boldsymbol{C}s - \boldsymbol{A}s)s^T}{s^Ts} \right\|_F = \left\| (\boldsymbol{C} - \boldsymbol{A}) \frac{ss^T}{s^Ts} \right\|_F \\ &\leq \|\boldsymbol{C} - \boldsymbol{A}\|_F \left\| \frac{ss^T}{s^Ts} \right\|_F = \|\boldsymbol{C} - \boldsymbol{A}\|_F \end{split}$$

because in general

$$\left\|\boldsymbol{u}\boldsymbol{v}^T\right\|_F = \left(\sum_{i,j=1}^n u_i^2 v_j^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^n u_i^2 \sum_{j=1}^n v_j^2\right)^{\frac{1}{2}} = \left\|\boldsymbol{u}\right\| \left\|\boldsymbol{v}\right\|$$

The solution of Broyden problem

Corollary

The update

$$A_{k+1} = A_k + \frac{(y_k - A_k s_k)s_k^T}{s_k^T s_k}$$

satisfy the secant condition:

$$\mathbf{A}_{k+1}\mathbf{s}_k = \mathbf{y}_k$$

moreover, A_{k+1} is the nearest matrix in the Frobenius norm that satisfy the secant condition

Remark

Different the norm produce different results and in general you can loose uniqueness of the update.

Algorithm (The Broyden method)

$$k \leftarrow 0$$
; x_0 and A_0 assigned (for example $A_0 = \nabla F(x_0)$);
 $f_0 \leftarrow F(x_0)$;

$$f_0 \leftarrow \mathbf{F}(x_0);$$

while $||f_k|| > \epsilon$ do

ile
$$\|f_k\| > \epsilon$$
 do

Solve for
$$s_k$$
 the linear system $A_k s_k + f_k = 0$;

$$x_{k+1} = x_k + s_k;$$

$$f_{k+1} = \mathbf{F}(x_{k+1});$$

$$\mathbf{y}_k = \mathbf{f}_{k+1} - \mathbf{f}_k;$$

Update:
$$A_{k+1} = A_k + \frac{(y_k - A_k s_k) s_k^T}{s_k^T s_k}$$
;

$$k \leftarrow k + 1;$$

end while

Non-linear problems in 71 variable

The Broyden method

Notice that $u_i - A_i s_i = f_{i+1} - f_i + f_i$ so that the update can be written as $A_{k+1} \leftarrow A_k + f_{k+1}s_k^T/s_k^Ts_k$ and u_k can be eliminated.

Algorithm (The Broyden method (alternative version))

$$k \leftarrow 0$$
; x and A assigned (for example $A = \nabla F(x)$);
 $f \leftarrow F(x)$:

$$f \leftarrow \mathbf{F}(x)$$
;

while
$$\|f\| > \epsilon$$
 do

Solve for
$$s$$
 the linear system $As + f = 0$;

$$x \leftarrow x + s;$$

 $f \leftarrow \mathbf{F}(x);$

Update:
$$A \leftarrow A + \frac{fs^T}{s^Ts}$$
;

$$k \leftarrow k+1;$$

end while

Broyden algorithm properties

Theorem

Let F(x) satisfy the standard regularity conditions with $\nabla F(x_{+})$ nonsingular. Then there exists positive constants ϵ , δ such that if $||x_0 - x_+|| \le \epsilon$ and $||A_0 - \nabla F(x_+)|| \le \delta$, then the sequence $\{x_k\}$ generated by the Broyden method is well defined and converge q-superlinearly to x_+ , i.e.

$$\lim_{k\to\infty} \frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\|}{\|\boldsymbol{x}_k - \boldsymbol{x}_k\|} = 0$$

C.G.Broyden, J.E.Dennis, J.J.Moré

On the local and super-linear convergence of quasi-Newton methods

J. Inst. Math. Appl, 6 222-236, 1973.

Broyden algorithm properties

Theorem

Let $\mathbf{F}(x) = Ax - b$ where $A \in \mathbb{R}^{n \times n}$. Then the Broyden method converge in at most 2n steps.

Theorem

Let $F : \mathbb{R}^n \mapsto \mathbb{R}^n$ satisfy the standard regularity conditions with $\nabla F(x_{+})$ nonsingular. Then there exists positive constants ϵ , δ such that if $||x_0 - x_+|| \le \epsilon$ and $||A_0 - \nabla F(x_+)|| \le \delta$, then the sequence $\{x_i\}$ generated by the Broyden method satisfy

$$\|x_{k+2n} - x_{\star}\| \le C \|x_k - x_{\star}\|^2$$

D.M. Gav

Some convergence properties of Broyden's method. SIAM Journal of Numerical Analysis, 16 623-630, 1979.

Reorganizing Broyden update

- Brovden method needs to solve a linear system for A_i, at each step
- This can be onerous in terms of CPU cost.
- ullet it is possible to update directly the inverse of $oldsymbol{A}_k$ i.e. it is possible to update $H_k = A_k^{-1}$.
- The update of A_I, solve the problem of efficiency but do not alleviate the memory occupation
- The matrix A_i can be written as a product of simple matrix. this can save memory if the update are lesser respect to the system dimension.

Sherman-Morrison formula

Sherman-Morrison formula permit to explicity write the inverse of a matrix perturbed with a rank 1 matrix

Proposition (Sherman-Morrison formula)

$$(A + uv^T)^{-1} = A^{-1} - \frac{1}{2}A^{-1}uv^TA^{-1}$$

where

$$\alpha = 1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u}$$

The Sherman-Morrison formula can be checked by a direct calculation

Application of Sherman-Morrison formula

From the Broyden update formula

$$\boldsymbol{A}_{k+1} = \boldsymbol{A}_k + \frac{\boldsymbol{f}_{k+1} \boldsymbol{s}_k^T}{\boldsymbol{s}_k^T \boldsymbol{s}_k}$$

By using Sherman-Morrison formula

$$A_{k+1}^{-1} = A_k^{-1} - \frac{1}{\beta_k} A_k^{-1} f_{k+1} s_k^T A_k^{-1}$$

$$\beta_k = s_k^T s_k + s_k^T A_k^{-1} f_{k+1}$$

• By setting $H_k = A_k^{-1}$ we have the update formula for H_k :

$$H_{k+1} = H_k - \frac{1}{\beta_k} H_k f_{k+1} s_k^T H_k$$

$$\beta_k = s_k^T s_k + s_k^T H_k f_{k+1}$$

Application of Sherman-Morrison formula

The update formula for H_k:

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_k - \frac{1}{\beta_k} \boldsymbol{H}_k \boldsymbol{f}_{k+1} \boldsymbol{s}_k^T \boldsymbol{H}_k$$

$$\beta_k = \mathbf{s}_k^T \mathbf{s}_k + \mathbf{s}_k^T \mathbf{H}_k \mathbf{f}_{k+1}$$

- Can be reorganized as follows
 - Compute z_{k+1} = H_k f_{k+1};
 - Ompute $\beta_k = s_k^T s_k + s_k^T z_{k+1}$; O Compute $H_{k+1} = (I - \beta_k^{-1} z_{k+1} s_k^T) H_k$;

Algorithm (The Broyden method (updating inverse))

$$k \leftarrow 0$$
; x_0 assigned;
 $f_0 \leftarrow F(x_0)$;
 $H_0 \leftarrow I$ or better $H_0 \leftarrow \nabla F(x_0)^{-1}$:

$$H_0 \leftarrow I$$
 or better $H_0 \leftarrow \nabla F(x_0)^{-1}$,
while $||f_k|| > \epsilon$ do

- perform step

$$s_k = -H_k f_k$$
;

$$x_{k+1} = x_k + x_k;$$

$$f_{k+1} = F(x_{k+1});$$

$$z_{k+1} = H_k f_{k+1};$$

 $\beta_k = s_k^T s_k + s_k^T z_{k+1};$

$$\beta_k = s_k s_k + s_k z_{k+1};$$

 $H_{k+1} = (I - \beta_k^{-1} z_{k+1} s_k^T) H_k;$

$$k \leftarrow k+1$$

$$\kappa \leftarrow \kappa + 1$$

end while

Elimination of z

Elimination of zi-

scalars we can write

store only nm+m real numbers.

 $-d_{k+1} = H_{k+1}f_{k+1} = \left(I - \frac{z_{k+1}d_k^T}{d_k^Td_{k+1}d_k^Tz_{k+1}}\right)H_kf_{k+1}$ $=\left(I - \frac{z_{k+1}d_k^T}{d^Td_{k+1}d^Tz_{k+1}}\right)z_{k+1}$ $= \boldsymbol{z}_{k+1} - \frac{\boldsymbol{z}_{k+1} \boldsymbol{d}_k^T \boldsymbol{z}_{k+1}}{\boldsymbol{d}_r^T \boldsymbol{d}_{k} + \boldsymbol{d}^T \boldsymbol{z}_r \dots}$ $= \frac{d_k^T d_k}{d_k^T d_k + d_k^T z_{k+1}} z_{k+1}$

If n is very large then the storing of H_k can be very expensive.

vectors $z_{i\cdot}$ and $s_{i\cdot}$ plus the scalars $\beta_{i\cdot}$. With this vectors and

 $H_k = (I - \beta_{k-1}z_ks_k^T) \cdots (I - \beta_1z_2s_1^T)(I - \beta_0z_1s_0^T)H_0$

store only 2nm+m real number instead of n^2 saving a lot of

Assuming H₀ = I or can be computed on the fly we must

However we can do better. It is possible to eliminate z_k ad

Moreover when n is very large we hope to find a good

solution with a number m of iteration with $m \ll n$

So that instead of storing H_I, we can decide to store the

substituting in the update formula for H_{k+1} we obtain

$$H_{k+1} \leftarrow \left(I + \frac{d_{k+1}d_k^T}{d_k^Td_k}\right)H_k$$

 $H_{k+1} = \left(I - \frac{z_{k+1}d_k^T}{d_i^Td_{k} + d_i^Tz_{k+1}}\right)H_k$ vou can notice that z_i and d_i are similar and contains a lot of common information.

A step of the broyden iterative scheme can be rewritten as

 $d_{l_1} = -H_{l_1}f_{l_2}$ $x_{k+1} = x_k + d_k$

 $f_{k+1} = \mathbf{F}(x_{k+1})$ $z_{k+1} = H_k f_{k+1}$

It is possible exploring the iteration to eliminate z_i. from the update formula of $H_{i\cdot}$ so that we can store the whole sequence without the vectors z_i .

Elimination of z_k

Substituting into the step of the broyden iterative scheme and assuming $oldsymbol{d}_k$ known

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{d}_k$$

$$f_{k+1} = F(x_{k+1})$$

$$z_{k+1} = H_k f_{k+1}$$

$$d_{k+1} = -\frac{d_k^T d_k}{d_k^T d_k + d_k^T z_{k+1}} z_{k+1}$$

$$H_{k+1} = \left(I + \frac{d_{k+1}d_k^T}{d_t^Td_k}\right)H_k$$

notice that x_{k+1} , f_{k+1} and z_{k+1} are not used in H_{k+1} so that only d_k and its length need to be stored.

. .

Algorithm (The Broyden method with low memory usage)

rithm (The Broyden method with low memory usage

$$k \leftarrow 0$$
; x assigned;

$$f \leftarrow \mathbf{F}(x); \ H_0 \leftarrow \nabla \mathbf{F}(x)^{-1}; \ d_0 \leftarrow -H_0 f; \ \ell_0 \leftarrow d_0^T d_0;$$

while
$$||f|| > \epsilon$$
 do

$$-$$
 perform step
 $x \leftarrow x + dv$

$$x \leftarrow x + a_k;$$

 $f \leftarrow F(x);$

— evaluate
$$H_k f$$

$$z \leftarrow H_0 f$$
;
for $j = 0, 1, ..., k-1$ do

$$oldsymbol{z} \leftarrow oldsymbol{z} + ig[(oldsymbol{d}_j^Toldsymbol{z})/\ell_jig]oldsymbol{d}_{j+1};$$
 end for

$$egin{align*} oldsymbol{d}_{k+1} &= - \left[\ell_k / (\ell_k + oldsymbol{d}_k^T oldsymbol{z}) \right] oldsymbol{z}; \ \ell_{k+1} &= oldsymbol{d}_{k+1}^T oldsymbol{d}_{k+1}; \end{split}$$

$k \leftarrow k$ end while

Non-linear problems in 11 variable The dumped Broyden method

The dumped Broyden method

Outline

- The Newton Raphson
- The Frobenius matrix norm
- The Broyden method
- The dumped Broyden method
- 5 Stopping criteria and q-order estimation

Algorithm (The dumped Broyden method)

$$k \leftarrow 0$$
; x_0 assigned;
 $f_0 \leftarrow \mathbf{F}(x_0)$; $H_0 \leftarrow \nabla \mathbf{F}(x_0)^{-1}$;

while
$$\|f_k\| > \epsilon$$
 do

$$egin{array}{ll} m{d}_k &= -m{H}_k m{f}_k; \ Approximate & rg \min_{\lambda>0} \| \mathbf{F}(m{x}_k + \lambda m{d}_k) \|^2 & ext{by line-search}; \end{array}$$

— perform step

$$s_k = \lambda_k d_k$$
;

$$s_k = \lambda_k a_k$$
;
 $x_{k+1} = x_k + s_k$;

$$x_{k+1} = x_k + s_k;$$

 $f_{k+1} = F(x_{k+1});$

$$y_k = f_{k+1} - f_k;$$

— update
$$H_{k+1}$$

$$H_{k+1} = H_k + \frac{(s_k - H_k y_k)s_k^T}{s_k^T H_k y_k} H_k$$

$$k \leftarrow k + 1;$$

end while

$$oldsymbol{H}_k oldsymbol{y}_k = oldsymbol{H}_k oldsymbol{f}_{k+1} - oldsymbol{H}_k oldsymbol{f}_k = oldsymbol{z}_{k+1} + oldsymbol{d}_k, \quad ext{and} \quad oldsymbol{s}_k = \lambda_k oldsymbol{d}_k$$

and

$$\begin{split} H_{k+1} &= H_k + \frac{(s_k - H_k y_k) s_k^T}{s_k^T H_k y_k} H_k \\ &= H_k + \frac{(\lambda_k d_k - z_{k+1} - d_k) \lambda_k d_k^T}{\lambda_k d_k^T (z_{k+1} + d_k)} \\ &= \left(I + \frac{(\lambda_k d_k - z_{k+1} - d_k) d_k^T}{d_k^T (z_{k+1} + d_k)}\right) H_k \\ &= \left(I - \frac{(z_{k+1} + (1 - \lambda_k) d_k) d_k^T}{a_k^T (z_{k+1} + d_k)}\right) H_k \end{split}$$

Elimination of zi-

 $-d_{l-1} = H_{l-1} f_{l-1}$

$$\begin{split} &= \left(I - \frac{(z_{k+1} + (1 - \lambda_k) d_k) d_k^T}{d_k^T d_k + d_k^T z_{k+1}}\right) H_k f_{k+1} \\ &= \left(I - \frac{(z_{k+1} + (1 - \lambda_k) d_k) d_k^T}{d_k^T d_k + d_k^T z_{k+1}}\right) z_{k+1} \\ &= z_{k+1} - \frac{(z_{k+1} + (1 - \lambda_k) d_k) d_k^T z_{k+1}}{d_k^T d_k + d_k^T z_{k+1}} \\ &= \frac{(d_k^T d_k) z_{k+1} + (\lambda_k - 1) (d_k^T z_{k+1}) d_k}{d_k^T d_k + d_k^T z_{k+1}} \end{split}$$

Elimination of z_i

A step of the broyden iterative scheme can be rewritten as

$$d_b = -H_b f_b$$

$$x_{k+1} = x_k + \lambda_k d_k$$

$$\boldsymbol{f}_{k+1} = \mathbf{F}(\boldsymbol{x}_{k+1})$$

$$\boldsymbol{z}_{k+1} = \boldsymbol{H}_k \boldsymbol{f}_{k+1}$$

$$H_{k+1} = \left(I - \frac{(z_{k+1} + (1 - \lambda_k)d_k)d_k^T}{d_k^T d_k + d_k^T z_{k+1}}\right)H_k$$

Elimination of zi-Solving for z_{l-1}

$$z_{k+1} = -d_{k+1} - \frac{(d_k^T z_{k+1})}{d_k^T d_k} (d_{k+1} + (\lambda_k - 1)d_k)$$

and adding on both side
$$(1 - \lambda_k)d_k$$

$$\boldsymbol{z}_{k+1} + (1 - \lambda_k) \boldsymbol{d}_k = -(\boldsymbol{d}_{k+1} + (\lambda_k - 1) \boldsymbol{d}_k) \left(1 + \frac{(\boldsymbol{d}_k^T \boldsymbol{z}_{k+1})}{\boldsymbol{d}_k^T \boldsymbol{d}_k} \right)$$

$$=-(m{d}_{k+1}+(\lambda_k-1)m{d}_k)rac{m{d}_k^Tm{d}_k+m{d}_k^Tm{z}_{k+1}}{m{d}_k^Tm{d}_k}$$

and substituting in H_{k+1} we have

$$H_{k+1} = \left(I + \frac{(d_{k+1} + (\lambda_k - 1)d_k)d_k^T}{d_k^T d_k}\right)H_k$$

$$x_{k+1} = x_k + \lambda_k d_k$$

$$f_{k+1} = F(x_{k+1})$$

$$\boldsymbol{z}_{k+1} = \boldsymbol{H}_k \boldsymbol{f}_{k+1}$$

$$d_{k+1} = -\frac{(d_k^T d_k)z_{k+1} + (\lambda_k - 1)(d_k^T z_{k+1})d_k}{d_k^T d_k + d_k^T z_{k+1}}$$

$$H_{k+1} = \left(I + \frac{(d_{k+1} + (\lambda_k - 1)d_k)d_k^T}{d_t^T d_k}\right)H_k$$

notice that x_{k+1} , f_{k+1} and z_{k+1} are not used in H_{k+1} so that only d_k and its length need to be stored.

The dumped Broyden method

Some additional reference

- C. G. Brovden
 - A Class of Methods for Solving Nonlinear Simultaneous Equations
- Mathematics of Computation, 19, No. 92, pp. 577-593
- C.G. Broyden

On the discovery of the "good Broyden" method Mathematical Programming, 87, Number 2, 2000

F. Bertolazzi, F. Biral and M. Da Lio. Symbolic-numeric efficient solution of optimal control problems for multibody systems

Journal of Computational and Applied Mathematics, 185,

Algorithm (The dumped Broyden method)

 $k \leftarrow 0$; x assigned;

 $f \leftarrow F(x)$; $H_0 \leftarrow \nabla F(x)^{-1}$; $d_0 \leftarrow -H_0 f$; $\ell_0 \leftarrow d_0^T d_0$;

while $||f_k|| > \epsilon$ do

Approximate $\underset{\lambda>0}{\operatorname{arg min}} \|\mathbf{F}(\mathbf{x} + \lambda \mathbf{d}_k)\|^2$ by line-search:

- perform step

 $x \leftarrow x + \lambda_k d_k$;

f ← F(x): --- evaluate H. f

 $z \leftarrow H_0 f$;

for j = 0, 1, ..., k - 1 do

 $z \leftarrow z + \left[(d_i^T z)/\ell_j \right] (d_{j+1} + (\lambda_j - 1)d_j);$ — update H_{k+1}

 $d_{k+1} = -[\ell_k z + (\lambda_k - 1)(d_k^T z)d_k]/(\ell_k + d_k^T z);$ $\ell_{k+1} = d_{k+1}^T d_{k+1}$;

k ← k+1: end while

Stopping criteria and q-order estimation

Outline

- Stopping criteria and a-order estimation

- Consider an iterative scheme that produce a sequence {xk} which converge to α with q-order p.
- This means that there exists a constant C such that

$$|x_{k+1} - \alpha| \le C |x_k - \alpha|^p$$
 for $k \ge m$

• If
$$\lim_{k\to\infty} \frac{|x_{k+1}-\alpha|}{|x_k-\alpha|^p}$$
 exists and is say C we have

$$|x_{k+1} - \alpha| \approx C |x_k - \alpha|^p$$
 for large k

We can use this last expression to obtain an error estimate for the error and the values of p if unknown using the only known values

Stopping criteria a-convergent sequences

• If
$$|x_{k+1} - \alpha| \le C |x_k - \alpha|^p$$
 we can write:

$$|x_k - \alpha| \le |x_k - x_{k+1}| + |x_{k+1} - \alpha|$$

 $\le |x_k - x_{k+1}| + C|x_k - \alpha|^p$

$$|x_k - \alpha| \le \frac{|x_k - x_{k+1}|}{1 - C |x_k - \alpha|^{p-1}}$$

(a) If x_k is so near the solution such that $C|x_k - \alpha|^{p-1} \le \frac{1}{2}$ then $|x_k - \alpha| \le 2|x_k - x_{k+1}|$

 $|x_{l+1} - x_{l}| \le \tau \max\{|x_{l}|, |x_{l+1}|\}$ Relative tolerance

This justify the stopping criteria

Estimation of the a-order

 $|x_{k+1} - x_k| < \tau$

Absolute tolerance

Estimation of the q-order

- Consider an iterative scheme that produce a sequence {xi-} which converge to α with a-order p.

$$\log \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} \approx \log \frac{C|x_k - \alpha|^p}{|x_k - \alpha|} = (p-1) \log C^{\frac{1}{p-1}} |x_k - \alpha|$$

and analogously

$$\log \frac{|x_{k+2} - \alpha|}{|x_{k+1} - \alpha|} \approx \log \frac{C^{1+p} |x_k - \alpha|^{p^2}}{C |x_k - \alpha|^p} = p(p-1) \log C^{\frac{1}{p-1}} |x_k - \alpha|$$

From this two ratio we can deduce p as

$$\log \frac{|x_{k+2} - \alpha|}{|x_{k+1} - \alpha|} / \log \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} \approx p$$

The ratio

$$\log \frac{|x_{k+2} - \alpha|}{|x_{k+1} - \alpha|} / \log \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|} \approx p$$

uses the error which is not known.

If we are near the solution we can use the estimation $|x_k - \alpha| \approx |x_{k+1} - x_k|$ so that

$$\log \frac{|x_{k+2} - x_{k+3}|}{|x_{k+1} - x_{k+2}|} / \log \frac{|x_{k+1} - x_{k+2}|}{|x_k - x_{k+1}|} \approx p$$

so that 3 iteration are enough to estimate the q-order of a sequence.

on-linear problems in 12 variable

 \bullet if the the step length is proportional to the value of f(x) as in Newton-Raphson scheme, i.e. $|x_{l-} - \alpha| \approx M |f(x_{l-})|$ we can simplify the previous formula as:

$$\log \frac{|f(x_{k+2})|}{|f(x_{k+1})|} / \log \frac{|f(x_{k+1})|}{|f(x_k)|} \approx p$$

Such estimation are useful to check code implementation. In fact if we expect order p and we see order $r \neq p$ there is something wrong in the implementation or in the theory!

- I Stoer and R Bulirsch
 - Introduction to numerical analysis Springer-Verlag, Texts in Applied Mathematics, 12, 2002.
- J. E. Dennis, Jr. and Robert B. Schnabel Numerical Methods for Unconstrained Optimization and Nonlinear Equations
 - SIAM, Classics in Applied Mathematics, 16, 1996.
- Jorge Nocedal, and Stephen J. Wright Numerical optimization Springer, 2006

