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The Trust Region method Introduction

Newton and quasi-Newton methods approximate a solution
iteratively by choosing at each step a search direction and
minimize in this direction.

An alternative approach is to to find a direction and a
step-length, then if the step is successful in some sense the
step is accepted. Otherwise another direction and step-length
is chosen.

The choice of the step-length and direction is algorithm
dependent but a successful approach is the one based on trust
region.
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The Trust Region method Introduction

Newton and quasi-Newton at each step (approximately) solve
the minimization problem

arg min
s

mk(s)

mk(s) = f(xk) +∇f(xk)s +
1
2
sTHks

in the case Hk is symmetric and positive definite (SPD).

If Hk is SPD the minimum is

s = −H−1
k gk, gk = ∇f(xk)T

and s is the quasi-Newton step.

If Hk = ∇2f(xk) and is SPD, then s = −∇2f(xk)−1∇f(xk)T

is the Newton step.
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The Trust Region method Introduction

If Hk is not positive definite, the search direction −H−1
k gk

may fail to be a descent direction and the previous
minimization problem can have no solution.

The problem is that the model mk(s) is an approximation of
f(x)

mk(s) ≈ f(xk + s)

and this approximation is valid only in a small neighbors of xk.

So that an alternative minimization problem is the following

arg min
s

mk(s) subject to ‖s‖ ≤ ∆k

∆k is the radius of the trust region of the model mk(s), i.e.
the region where we trust the model is valid.
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The Trust Region method The generic trust region algorithm

Algorithm (Generic trust region algorithm)

x assigned; ∆ assigned;
while ‖∇f(x)‖ > ε do

— setup the model
m(s) = f(x) +∇f(x)s + 1

2sTHs;
— compute the step
s ← arg min‖s‖≤∆ m(s);
xnew ← x + s;
— check the reduction
if is xnew acceptable? then

x ← xnew;
update ∆;

else
reduce ∆;

end if
end while
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The Trust Region method The generic trust region algorithm

When accept the step?

The point xnew in the previous algorithm can be accepted or
rejected. The acceptance criterium can be the Armijo
criterium of sufficient decrease

f(xnew) ≤ f(x) + β0∇f(x)(xnew − x)

where β0 ∈ (0, 1) is a small constant (typically 10−4).

Alternatively compute the expected and actual reduction with
the ratio ρ:

pred = m(0)−m(s), ared = f(x)− f(x + s),

ρ = ared/pred

If the ratio ρ is near 1 the match of the model with the real
function is good. We accept the step if ρ > β1 where
β1 ∈ (0, 1) normally β1 ≈ 0.1.
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The Trust Region method The generic trust region algorithm

If the step is rejected how to reduce the trust radius ?

We construct the parabola p(t) such that (s = xnew − x)

p(0) = f(x), p′(0) = ∇f(x)s, p(∆) = f(xnew),

the solution is

p(t) = f(x) + (∇f(x)s)t+ Ct2

C =
f(xnew)− f(x)− (∇f(x)s)∆

∆2

The new radius is on the minimum of the parabola:

∆new = −(∇f(x)s)
2C

=
∆2(∇f(x)s)

2[f(x) + (∇f(x)s)∆− f(xnew)]

A safety interval is normally assumed; if the new radius is
outside [∆/10,∆/2] then it is put again in this interval.
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The Trust Region method The generic trust region algorithm

If the step is acceped how to modify the trust radius ?

Compute the expected and actual reduction

pred = m(0)−m(s)

ared = f(x)− f(x + s)

Compute the ratio of expected and actual reduction

ρ =
ared

pred

Compute the new radius

∆new =


max{2 ‖s‖ ,∆} if ρ ≥ β2

∆ if ρ ∈ (β1, β2)
‖s‖ /∆ if ρ ≤ β1
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The Trust Region method The generic trust region algorithm

Algorithm (Check reduction algorithm)

CheckReduction(x, s, ∆);
xnew ← x + s
α ← ∇f(x)s
ared ← f(x)− f(xnew)
pred ← −α− sTHs/2
ρ ← ared/pred

rnew ←


max{2 ‖s‖ , r} if ρ ≥ β2

r if ρ ∈ (β1, β2)
‖s‖ /2 if ρ ≤ β1

if ρ < β1 then
— reject the step
xnew ← x

end if
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The Trust Region method A fundamental lemma

Lemma

Consider the following constrained quadratic problem where
H ∈ Rn×n symmetric and positive definite.

Minimize f(s) = f0 + gTs +
1
2
sTHs,

Subject to ‖s‖ ≤ ∆

Then the following curve

s(µ) .= −(H + µI)−1g,

for any µ ≥ 0 defines a descent direction for f(s). Moreover

there exists a unique µ∗ such that ‖s(µ∗)‖ = ∆ and s(µ∗) is
the solution of the constrained problem;

or ‖s(0)‖ < ∆ and s(0) is the solution of the constrained
problem.
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The Trust Region method A fundamental lemma

Proof. (1/2).

If ‖s(0)‖ ≤ ∆ then s(0) is the global minimum of f(s) which is
inside the trust region. Otherwise consider the Lagrangian

L(s, µ) = f0 + gTs +
1
2
sTHs +

1
2
µ(sTs−∆2),

Then we have

∂L
∂s

(s, µ) = Hs + µs + g = 0 ⇒ s = −(H + µI)−1g

and sTs = ∆2. Remember that if H is SPD then H + µI is SPD
for all µ ≥ 0. Moreover the inverse of an SPD matrix is SPD. From

gTs = −gT (H + µI)−1g < 0 for all µ ≥ 0

follows that s(µ) is a descent direction for all µ ≥ 0.
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The Trust Region method A fundamental lemma

Proof. (2/2).

To prove the uniqueness expand the gradient g with the
eigenvectors of H

g =
n∑
i=1

αiui

H is SPD so that ui can be chosen orthonormal. It follows

(H + µI)−1g = (H + µI)−1
n∑
i=1

αiui =
n∑
i=1

αi
λi + µ

ui

∥∥(H + µI)−1g
∥∥2 =

n∑
i=1

α2
i

(λi + µ)2

and
∥∥(H + µI)−1g

∥∥ is a monotonically decreasing function of
µ.
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The Trust Region method A fundamental lemma

Remark

As a consequence of the previous Lemma we have:

as the radius of the trust region becomes smaller as the scalar
µ becomes larger. This means that the search direction
become more and more oriented toward the gradient direction.

as the radius of the trust region becomes larger as the scalar
µ becomes smaller. This means that the search direction
become more and more oriented toward the Newton direction.

Thus a trust region technique not only change the size of the
step-length but also its direction. This results in a more robust
numerical technique. The price to pay is that the solution of the
minimization is more costly than the inexact line search.

but what happen when H is not positive definite ?
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The Trust Region method The non positive definite case

Lemma

Consider the following constrained quadratic problem where
H ∈ Rn×n is symmetric with λ1 ≤ λ2 ≤ · · · ≤ λn its eigenvalues.

arg min
‖s‖≤∆

f(s), f(s) = f0 + gTs +
1
2
sTHs,

Then the following curve

s(µ) .= −(H + µI)−1g,

for any µ > −λ1 defines a descent direction for f(s) and H + µI
is positive definite. Moreover

or ‖s(0)‖ < ∆ with gTs(0) < 0 and s(0) is a local minima of
the problem;

or there exists a µ∗ > −λn such that ‖s(µ∗)‖ = ∆ and s(µ∗)
is a local minima of the problem;

Trust Region Method 15 / 82

The Trust Region method The non positive definite case

Proof. (1/6).

Consider the Lagrangian

L(s, µ, ε) = f0 + gTs +
1
2
sTHs

+
1
2
µ(sTs + ε2 −∆2) + ω(gTs + δ2),

where

sTs + ε2 −∆2

is the constraint ‖s‖ ≤ ∆2 on the length of the step and

gTs + δ2

is the constraint gTs ≤ 0 on the step that must be descent
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The Trust Region method The non positive definite case

Proof. (2/6).

Then we must solve the nonlinear system:

∂sL(s, µ, ω, ε, δ) = Hs + µs + (1 + ω)g = 0

2∂µL(s, µ, ω, ε, δ) = sTs + ε2 −∆2 = 0

∂ωL(s, µ, ω, ε, δ) = gTs + δ2 = 0

∂εL(s, µ, ω, ε, δ) = µε = 0

∂δL(s, µ, ω, ε, δ) = 2δω = 0

from the first equation we have:

s =
−1

1 + ω
(H + µI)−1g

and if we want a descent direction gTs < 0 which imply ω = 0.
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The Trust Region method The non positive definite case

Proof. (3/6).

So that we must solve the reduced non linear system

s = −(H + µI)−1g

sTs + ε2 −∆2 = 0

gTs = −δ2

µε = 0

combining the first and third equation we have

gT (H + µI)−1g = δ2 ≥ 0
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The Trust Region method The non positive definite case

Proof. (4/6).

If ε 6= 0 then we must have µ = 0 and∥∥−H−1g
∥∥ = ‖s‖ ≤ ∆

with gTH−1g ≥ 0. If ε = 0 then we must have∥∥−(H + µI)−1g
∥∥ = ‖s‖ = ∆

with gT (H + µI)−1g ≥ 0. Expand g =
∑n

i=1 αiui with an
orthonormal base of eigenvectors of H it follows

∥∥(H + µI)−1g
∥∥ =

n∑
i=1

α2
i

(λi + µ)2

g(H + µI)−1g =
n∑
i=1

α2
i

λi + µ
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The Trust Region method The non positive definite case

Proof. (5/6).∥∥(H + µI)−1g
∥∥ is a monotonically decreasing function of µ for

µ > −λk where k is the first index such that αk 6= 0. For example∥∥(H + µI)−1g
∥∥ = (µ+ 1)−2 + 2(µ− 1)−2 + 3(µ− 2)−2
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The Trust Region method The non positive definite case

Proof. (6/6).

Thus, or ∥∥−H−1g
∥∥ = ‖s‖ ≤ ∆ with gTH−1g > 0.

or let be k the first index such that αk 6= 0, we can find a
µ > −λk such that

∥∥−(H + µI)−1g
∥∥ =

n∑
i=k

α2
i

(λi + µ)2
= ∆

g(H + µI)−1g =
n∑
i=k

α2
i

λi + µ
> 0
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Convergence analysis
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Convergence analysis Cauchy point

Algorithm (Basic trust region algorithm)

x0 assigned; ∆0 assigned; k ← 0;
while ‖∇f(xk)‖ 6= 0 do

mk(s) = f(xk) +∇f(xk)s + 1
2sTHks; — setup the model

sk ← arg min‖s‖≤∆k
mk(s); — compute the step

xk+1 ← xk + sk;
ρk ← (f(xk)− f(xk+1))/(mk(0)−mk(sk));
— check the reduction
if ρk > β2 then

∆k+1 ← 2∆k; — very successful
else if ρk > β1 then

∆k+1 ← ∆k; — successful
else

∆k+1 ← ∆k/2; xk+1 ← xk; — failure
end if
k ← k + 1;

end while
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Convergence analysis Cauchy point

Cauchy point

Definition

Consider the quadratic

m(s) = f0 + gTs +
1
2
sTHs

and the minimization problem

sc(∆) = arg min
s∈{−tg | t≥0,‖−tg‖≤∆}

m(s)

The point sc(∆) is called
Cauchy point or step.

-g

Global minima in the gradient direction

Minima of the quadratic model

Minima in the gradiente direction inside
the trust region
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Convergence analysis Cauchy point

Estimate the length of the Cauchy step

Lemma

For the Cauchy step the following characterization is valid:

sc(∆) = −τ(∆)
g

‖g‖

τ(∆) =


∆ if gTHg ≤ 0

min

{
‖g‖3

gTHg
, ∆

}
if gTHg > 0

Moreover

τ(∆) ≥ min
{ ‖g‖
%(H)

, ∆
}

where %(H) is the spectral radius of H
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Convergence analysis Cauchy point

Proof.

Consider

h(t) = m(−tg/ ‖g‖) = f0 − t ‖g‖+
t2

2
gTHg

‖g‖2

h(t) is a parabola in t and if gTHg ≤ 0 then the parabola
decrease monotonically for t ≥ 0. In this case the point is on the
boundary of the trust region (t = ∆).
If gTHg > 0 the parabola is decreasing until the global mimima at

t =
‖g‖3

gTHg

Otherwise we separate the case if the minimum of the parabola is
inside or outside the trust region. (cont.)
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Convergence analysis Cauchy point

Proof.

Consider an onthonormal base of eigenvectors for H and write g if
this coordinate:

g =
n∑
i=1

αiui

so that

gTHg

gTg
=
∑n

i=1 λiα
2
i∑n

i=1 α
2
i

≤
∑n

i=1 |λi|α2
i∑n

i=1 α
2
i

≤ %(H)

and finally

‖g‖3
gTHg

= ‖g‖ gTg

gTHg
≥ ‖g‖
%(H)
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Convergence analysis Reduction obtained by the Cauchy point

Estimate the reduction obtained by the Cauchy step

In the convergence analysis is important to obtain estimation of
the reduction of the function to be minimized.
A first step in this direction is the estimation of the reduction of
the model quadratic function.

Lemma

Consider the quadratic

m(s) = f0 + gTs +
1
2
sTHs

then for the Cauchy step we have:

m(0)−m(sc(∆)) ≥ 1
2
‖g‖min

{
∆,
‖g‖
%(H)

}
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Convergence analysis Reduction obtained by the Cauchy point

Proof.

Compute

m(0)−m(sc(∆)) = τ(∆) ‖g‖ − τ(∆)2

2 ‖g‖2 gTHg

If gTHg ≤ 0 for lemma on slide N.25 we have τ(∆) = ∆

m(0)−m(sc(∆)) = ∆ ‖g‖ − ∆2

2 ‖g‖2 gTHg

= ∆
(
‖g‖ − ∆gTHg

2 ‖g‖2
)

≥ ∆ ‖g‖
(cont.)
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Convergence analysis Reduction obtained by the Cauchy point

Proof.

If gTHg > we have

τ(∆) = min
{
‖g‖3 /(gTHg), ∆

}
and

m(0)−m(sc(∆)) = τ(∆)
(
‖g‖ − 1

2
min

{
‖g‖ ,∆gTHg

‖g‖2
})

≥ τ(∆)
(
‖g‖ − 1

2
‖g‖
)

≥ τ(∆)
1
2
‖g‖

so that in general m(0)−m(sc(∆)) ≥ τ(∆)1
2 ‖g‖.
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Convergence analysis Reduction obtained by the Cauchy point

A successful step in trust region algorithm imply that the ratio

ρk =
f(xk)− f(xk + sk)
mk(0)−mk(sk)

is greater than a constant β1 > 0.

Any reasonable step in a trust region algorithm should be no
(asymptotically) worse than a Cauchy step. So we require

mk(0)−mk(sk) ≥ η [mk(0)−mk(sc(∆k))]

for a constant η > 0.

Using lemma on slide N.28

f(xk)− f(xk + sk) = ρk(mk(0)−mk(sk))

≥ ρkη [mk(0)−mk(sc(∆k))]

≥ ηβ1

2
‖∇f(xk)‖min

{
∆k,
‖∇f(xk)‖
%(Hk)

}
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Convergence analysis Reduction obtained by the Cauchy point

Thus any reasonable trust region numerical scheme satisfy

f(xk)− f(xk+1) ≥ ηβ1

2
‖∇f(xk)‖min

{
∆k,
‖∇f(xk)‖
%(Hk)

}
for any successful step (for unsuccessful step xk+1 = xk).

Let S the index set of successful step, then

f(x0)− lim
k∈S

f(xk) ≥

ηβ1

2

∑
k∈S
‖∇f(xk)‖min

{
∆k,
‖∇f(xk)‖
%(Hk)

}
thus we can use arguments similar to Zoutendijk theorem to
prove convergence.

To complete the argument we must set conditions that
guarantees that ∆k 6→ 0 as k →∞ and that cardinality of S
is not finite.
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Convergence analysis Reduction obtained by the Cauchy point

Technical assumption

The following assumptions permits to characterize a class of
convergent trust region algorithm.

Assumption

For any successful step in trust region algorithm, the ratio

ρk =
f(xk)− f(xk + sk)
mk(0)−mk(sk)

is greater than a constant β1 > 0.

Assumption

For any step in trust region algorithm, the model reduction for a
constant η > 0 satisfy the inequality:

mk(0)−mk(sk) ≥ η [mk(0)−mk(sc(∆k))]
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Convergence analysis Reduction obtained by the Cauchy point

The following lemma permits to estimate the reducion ratio ρk and
conclude that there exists a positive trust ray ∆k for which the
step is accepted!.

Lemma

Let be f ∈ C1(Rn) with Lipschitz continuous gradient

‖∇f(x)−∇f(y)‖ ≤ γ ‖x− y‖
and apply basic trust region algorithm of slide N.23 with
assumption of slide N.33 then we have

∆k ≥ (1− β2)η ‖∇f(xk)‖
2(%(Hk) + γ)

for any accepted step.
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Convergence analysis Reduction obtained by the Cauchy point

Proof.

By using Taylor’s theorem

f(xk + sk) = f(xk) +∇f(xk)sk

+
∫ 1

0
[∇f(xk + tsk)−∇f(xk)] sk dt

so that

mk(sk)− f(xk+sk) = (sTkHksk)/2

−
∫ 1

0
[∇f(xk + tsk)−∇f(xk)] sk dt

and

|mk(sk)− f(xk + sk)| ≤ sTkHksk
2

+
γ

2
‖sk‖2 ≤ %(Hk) + γ

2
‖sk‖2

(cont.)
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Convergence analysis Reduction obtained by the Cauchy point

Proof.

using these inequalities we can estimate the ratio∣∣∣∣f(xk)− f(xk + sk)
mk(0)−mk(sk)

− 1
∣∣∣∣ =
|mk(sk)− f(xk + sk)|
|mk(0)−mk(sk)|

≤ 1
2η

(%(Hk) + γ) ‖sk‖2
|mk(0)−mk(sc(∆))|

≤ (%(Hk) + γ)∆2

η ‖∇f(xk)‖min
{

∆,
‖∇f(xk)‖
%(Hk)

}

(cont.)
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Convergence analysis Reduction obtained by the Cauchy point

Proof.

If ∆ ≤ ‖∇f(xk)‖ /%(Hk) we obtain

|ρk − 1| ≤ (%(Hk) + γ)∆
η ‖∇f(xk)‖

so that when ∆k ≤ ∆:

∆ =
(1− β2)η ‖∇f(xk)‖

(%(Hk) + γ)

than ρk ≥ 1− β2 and the step is accepted
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Convergence analysis Reduction obtained by the Cauchy point

Corollary

Apply basic trust region algorithm of slide N.23 with assumption of
slide N.33 to f ∈ C1(Rn) with Lipschitz continuous gradient

‖∇f(x)−∇f(y)‖ ≤ γ ‖x− y‖
then we have

f(x0)− lim
k∈S

f(xk) ≥ η2β1(1− β2)
4

∑
k∈S

‖∇f(xk)‖2
%(Hk) + γ

moreover if %(Hk) ≤ C for all k we have

f(x0)− lim
k∈S

f(xk) ≥ η2β1(1− β2)
4(C + γ)

∑
k∈S
‖∇f(xk)‖2
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Convergence analysis Reduction obtained by the Cauchy point

Convergence theorem

Theorem (Convergence to stationary points)

Apply basic trust region algorithm of slide N.23 with assumption of
slide N.33 to f ∈ C1(Rn) with Lipschitz continuous gradient

‖∇f(x)−∇f(y)‖ ≤ γ ‖x− y‖
if the set

K = {x | f(x) ≤ f(x0)}
is compact and %(Hk) ≤ C for all k we have

lim
k→∞

∇f(xk) = 0

Proof.

A trivial application of previous corollary.
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Convergence analysis Reduction obtained by the Cauchy point

Convergence theorem

Theorem (Convergence to minima)

Apply basic trust region algorithm of slide N.23 with assumption of
slide N.33 to f ∈ C2(Rn). If Hk = ∇2f(xk) and the set

K = {x | f(x) ≤ f(x0)}
is compact then:

1 Or the iteration terminate at xk which satisfy second order
necessary condition.

2 Or the limit point x∗ = limk→∞ xk satisfy second order
necessary condition.

J. J. Moré, D.C.Sorensen
Computing a Trust Region Step
SIAM J. Sci. Stat. Comput. 4, No. 3, 1983
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Convergence analysis Solving the constrained minimization problem

Solving the constrained minimization problem

As for the line-search problem we have many alternative for solving
the constrained minimization problem:

We can solve accurately the constrained minimization
problem. For example by an iterative method.

We can approximate the solution of the constrained
minimization problem.

as for the line search the accurate solution of the constrained
minimization problem is not paying while a good cheap
approximations is normally better performing.

Trust Region Method 41 / 82

The exact solution of trust region step
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The exact solution of trust region step The Newton approach

The Newton approach (1/7)

Consider the Lagrangian

L(s, µ) = a+ gTs +
1
2
sTHs +

1
2
µ(sTs−∆2),

where a = f(x) and g = ∇f(x)T .

Then we can try to solve the nonlinear system

∂L
∂(s, µ)

(s, µ) =
(

Hs + µs + g
(sTs−∆2)/2

)
=
(
0
0

)
Using Newton method we have(

sk+1

µk+1

)
=
(

sk
µk

)
−
(

H + µI s
sT 0

)−1(
Hsk + µksk + g
(sTk sk −∆2)/2

)
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The exact solution of trust region step The Newton approach

The Newton approach (2/7)

Lemma

let be s(µ) the solution of (H + µI)s(µ) = −g than we have

s′(µ) = −(H + µI)−1s(µ) and s′′(µ) = 2(H + µI)−2s(µ)

Proof.

It enough to differentiate the relation

Hs(µ) + µs(µ) = g

two times:

Hs′(µ) + µs′(µ) + s(µ) = 0

Hs′′(µ) + µs′′(µ) + 2s′(µ) = 0
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The exact solution of trust region step The Newton approach

The Newton approach (3/7)

A better approach to compute µ is given by solving Φ(µ) = 0
where

Φ(µ) = ‖s(µ)‖ −∆, and s(µ) = −(H + µI)−1g

To build Newton method we need to evaluate

Φ′(µ) =
s(µ)Ts′(µ)
‖s(µ)‖ , s′(µ) = −(H + µI)−1s(µ)

Putting all in a Newton step we obtain

µk+1 = µk +
∆− ‖s(µk)‖
s(µk)Ts′(µk)

‖s(µk)‖
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The exact solution of trust region step The Newton approach

The Newton approach (4/7)

Newton step can be reorganized as follows

a = (H + µkI)−1g

b = (H + µkI)−1a

β = ‖a‖

µk+1 = µk + β
β −∆
aTb

Thus Newton step require two linear system solution per step.
However the coefficient matrix is the same so that only one
LU factorization, thus the cost per step is essentially due to
the LU factorization.
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The exact solution of trust region step The Newton approach

The Newton approach (5/7)

Lemma

If H is SPD for all µ > 0 we have:

Φ′(µ) < 0 and Φ′′(µ) > 0

Proof.

If µ > 0 then s(µ) 6= 0. Evaluating Φ′(µ) and using lemma of slide
N.44 we have

‖s(µ)‖Φ′(µ) = s(µ)Ts′(µ) = −s(µ)T (H + µI)−1s(µ) < 0

Evaluating Φ′′(µ) and using lemma of slide N.44 we have

Φ′′(µ) =
s′(µ)Ts′(µ) + s(µ)Ts′′(µ)

‖s(µ)‖ − (s(µ)Ts′(µ))2

‖s(µ)‖3

(cont.)
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The exact solution of trust region step The Newton approach

The Newton approach (6/7)

Proof.

Using Cauchy–Schwartz inequality

Φ′′(µ) ≥ s′(µ)Ts′(µ) + s(µ)Ts′′(µ)
‖s(µ)‖ − ‖s(µ)‖2 ‖s′(µ)‖2

‖s(µ)‖3

=
s(µ)Ts′′(µ)
‖s(µ)‖

= 2
s(µ)T (H + µI)−2s(µ)

‖s(µ)‖ > 0
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The exact solution of trust region step The Newton approach

The Newton approach (7/7)

From Φ′′(µ) > 0 we have that Newton is monotonically
convergent and steps underestimates µ.

Φ(µ)

µµ?

r

‖s(µ)‖
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The exact solution of trust region step The Model approach

If we develop the vector g with the orthonormal bases given
by the eigenvectors of H we have

g =
n∑
i=1

αiui

Using this expression to evaluate s(µ) we have

s(µ) = −(H + µI)−1g =
n∑
i=1

αi
µ+ λi

ui

‖s(µ)‖ =
( n∑
i=1

α2
i

(µ+ λi)2

)1/2

This expression suggest to use as a model for Φ(µ) the
following expression

mk(µ) =
αk

βk + µ
−∆
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The exact solution of trust region step The Model approach

The model consists of two parameter αk and βk. To set this
parameter we can impose

mk(µk) =
αk

βk + µk
−∆ = Φ(µk)

m′k(µk) = − αk
(βk + µk)2

= Φ′(µk)

solving for αk and βk we have

αk = −(Φ(µk) + ∆)2

Φ′(µk)
βk = −Φ(µk) + ∆

Φ′(µk)
− µk

where

Φ(µk) = ‖s(µk)‖ −∆ Φ′(µk) = −s(µk)T (H + µkI)−1s(µk)
‖s(µk)‖2

Having αk and βk it is possible to solve mk(µ) = 0 obtaining

µk+1 =
αk
∆
− βk
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The exact solution of trust region step The Model approach

Substituting αk and βk the step become

µk+1 = µk − Φ(µk)
Φ′(µk)

− Φ(µk)2

Φ′(µk)∆
= µk − Φ(µk)

Φ′(µk)

(
1 +

Φ(µk)
∆

)
Comparing with the Newton step

µk+1 = µk − Φ(µk)
Φ′(µk)

we see that this method perform larger step by a factor
1 + Φ(µk)∆−1.

Notice that 1 + Φ(µk)∆−1 converge to 1 as µk → µ?. So that
this iteration become the Newton iteration as µk becomes
near the solution.
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The exact solution of trust region step The Model approach

Algorithm (Exact trust region algorithm)

exact trust region(∆, g,H)
µ ← 0;
s ← H−1g;
while |‖s‖ −∆| > ε and µ ≥ 0 do

— compute the model
s′ ← −(H + µI)−1s;
Φ ← ‖s‖ −∆;
Φ′ ← (sTs′)/ ‖s‖
— update µ and s

µ ← µ− Φ
Φ′
‖s‖
∆

;

s ← −(H + µI)−1g;
end while
if µ < 0 then

s ← −H−1g;
end if
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The dogleg trust region step The DogLeg approach

The DogLeg approach (1/3)

The computation of the µ such that ‖s(µ)‖ = ∆ of the exact
trust region computation can be very expensive.

An alternative was proposed by Powell:

M.J.D. Powell
A hybrid method for nonlinear equations
in: Numerical Methods for Nonlinear Algebraic Equations
ed. Ph. Rabinowitz, Gordon and Breach, pages 87-114,
1970.

where instead of computing exactly the curve s(µ) a piecewise
linear approximation sdl(µ) is used in computation.

This approximation also permits to solve ‖sdl(µ)‖ = ∆
explicitly.
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The dogleg trust region step The DogLeg approach

The DogLeg approach (2/3)

Form the definition of s(µ) = −(H + µI)−1g and the
relation s′(µ) = (H + µI)−2g it follows

s(0) = −H−1g, lim
µ→∞µ

2s′(µ) = −g

i.e. the curve start from the Newton step and reduce to zero
in the direction opposite to the gradient step.

The direction −g is a descent direction, so that a first piece
of the piecewise approximation should be a straight line from
x to the minimum of mk(−λg). The minimum λ? is found at

λ? =
‖g‖2

gTHg

Having reached the minimum if the −g direction we can now
go to the point x + s(0) = x−H−1g with another straight
line.
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The dogleg trust region step The DogLeg approach

The DogLeg approach (3/3)

We denote by

sg = −g
‖g‖2

gTHg
, sn = −H−1g

respectively the step due to the unconstrained minimization in
the gradient direction and in the Newton direction.

The piecewise linear curve connecting x + sn, x + sg and x is
the DogLeg curve1 xdl(µ) = x + sdl(µ) where

sdl(µ) =

{
µsg + (1− µ)sn for µ ∈ [0, 1]

(2− µ)sg for µ ∈ [1, 2]

1notice that s(µ) is parametrized in the interval [0,∞] while sdl(µ) is
parametrized in the interval [0, 2]
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The dogleg trust region step The DogLeg approach

Lemma (Kantorovich)

Let A ∈ Rn×n an SPD matrix then the following inequality is valid

1 ≤ (xTAx)(xTA−1x)
(xTx)2

≤ (M +m)2

4Mm

for all x 6= 0. Where m = λ1 is the smallest eigenvalue of A and
M = λn is the biggest eigenvalue of A.

this lemma can be improved a little bit for the first inequality

Lemma (Kantorovich (bis))

Let A ∈ Rn×n an SPD matrix then the following inequality is valid

1 <
(xTAx)(xTA−1x)

(xTx)2

for all x 6= 0 and x not an eigenvector of A.
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The dogleg trust region step The DogLeg approach

By using Kantorovich we can prove:

Lemma

We denote by

sg = −g
‖g‖2

gTHg
, sn = −H−1g, γ∗ =

‖sg‖2
sTnsg

then γ∗ ≤ 1, moreover if sn is not parallel to sg then γ∗ < 1.

Proof.

Using

sTnsg = ‖g‖2 gTH−1g

gTHg
and s2

g =
‖g‖6

(gTHg)2

we have γ∗ = ‖g‖4 /[(gTHg)(gTH−1g)] and using Kantorovich
inequality the lemma in proved.
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The dogleg trust region step The DogLeg approach

the Dogleg piecewise curve

Sg Sn
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The dogleg trust region step The DogLeg approach

Lemma

Consider the dogleg curve connecting x + sn, x + sg and x. The
curve can be expressed as xdl(µ) = x + sdl(µ) where

sdl(µ) =

{
µsg + (1− µ)sn for µ ∈ [0, 1]

(2− µ)sg for µ ∈ [1, 2]

for this curve if sg is not parallel to sn we have that the function

d(µ) = ‖xdl(µ)− x‖ = ‖sdl(µ)‖
is strictly monotone decreasing, moreover the direction sdl(µ) is a
descent direction for all µ ∈ [0, 2].
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The dogleg trust region step The DogLeg approach

Proof. (1/4).

In order to have a unique solution to the problem ‖sdl(µ)‖ = ∆ we
must have that ‖sdl(µ)‖ is a monotone decreasing function:

‖sdl(µ)‖2 =

{
µ2s2

g + (1− µ)2s2
n + 2µ(1− µ)sTg sn µ ∈ [0, 1]

(2− µ)2s2
g µ ∈ [1, 2]

To check monotonicity we take first derivative

d
dµ
‖sdl(µ)‖2

=

{
2µs2

g − 2(1− µ)s2
n + (2− 4µ)sTg sn µ ∈ [0, 1]

(2µ− 4)s2
g µ ∈ [1, 2]

=

{
2µ(s2

g + s2
n − 2sTg sn)− 2s2

n + 2sTg sn µ ∈ [0, 1]

(2µ− 4)s2
g µ ∈ [1, 2]
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The dogleg trust region step The DogLeg approach

Proof. (2/4).

Notice that (2µ− 4) < 0 for µ ∈ [1, 2] so that we need only to
check that

2µ(s2
g + s2

n − 2sTg sn)− 2s2
n + 2sTg sn < 0 for µ ∈ [0, 1]

moreover

s2
g + s2

n − 2sTg sn = ‖sg − sn‖2 ≥ 0

Then it is enough to check the inequality for µ = 1

2(s2
g + s2

n − 2sTg sn)− 2s2
n + 2sTg sn = 2s2

g − 2sTg sn

i.e. we must check s2
g − sTg sn < 0.
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The dogleg trust region step The DogLeg approach

Proof. (3/4).

By using

γ∗ =
‖sg‖2
sTnsg

< 1

of the previous lemma

s2
g − sTg sn = ‖sg‖2

(
1− sTnsg

‖sg‖2
)

= ‖sg‖2
(

1− 1
γ∗

)
< 0
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The dogleg trust region step The DogLeg approach

Proof. (4/4).

To prove that sdl(µ) is a descent direction it is enough top notice
that

for µ ∈ [0, 1] the direction sdl(µ) is a convex combination of
sg and sn.

for µ ∈ [1, 2) the direction sdl(µ) is parallel to sg.

so that it is enough to verify that sg and sn are descent direction.
For sg we have

sTg g = −λ?gTg < 0

For sn we have

sTng = −gTH−1g < 0
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The dogleg trust region step The DogLeg approach

Using the previous Lemma we can prove

Lemma

If ‖sdl(0)‖ ≥ ∆ then there is unique point µ ∈ [0, 2] such that
‖sdl(µ)‖ = ∆.

Proof.

It is enough to notice that sdl(2) = 0 and that ‖sdl(µ)‖ is strictly
monotonically descendent.

The approximate solution of the constrained minimization can be
obtained by this simple algorithm

1 if ∆ ≤ ‖sg‖ we set sdl = ∆sg/ ‖sg‖;
2 if ∆ ≤ ‖sn‖ we set sdl = αsg + (1− α)sn; where α is the

root in the interval [0, 1] of:

α2 ‖sg‖2 + (1− α)2 ‖sn‖2 + 2α(1− α)sTg sn = ∆2

3 if ∆ > ‖sn‖ we set sdl = sn;
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The dogleg trust region step The DogLeg approach

Solving

α2 ‖sg‖2 + (1− α)2 ‖sn‖2 + 2α(1− α)sTg sn = ∆2

we have that if ‖sg‖ ≤ ∆ ≤ ‖sn‖ the root in [0, 1] is given by:

∆ = ‖sg‖2 + ‖sn‖2 − 2sTg sn = ‖sg − sn‖2

α =
‖sn‖2 − sTg sn −

√
(sTg sn)2 − ‖sg‖2 ‖sn‖2 + ∆2∆

∆

to avoid cancellation the computation formula is the following

α =
1
∆

‖sn‖4 − 2sTg sn ‖sn‖2 + ‖sg‖2 ‖sn‖2 −∆2∆

‖sn‖2 − sTg sn +
√

(sTg sn)2 − ‖sg‖2 ‖sn‖2 + ∆2∆

=
‖sn‖2 −∆2

‖sn‖2 − sTg sn +
√

(sTg sn)2 − ‖sg‖2 ‖sn‖2 + ∆2 ‖sg − sn‖2
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The dogleg trust region step The DogLeg approach

Algorithm (Computing DogLeg step)

DoglegStep(sg, sn, ∆);
if ∆ ≤ ‖sg‖ then

s ← ∆
sg
‖sg‖ ;

else if ∆ ≥ ‖sn‖ then
s ← sn;

else
a ← ‖sg‖2;
b ← ‖sn‖2;
c ← ‖sg − sn‖2;
d ← (a+ b− c)/2;

α ← b−∆2

b− d+
√
d2 − ab+ ∆2c

;

s ← αsg + (1− α)sn;
end if
return s;
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The double dogleg trust region step The DogLeg approach

The Double DogLeg approach

We denote by

sg = −g
‖g‖2

gTHg
, sn = −H−1g, γ∗ =

‖sg‖2
sTg sn

respectively the step due to the unconstrained minimization in
the gradient direction and in the Newton direction.

The piecewise linear curve connecting x + sn, x + γ∗sn,
x + γ∗sg and x is the Double Dogleg curve
xddl(µ) = x + sddl(µ) where

sddl(µ) =


(1− µ)γ∗sn for µ ∈ [0, 1]
(µ− 1)sg + (2− µ)γ∗sn for µ ∈ [1, 2]
(3− µ)sg for µ ∈ [2, 3]

Trust Region Method 70 / 82

The double dogleg trust region step The DogLeg approach

The Double Dogleg piecewise curve

Sg Sn
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The double dogleg trust region step The DogLeg approach

Lemma

Consider the double dogleg curve connecting x + sn, x + γ∗sn,
x + sg and x. The curve can be expressed as
xddl(µ) = x + sddl(µ) where

sddl(µ) =


(1− µ)γ∗sn for µ ∈ [0, 1]
(µ− 1)sg + (2− µ)γ∗sn for µ ∈ [1, 2]
(3− µ)sg for µ ∈ [2, 3]

for this curve if sg is not parallel to sn we have that the function

d(µ) = ‖sddl(µ)‖
is strictly monotone decreasing, moreover the direction sddl(µ) is a
descent direction for all µ ∈ [0, 3].
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The double dogleg trust region step The DogLeg approach

Proof. (1/2).

In order to have a unique solution to the problem ‖sddl(µ)‖ = ∆
we must have that ‖sddl(µ)‖ is a monotone decreasing function. It
is enought to prove for µ ∈ [1, 2]:

‖sddl(1 + α)‖2 = α2s2
g + (1− α)2γ2

∗s
2
n + 2α(1− α)γ∗sTg sn

To check monotonicity we take first derivative

d
dα
‖sddl(1 + α)‖2

= 2αs2
g − 2(1− α)γ2

∗s
2
n + (2− 4α)γ∗sTg sn

= 2α(s2
g + γ2

∗s
2
n − 2γ∗sTg sn)− 2γ2

∗s
2
n + 2γ∗sTg sn
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Proof. (2/2).

Notice that

s2
g + γ2

∗s
2
n − 2γ∗sTg sn = ‖sg − γ∗sn‖2 > 0

because sg and sn are not parallel. Then it is enough to check the
inequality for α = 1

2(s2
g + γ2

∗s
2
n − 2γ∗sTg sn)− 2γ2

∗s
2
n + 2γ∗sTg sn = 2s2

g − 2γ∗sTg sn

= 0

The rest of the proof is similar as for the single dogleg step.
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Using the previous Lemma we can prove

Lemma

If ‖sddl(0)‖ ≥ ∆ then there is unique point µ ∈ [0, 3] such that
‖sddl(µ)‖ = ∆.

The approximate solution of the constrained minimization can be
obtained by this simple algorithm

1 if ∆ ≤ ‖sg‖ we set sddl = ∆sg/ ‖sg‖;
2 if ∆ ≤ γ∗ ‖sn‖ we set sddl = αsg + (1− α)γ∗sn; where α is

the root in the interval [0, 1] of:

α2 ‖sg‖2 + γ2
∗(1− α)2 ‖sn‖2 + 2γ∗α(1− α)sTg sn = ∆2

3 if ∆ ≤ ‖sn‖ we set sddl = ∆sn/ ‖sn‖;
4 if ∆ > ‖sn‖ we set sddl = sn;
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Solving

α2 ‖sg‖2 + γ2
∗(1− α)2 ‖sn‖2 + 2γ∗α(1− α)sTg sn = ∆2

we have that if ‖sg‖ ≤ ∆ ≤ γ∗ ‖sn‖ the root in [0, 1] is given by:

A = γ2
∗ ‖sn‖2 − ‖sg‖2

B = ∆2 − ‖sg‖2

α =
A−B

A+
√
AB
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The double dogleg trust region step The DogLeg approach

Algorithm (Computing Double DogLeg step)

DoubleDoglegStep(sg, sn, ∆);
γ∗ ← ‖sg‖2 /(sTg sn);
if ∆ ≤ ‖sg‖ then

s ← ∆sg/ ‖sg‖;
else if ∆ ≤ γ∗ ‖sn‖ then

A ← γ2∗ ‖sn‖2 − ‖sg‖2;
B ← ∆2 − ‖sg‖2;
α ← (A−B)/(A+

√
AB);

s ← αsg + (1− α)sn;
else if ∆ ≤ ‖sn‖ then

s ← ∆sn/ ‖sn‖;
else

s ← sn;
end if
return s;
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Two dimensional subspace minimization

When H is positive definite the dogleg step can be improved
by widening the search subspace

s = arg min
‖αsg+βsn‖≤∆

f(αsg + βsn)

i.e. we must solve a two dimensional constrained problem.

The 2D problem results:

f(αsg + βsn) = f0 + gT (αsg + βsn)

+
1
2

(αsg + βsn)TH(αsg + βsn)

= f0 + αgTsg + βgTsn

+
1
2
α2sTg Hsg +

1
2
β2sTnHsn + αβsTg Hsn
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Two dimensional subspace minimization Two dimensional subspace minimization

Two dimensional subspace minimization

The 2D problem written in matrix form:

f(α, β) = f0 + bT
(
α
β

)
+

1
2
(
α β

)
A

(
α
β

)

b =
(

gTsg
gTsn

)

A =
(

sTg Hsg sTg Hsn
sTg Hsn sTnHsn

)
and the constraint

‖αsg + βsn‖2 =
(
α β

)
D

(
α
β

)

D =
(

sTg sg sTg sn
sTg sn sTnsn

)
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Two dimensional subspace minimization Two dimensional subspace minimization

Lemma

Consider the following constrained quadratic problem where
H ∈ Rn×n, D ∈ Rn×n are symmetric and positive definite.

Minimize f(s) = f0 + gTs +
1
2
sTHs,

Subject to sTDs ≤ r2

Then the following curve

s(µ) .= −(H + µD)−1g,

for any µ ≥ 0 defines a descent direction for f(s). Moreover

there exists a unique µ∗ such that ‖s(µ∗)‖ = ∆ and s(µ∗) is
the solution of the constrained problem;

or ‖s(0)‖ < ∆ and s(0) is the solution of the constrained
problem.
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Two dimensional subspace minimization Two dimensional subspace minimization
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