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a solution

o Newton and quasi-Newton methods appi
iteratively by choosing at each step a search direction and
minimize in this direction.

@ An alternative approach is to to find a direction and a
step-length, then if the step is successful in some sense the
step is accepted. Otherwise another direction and step-length
is chosen

o The choice of the step-length and direction is algorithm
dependent but a successful approach is the one based on trust
region.

@ The Trust Region method

@ Newton and quasi-Newton at each step (approximately) solve
the minimization problem

argmin  my(s)
s

mi(s) = f(@e) + Vi(ai)s + 55" Hys

in the case Hy. is symmetric and positive definite (SPD).

o If Hy, is SPD the minimum is
s=—H; 'g. g = V()"

and s is the quasi-Newton step.
o If Hy = Vf(x;) and is SPD, then s =
is the Newton step.
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The Trust Region method

o If Hj is not positive definite, the search direction —H gy,
may fail to be a descent direction and the previous
minimization problem can have no solution.

o The problem is that the model my(s) is an approximation of
f(z)
mi(s) = f(zy + s)
and this approximation is valid only in a small neighbors of a.

@ So that an alternative minimization problem is the following

argmin mi(s)  subject to [|s| < Ay

Ay is the radius of the trust region of the model my(s), i.e.
the region where we trust the model is valid.

When accept the ste

@ The point @, in the previous algorithm can be accepted or
rejected. The acceptance criterium can be the Armijo
criterium of sufficient decrease

F(@new) < (@) + BV f(@)(@new — )

where 3 € (0,1) is a small constant (typically 10~%).
Alternatively compute the expected and actual reduction with
the ratio p:

Pred = m(0) —m(s), g = f(@) = f(+3),

P = Gred/Pred

If the ratio p is near 1 the match of the model with the real
function is good. We accept the step if p > 3; where
By € (0,1) normally 3 ~ 0.1.

5

on algorithm

Algorithm (Generic trust region algorithm)

@ assigned; A assigned;
while | Vf(z)|| > e do
— setup the model
m(s) = f(x) + Vf(z)s + s Hs;
— compute the step
s argminjgca m(8);
Tpew — T+ 8
— check the reduction
if is @pey acceptable? then
T = Tpew,
update A;
else
reduce A;
end if
end while 5‘

@ We construct the parabola p(t) such that (s = e — @)
PO)=Vf@)s,  p(d) = f(@ncu).
the solution is

p(t) = f(@) + (Vi(@)s)t + CF

[@new) = f(@) = (V/(@)8)A
A2

C

@ The new radius is on the minimum of the parabola:

AL (Vi) _ AV f()s)
e 2C 2[f () + (V/(2)$)A = f(@ncw)]
@ A safety interval is normally assumed; if the new radius is
outside [A/10, A/2] then it is put again in this interval. &




acceped how to mo

o Compute the expected and actual reduction
Pred = m(0) — m(s)
tred = f(@) = f(+35)
o Compute the ratio of expected and actual reduction

p= lred
Pred

o Compute the new radius

max{2||s|[,A} if p>ph
Apew =4 A it pe(B,b)
[Isll /A it p<p

Trust Region Method

gion method A fundamentsl lemma.

mma

Consider the following constrained quadratic problem where
H € R™" symmetric and positive definite.
1
Minimize f(8)=fo+rgTs+ EsTHs,
Subject o ||s|| < A
Then the following curve
s(p) = —(H +pI)'g,

for any j1 > 0 defines a descent direction for f(s). Moreover

there exists a unique ju, such that ||s(u. )| = A and s(p.) is
the solution of the constrained problem;
or [|s(0)]| < A and s(0) is the solution of the constrained

problem. B

on algorithm

CheckReduction(x, s, A);
Tpew — T+ S

a Vf(x)s

red = f(®) = [(Tnew)
Pred — —a—sTHs/2

P Gred/Pred

T

max{2||s|[,r} if p=5s
Tnew & 37 if p€(Br,B2)
[Isll /2 if p<p

if p<f then
— reject the step
Tpew — T

end if

Proof.

If ||s(0)|| < A then s(0) is the global minimum of f(s) which is
inside the trust region. Otherwise consider the Lagrangian

£(s.10 = fo+g%s + 35" Hs + tu(s"'s — A7),

Then we have
0,
0;

and s7s = A%, Remember that if H is SPD then H + I is SPD
for all ;2 > 0. Moreover the inverse of an SPD matrix is SPD. From

L(s,ﬂ)—sts\g—n = s=—(H+ul)'g
s

gls=—g"(H+pul)"'g<0 forallp>0

follows that s(j2) is a descent direction for all 1 > 0.




The Trust Region method A fundamental lemma || A fundamental emma.

Proof.
To prove the uniqueness expand the gradient g with the
eigenvectors of H As a consequence of the previous Lemma we have:

n @ as the radius of the trust region becomes smaller as the scalar
9= amw 1 becomes larger. This means that the search direction
i become more and more oriented toward the gradient direction.
o as the radius of the trust region becomes larger as the scalar
11 becomes smaller. This means that the search direction
become more and more oriented toward the Newton direction.

H is SPD so that u; can be chosen orthonormal. It follows

n
. . g
(H +pI) g = (H+pD) 'Y aguy =y ST
a

P =1 Thus a trust region technique not only change the size of the

" ) step-length but also its direction. This results in a more robust
H(H b ) 1gH2 _ Z o numerical technique. The price to pay is that the solution of the
= (\i+p)? minimization is more costly than the inexact line search.

and ||(H + puI)~'g]| is a monotonically decreasing function of but what happen when H is not positive definite ?
e m] } 5‘
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The non postive definte case

Smma Proof. (

Consider the following constrained quadratic problem where Consider the Lagrangian
H e R™" is symmetric with \; < Ag < -+ < A, its eigenvalues. grang
1
7. L 5,11, €) = Ts+ ~s"Hs
argmin f(s).  f(s) = fo+ g"s + 55" Hs, L(s.6) = fo+ g7 + 35T Hs
llsli<a 2 L
T 2 2 T 2
E —-A ) 5),
Then the following curve + st s te ) +w(g”s +6%),

s(u) = —(H + 1) g, where
T 2
for any ju > —\; defines a descent direction for f(s) and H + uI sste—A
is|positiveldefinitelMoreover is the constraint [|s|| < A on the length of the step and
o or[|s(0)]| < A with g"s(0) < 0 and s(0) is a local minima of .
the problem; g"s+0?

o or there exists a i, > = such that [|s(u.)| = A and s(p) is the constraint g”s < 0 on the step that must be descent
is a local minima of the problem; P = }




The Trust Region method The non positive definte cass

Proof.
Then we must solve the nonlinear system:

s, p1,w,6,0) = Hs + ps + (1+w)g =0

pe=0

8 L(
2[‘),“/.‘(3 pw,e,0) = sTs+e2—A2=0
o L(
OL(s,ptyw, €,6
sL(

) =
)
s, w,e,0) = gls+02=0
) =
)

8, p,w,€,0) = 20w =0
from the first equation we have:
s=——(H I
o= 1+u)( +ul)™

and if we want a descent direction g7's < 0 which imply w = 0.

Trust Region Method

Proof
If € # 0 then we must have ;2 = 0 and

[-H"g|| =lls| <A
with gTH-1g > 0. If e = 0 then we must have
[|=(H +uD) g = |Is] =

with g7(H + uI)~'g > 0. Expand g = ¥ au; with an
orthonormal base of eigenvectors of H. it follows

2
@
|(H + )~ g)\fzm
n g
H+pul) g = :
g(H +ul)'g ;Aiﬂl

gion method The non positive defin

The non pc

So that we must solve the reduced non linear system

s=—(H+pl)'g
sTs+e A2 =0
gls = &2
pe =0
combining the first and third equation we have

g"(H+pul)'g=35">0

Proof.

||(#T + pI)~'g]| is a monotonically decreasing function of 1 for
> —Ak where k is the first index such that aj # 0. For example

(H +pI)g|| = (p+ )72 +2(p— 1) +3(p—2)72




Proof.
Thus, or
[|-EHg|| = ||l < A with g" H'g > 0.

or let be k the first index such that oy, # 0, we can find a
1t > — A, such that

= = a?
| ~(H + uD)"'g|| = ;m =

2 g
g(H +pul) g ="
i=k

S
Ai +

Trust Region Method

Algorithm (Basic trust region algorith

x assigned; A assigned; k « 0;

while | Vf(z)|| # 0 do
my(s) = f(x) + Vi(xx)s + 15T Hys; — setup the model
sk« argminggca, mi(s); — compute the step
Tpq1 — Tk + Sk
e = (f(=k) = f(@rrn))/ (mi(0) — mi(si));
— check the reduction
if pr. > B, then

Apsr — 20; — very successful
else if p; > 31 then

Appr — Ay, — successful
else

Aps1 — Dif2; @ppr — op; — failure
end if
k — k+1;

end while

Outline

@ Convergence analysis

Definition

Consider the quadratic
T 1 v
m(s)=fo+g s+ 55 Hs
and the minimization problem

5°(8) =

se{—tg| 20]|~tgll<A}

The point s°(A) is called
Cauchy point or step.

arg min m(s)

L p—

Wi i e et drecton e




Convergence analyss Cauchy point s Cauchy point

Estimate the length of the Cauchy step

—
For the Cauchy step the following characterization is valid: 2g"Hg
g h(t) = m(~tg/llgll) = fo - tlgll + 35—
s°(A) = 7T(A)m llgll
- h(t) is a parabola in ¢ and if g” Hg < 0 then the parabola
A if g'Hg<0 decrease monotonically for ¢ > 0. In this case the point is on the
7(4) = q it oTHag>0 boundary of the trust region (1 = A)
o g Hg> If g7 Hg > 0 the parabola is decreasing until the global mimima at
3
Moreover o gl
lol e
q 9
7(A) = min { oH)' A} Otherwise we separate the case if the minimum of the parabola is
inside or outside the trust region (cont.)
where o(H)) is the spectral radius of H

Trust Region Method

Consider an onthonormal base of eigenvectors for H and write g if

this coordinate: In the convergence analysis is important to obtain estimation of
the reduction of the function to be minimized.

A first step in this direction is the estimation of the reduction of
g=> aw ) !

the model quadratic function.

so that
Consider the quadratic

g"Hg _ 31 Ao
g"g X

1
m(s)=fo+g's+ §sTHs
and finally
then for the Cauchy step we have:

HT!]J; = sl grzrg = o) m(O)—m(s‘”(A))>ngHmin{A ”LH}
g 9 9 g ¢ ! B * o(H)

T,
g9 _ gl




Compute

) (@) = 7(8) |~ F g g

If g Hg < 0 for lemma on slide N.25 we have 7(A) = A

m(0) —m(s°(A)) = Allg| -
Ag'H
5 (a1 - —juguf’)
> Allgl

(cont.)

Reduction obtained by the Cauchy point |

Trust Region Method

Reduction obtained by the Cauchy point

o A successful step in trust region algorithm imply that the ratio

Slx) = (@ + s1)
Pk = T (0) — ma(sr)

is greater than a constant 3; > 0.
o Any reasonable step in a trust region algorithm should be no
(asymptotically) worse than a Cauchy step. So we require

m(0) — mg(sk) = 1 [mi(0) — mi(s°(A))]

for a constant 1 > 0.
@ Using lemma on slide N.28

J(@r) = f(@p + sk) = pr(mi(0) — my(sy))
2 ppn [m(0) — my(s°(A))]

2 \Vf(mk)H}
o(Hy)

|V f () | min {Ak.

Reduction obtained by the Cauchy point

If g" Hg > we have

7(@) = min {|lg|* /(" H). A}

and

m(0) —m(s°(A)) = 7(A) (HgH = ﬂnm{

> +(8) (I - 5l

> r(a)L
2

so that in general m(0) — m(s%(A)) > 7(A)1 [|g]|-

A2

o

n Method

o Thus any reasonable trust region numerical scheme satisfy

Flan) = fwre) > ”’

o(Hy)

for any successful step (for unsuccessful step @41 = x3).
@ Let S the index set of successful step, then

f(@o) — lim f(x) >

Wb X ) IV f ()l
AN Vi )Hnun{A }
2 ; . o(Hy)

thus we can use arguments similar to Zoutendijk theorem to

prove convergence.

@ To complete the argument we must set conditions that

{a 1S

guarantees that Ay /> 0 as k — oc and that cardinality of S

is not finite.

point




The following assumptions permits to characterize a class of
convergent trust region algorithm

Assumption

For any successful step in trust region algorithm, the ratio

_ J(=r) — (@ + sk)
Pk = e(0) — mu(sr)

is greater than a constant 3 > 0.

For any step in trust region algorithm, the model reduction for a
constant ) > 0 satisfy the inequality:

m(0) — my(si) = 1 [mi(0) —m(s“(Ar))]

By using Taylor's theorem

Flay + s) = flmr) + Vf(@p)sp
;
+ [ i@+ to) - Vi@l sv i
0
so that
ma(o) — f(@rton) = (L Hisy)/2
1
- [ Bttt ) - Vi@l s
and
T .
Iro(o0) — (o + o)) < ISy T g 2 CHD T 0

(cont.)
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“Trust Region Method 33/ 8

Reduction obtained by the Cauchy point

The following lemma permits to estimate the reducion ratio p; and
conclude that there exists a positive trust ray Ay, for which the
step is accepted!.

Let be f € C'(R™) with Lipschitz continuous gradient

V(@) = Vil <vlz-yl

and apply basic trust region algorithm of slide N.23 with
assumption of slide N.33 then we have

(L B V(@)
8 ) )

for any accepted step.

n Method

using these inequalities we can estimate the ratio

| f(zk) = fl@k + s8)
| mi(0) = mi(s)

Im(sk) = f(@r + sk)|
[ (0) = my(si)|

L (o(Hy) +7) [1sel?

= 27 |mi(0) — mi(s¢(A))|

; (o(H) +)A?
< N NI
9 ) min {2, 0INY

(cont.)




Reduction obtained by the Cauchy point.

If A <[V f(@)|| /o(Hy) we obtain

o(Hy) +7)A
7iHVf zi)|
so that when A < A:
A= =BV (@l
(e(Hg) +7)
than pp > 1 — (5 and the step is accepted

ergence theorem

Theorem (Convergence to stationary points)

Apply basic trust region algorithm of slide N.23 with assumption of
slide N.33 to f € CL(R") with Lipschitz continuous gradient

V1 ()

=V <7l -yl
if the set

K={z| f(z) < f(zo)}
is compact and o(H}) < C for all k we have

lim Vf(zx) = 0
k—oo

A trivial application of previous corollary.

Reduction obtained by the Cauchy point

Corollary

Apply basic trust region algorithm of slide N.23 with assumption of

slide N.33 to f € C'(R™) with Lipschitz continuous gradient
V(@)= Vil <vle-yl

then we have

7 L11(1 =) = IV @)l

o(Hy) +7

(o) = lim f(ax) 2

moreover if o(Hy,) < C for all k we have

2B (1 — 2
T = Vsl

J(=o) — lim f(x) >

Theorem (Convergence to minima)

Apply basic trust region algorithm of slide N.23 with assumption of
slide N.33 to f € C*(R™). If Hy. = V>f(x) and the set

={z | f(z) < f(x0)}
is compact then.

@ Or the iteration terminate at @, which satisfy second order
necessary condition.

@ Or the limit point @, = limy_. } satisfy second order
necessary condition.

& J. J. Moré, D.C.Sorensen
Computing a Trust Region Step
SIAM J. Sci. Stat. Comput. 4, No. 3, 1983 E‘




ion problem

mization problem

As for the line-search problem we have many alternative for solving
the constrained minimization problem:
@ We can solve accurately the constrained minimization
problem. For example by an iterative method. @ The exact solution of trust region step
© We can approximate the solution of the constrained
minimization problem

as for the line search the accurate solution of the constrained
minimization problem is not paying while a good cheap
approximations is normally better performing.

The Newton approa:

o Consider the Lagrangian

let be s(11) the solution of (H -+ jI)s(u) = —g than we have

Ty, LT LT 2 :
L(s,p)=a+g s+§s Hs+§u(s s—A?%), §'(1) = —(H + pI)"'s(y) and "(1) = 2(H + pI)~?s(p)

where a = f(z) and g = Vf(z)!.
o Then we can try to solve the nonlinear system

It enough to differentiate the relation

o) = (Hs sk g) - (") H() + ps() =g

(sTs —A%)/2 0
o Using Newton method we have fwo times:
Hs'(u) + ps' (1) + s(n) = 0

-1
sp1) _ (s _ (H+pl s Hsj + ppsp+ g
(/’IH»!) = <m_> ( ST (J) ( (sTs — A2)/2 Hs"(p) + ps"(n) +25'(p) = 0




The exact solution of trust region step

The Newton approach

o A better approach to compute y is given by solving ®(s1) = 0
where

B() =) - A, and  s(x) = —~(H +pD)"'g

@ To build Newton method we need to evaluate
s()"s'(n)
IsGoll

o Putting all in a Newton step we obtain

A —|Is( m
ST H (i)l

@' () = () = —(H + uI)'s(p)

M1 = g+

If H is SPD for all j1 > 0 we have:

() <0 and  ®"(p) >0

N.44 we have
Is()l| ' (1) = s(1)"'s () = —s()" (H + )" s(p1) < 0
Evaluating ®”(1) and using lemma of slide N.44 we have

(= 20 + TS () (s(n)T(0))?

TGl lIs(o)l®

If 11> 0 then s(1) # 0. Evaluating %'(u) and using lemma of slide

o Newton step can be reorganized as follows

a=(H+ul) g

b= (H+ml) 'a
8= lal
A
e

@ Thus Newton step require two linear system solution per step.
However the coefficient matrix is the same so that only one
LU factorization, thus the cost per step is essentially due to
the LU factorization.

The Newton approa:

Using Cauchy-Schwartz inequality

2

S/ (1)7s (1) + s() 78" () Ns(w)]* /() 1>
sl ()]
s()"s" (1)
st
s(p)"(H + p)~*s(p)
Ts Gl

() >

=2 >0

]




The exact solution of trust region step The Newton approach |

The Newton approach

o From ®”(y) > 0 we have that Newton is monotonically
convergent and steps underestimates

sl
P (p)
-
T
]
\
i I3

“Trust Region Method [

“The exact solution of trust region step

The Model approach

@ The model consists of two parameter v, and 3. To set this
parameter we can impose

(23
(k) = —E A =D
my () Bt in D (f11:)
, o .
) = e = B
my (1) G+ (1)
o solving for ay, and B we have
= (@) +A)° B = Q) +A "
() (1)
where
TEr o —1 X
D) = sl — A V() = _ 8(m) " (H + D) (i)

2

|s(pu)
o Having ay and 3 it is possible to solve my (1) = 0 obtaining

ag

Hr+1 =

— O “

The exact solution of rust region step

The Model approach

o If we develop the vector g with the orthonormal bases given
by the eigenvectors of H we have

@ Using this expression to evaluate s(u) we have

s(u) = —(H+puD)'g =3

i=1
.
sl = (;—w )

@ This expression suggest to use as a model for ®(y) the
following expression

a
e

1/2

a
LN
Br+p “

my(p) =

@ Substituting v, and 3, the step become

D) Pw) _ P(u) ‘I’(/u-))
W) D(u)d d)’(m(” A

o Comparing with the Newton step

Hkr = i —

pr = g — )
ket 1 k ()
we see that this method perform larger step by a factor

1+ ()AL

o Notice that 1+ ® () A" converge to 1 as yi, — j1,. So that
this iteration become the Newton iteration as /i becomes
near the solution




Algorithm (Exact trust region algorithr

exact_trust_region(A, g, H)
uo—0;
s — Hlg;
while |[[s|| — A| > e and >0 do
— compute the model
8 — —(H+pl)™'s;
D — |s]| - A;
@ (s78)/ ||
— update ;1 and s
n o= “,EM;
A
s — —(H+ul)™'g;
end while

if 1 < 0 then

@ The dogleg trust region step

o The computation of the ju such that ||s(j)|| = A of the exact
trust region computation can be very expensive.
o An alternative was proposed by Powell:

B M.J.D. Powell
A hybrid method for nonlinear equations
in: Numerical Methods for Nonlinear Algebraic Equations
ed. Ph. Rabinowitz, Gordon and Breach, pages 87-114,
1970
where instead of computing exactly the curve s(y) a piecewise
linear approximation sy (x) is used in computation.

@ This approximation also permits to solve ||s(u)|| = A
explicitly.

o Form the definition of s(u) = —(H + uI)~'g and the
relation §'(1) = (H + uI)~2g it follows

s(0)=-H g, lim s (u) = —g
sy
i.e. the curve start from the Newton step and reduce to zero
in the direction opposite to the gradient step.
@ The direction —g is a descent direction, so that a first piece
of the piecewise approximation should be a straight line from
 to the minimum of my(—Ag). The minimum X, is found at

2
_ sl
gTHg

A

o Having reached the minimum if the —g direction we can now
go to the point  + s(0) = & — H~'g with another straight
line.




o We denote by

- llgll®
g"Hg'

g = s, =-Hg

respectively the step due to the unconstrained minimization in
the gradient direction and in the Newton direction.

o The piecewise linear curve connecting @ + s,,,  + s, and @ is
the Dogleg curve! @q(11) = @ + sa (1) where

Trust Region Method

The dogleg trust region step

“The Dogl.g approach
By using Kantorovich we can prove:

Lemma

We denote by

llsql®
SnSg

2
_, gl

_ g
oTHg' s, =—H g,

8y =

then ~. < 1, moreover if s,, is not parallel to s, then ~. <1

Using

6
llgll

(g"Hg)*

T E-1

T 29 'H'g 2
= - and s2=

sn8y = llgl Ty %

we have 7. = |g||* /(9" Hg)(g" H'g)] and using Kantorovich

18g+ (1= p)s, for pe[0,1]
sa(p) =
2 w)s, for e [1,2]
Inotice that s(s1) is parametrized in the interval [0, o] while s.1(s1) is
parametrized in the interval [0, 2] B

inequality the lemma in proved. [m} ‘,

Lemma (Kantorovich)

Let A € R™*" an SPD matrix then the following inequality is valid

(zT Az) (T A )
=G

for all & # 0. Where m = X\, is the smallest eigenvalue of A and
M = ), is the biggest eigenvalue of A

this lemma can be improved a little bit for the first inequality

Lemma (Kantorovich (bis))

Let A € R™*™ an SPD matrix then the following inequality is valid
| @A) e A 2)

(2Tx)?

for all @ # 0 and @ not an eigenvector of A.

“The dogl tep

he Dogleg piecewise curve




The dogleg trust region step

The DogLeg approach

Consider the dogleg curve connecting @ + s,  + 84 and . The
curve can be expressed as xq (1) = @ + sq(p) where

pusg+ (1 —p)s, forpe[0,1]
sai(p) =
(2—p)sy for p € [1,2]
for this curve if s, is not parallel to s, we have that the function
(k) = llea(p) — 2| = llsawl

is strictly monotone decreasing, moreover the direction sq(j) is a
descent direction for all ju € [0,2].

Trust Region Method

The DogLeg approach

Proof.
Notice that (244 —4) < 0 for pu € [1,2] so that we need only to
check that

2p(s? + 87 — 280'8,) — 2% + 2875, <0 for p€[0,1]
moreover
2 2 T 2
S+ 8, — 28,8, = |8y — sn[” 20
Then it is enough to check the inequality for s = 1

2(s2+ 5% — 25] 5,) — 28% + 25 s, = 252 — 25\ s,

i.e. we must check s2 — sT's, < 0.

In order to have a unique solution to the problem ||sq(1)|| = A we
must have that [[sq(s)|| is a monotone decreasing function:
) prsl 4 (1— p)?s? +2u(1 — p)sts, pe(0,1]
lsa(mI” = ;
@ ps? nell2

To check monotonicity we take first derivative
d p
37 lsam)l?
@
{ 2usy —2(1 — p)sh + (2 — dp)sgsn e [0,1]

(2n—4)s? ne L2

{ 2pu(s2 + 8% — 2s]'s,) — 252 +2s1's, pel0,1]

we,? B

(2 —4)s2

By using

of the previous lemma
T
; ; sTs
82— slsn = ||s| [ 1 - 2%
llsqll

; 1
— Js,? (1—;) <0




The dogleg trust region step

of.

To prove that s(1) is a descent direction it is enough top notice
that

o for ;1 € [0,1] the direction sq(p) is a convex combination of
8 and s;,.
@ for € [1,2) the direction s (y) is parallel to s,.
so that it is enough to verify that s, and s,, are descent direction.
For s, we have
sig=-\g'g<0
For s,, we have

spg=-g"H 'g<0

Trust Region Method

Solving
 [lsgl* 4 (1= 0)?[|sn* +2a(1 = @)s] s, = A
we have that if ||sy]| < A < ||s,,|| the root in [0,1] is given by:
A = sgl* + llsall* = 27 50 = [l = sal®
2 T 2 2 2
llsall® = s5sn = /(5T 80) Ly [13a]” + A2

A

to avoid cancellation the computation formula is the following

a

2 2 2 2
] sull* 4 syl sal]* — A28
B lsal? — 8780+ (T30 — gl [sall” + 220

sl = 2s7's,

2
llsnl* — A%

Nsull? = s5su -+ (o782 = syl lul* + A2 s, — sul® oo

The DogLeg approach |

Using the previous Lemma we can prove

If |[sai(0)]| = A then there is unique point i € [0,2] such that
llsa(m)ll = A.

It is enough to notice that s4(2) = 0 and that ||sg ()| is strictly
monotonically descendent.

The approximate solution of the constrained minimization can be
obtained by this simple algorithm
Q if A < ||y we set sq = Asy/ |[sy];
@ if A < [|s,|| we set sy = as, + (1 — a)s,; where a is the
root in the interval [0, 1] of:
o [|sl* + (1= @) sul* + 20(1 — a)s]'s, = A?
Q if A > |8, we set sq = sp; “

n Method

Algorithm (Computing Dogleg step)

DoglegStep(sy, sn, A);
if A <|s| then

s L
[lso]

9
else if A > ||s,[| then

b—d+ V& —abt A%

5 — asy+ (1—a)sn;




@ The double dogleg trust region step

The Double Dogleg piecewise curve

o We denote by

lgl* lisql®
-1 9

8y = —G—Fr> sy =—H N Ye = ——

97 9gTHg g sTs,
respectively the step due to the unconstrained minimization in
the gradient direction and in the Newton direction.

@ The piecewise linear curve connecting © + s, T + 7.8y,

@ + 7.8, and @ is the Double Dogleg curve
Zaar(p) = @ + Saar(1) where

(1= p)yesn for pr € [0.1]
Saar(1) = S (= 1)sy + (2 — p)yes,  for pe[1.2]
(3= p)sy for pu € [2,3]

n Method

The double do

Consider the double dogleg curve connecting @ + sy, @ + Ya5n,
-+ s, and x. The curve can be expressed as
Taai (1) = @ + sqar(j) where

(1 — p)asn for p €0,1]
Saai(p) = § (= 1)8g + (2 — ) yesn  for p € [1,2]
(3— )8, Jor ue [2,3]

for this curve if s, is not parallel to s, we have that the function
d(p) = | saar(p)l

s strictly monotone decreasing, moreover the direction sqa(j1) is a
descent direction for all 1 € [0, 3]




The double dogleg trust region step

In order to have a unique solution to the problem ||sqa(12)]| = A
we must have that [[s,(1)|| is a monotone decreasing function. It
is enought to prove for 1 € [1,2]:

[[sqar(1 + a)\l2 =| (vzs,z] +(1- a)z'yfsﬁ +2a(1— a)%sfsn

To check monotonicity we take first derivative
d 2
— |Saar(1 + o
2 a1 + o)l
=202 —2(1 — a)y?s? + (2 — da)y.sh s,

= 2a(s? + 778} — 27,80 ) — 2928} + 278 80

Trust Region Method

The double dogleg trust region step

Using the previous Lemma we can prove

If ||sqar(0)]| = A then there is unique point 11 € [0,3] such that
l|saar ()]l = A

The approximate solution of the constrained minimization can be
obtained by this simple algorithm
Q if A < |lsg]| we set squ = Asy/ ||sgll:
Q@ if A < 7|5, we set 844 = asy + (1 — a)y.s,; where a is
the root in the interval [0, 1] of:

o?

sl +92(1 - 0)?

sall® + 2va(l — a)sTs, = A?

if A < lsl] we set squ = Asy/ [lsu]l;

if A > ||| we set sgq = Sp;

Notice that

82+ 9282 — 29875, = |3y — Yesall? > 0

because s, and s,, are not parallel. Then it is enough to check the
inequality for o = 1

2(82 +28% — 27,8 8n) — 2928% + 27,87 8 = 22 — 27,878

=0
The rest of the proof is similar as for the single dogleg step. O

n Method

Solving
o [[sg]* +22(1 = 0)? [|sn]|* + 27.0(1 — a)s]'s, = A?
we have that if [|s,[| < A < 7. s, the root in [0,1] is given by:
2 2 2
A= [lsall® = llsgll

B=a s, !

A-B
a=——"
A+VAB




Algorithm (Computing Double Dogleg step)

DoubleDoglegStep(sq, 8n, A);
W = lsgll® /(67 80):
if A <|sy] then
s — Asy/ sl
else if A <, s, then

A < 22 |sall* = lIsgl*;
B — A?— |5,
o « (A-B)/(A+ VAB);
8 — asg+(1—a)s,;

else if A < [|s;|| then
s — Asy/|sull;

else
8 < 8p,

end if

return s; B

S

o When H is positive definite the dogleg step can be improved
by widening the search subspace

= argmin f(as, + 3s,)
[lasy+0sn <A

i.e. we must solve a two dimensional constrained problem
@ The 2D problem results:
flasy+ Bsn) = fo+g" (asy + Bsn)
1 "
+ 3losg + Bsn) H(asy + 3sn)
= fo+ag”s,+ g s,

1, 1, 4 )
+ 50%s  Hsy + 5 0%, Hsy + afisy Hs, B

@ Two dimensional subspace minimization

o dimensional subspace minimization

The 2D problem written in matrix form:

fle.B) = fo+b" (‘;) + % (a B)A (’;)

v
_ (9"
b= (g’ s“>

A sTHs, s;—Hs"
s'Hs, slHs,

and the constraint

3 «
llas, + Bsal* = (o 8) D (j>

T T

shs, s]sn
D=(4%" %

SgSn S,8n




o dimensional subspace minimization Two dimensional subspace mimimizatio

Lemma

Consider the following constrained quadratic problem where
H € R™", D € R™™™" are symmetric and positive definite.

[@ Jorge Nocedal, and Stephen J. Wright
Numerical optimization
Springer, 2006

) 1
Minimize — f(s) = fo+g"s+ 5sTHs,

Subject to  sTDs <1
[@ J. Stoer and R. Bulirsch

Introduction to numerical analysis

Springer-Verlag, Texts in Applied Mathematics, 12, 2002
[@ J. E. Dennis, Jr. and Robert B. Schnabel

Numerical Methods for Unconstrained Optimization and
o there exists a unique ju, such that ||s(u.)|| = A and s(u.) is Nonlinear Equations

the solution of the constrained problem; SIAM, Classics in Applied Mathematics, 16, 1996

o or[|s(0)]| < A and s(0) is the solution of the constrained

problem. | 9

Trust Region Method 81/82 [l Trust Region Method

Then the following curve
s(u) = —(H +puD) g,

for any 1 > 0 defines a descent direction for f(s). Moreover




