One-Dimensional Minimization

Lectures for PHD course on
Unconstrained Numerical Optimization

Enrico Bertolazzi

DIMS — Universita di Trento

May 2008

B-

One-Dimensional Minimization 1/30

@ Golden Section minimization
@ Convergence Rate

© Fibonacci Search Method
@ Convergence Rate

© Polynomial Interpolation

B

One-Dimensional Minimization 2 /30

The problem

Definition (Global minimum)

Given a function ¢ : [a,b] — R, a point x* € [a,b] is a global
minimum if

o) < o(z), Va € [a,b].

Definition (Local minimum)

Given a function ¢ : [a,b] — R, a point x* € [a,b] is a local
minimum if there exist a > 0 such that

o(x*) < ¢(x), Vz € [a,b] N (x* — 0,2 + 0).

v

Finding a global minimum is generally not an easy task even in the
1D case. The algorithms presented in the following approximate

local minima. §‘

One-Dimensional Minimization

Interval of Searching

@ In many practical problem, ¢(z) is defined in the interval
(—00,00); if ¢(x) is continuous and coercive (i.e.
limg 400 f(x) = 400), then there exists a global minimum.

@ A simple algorithm can determine an interval [a, b] which
contains a local minimum. The method searches 3 consecutive
points a, 1, b such that ¢(a) > ¢(n) and ¢(b) > ¢(n) in this
way the interval [a, b] certainly contains a local minima.

@ In practice the method start from a point a and a step-length
h > 0; if ¢(a) > ¢(a + h) then the step-length k& > h is
increased until we have ¢(a + k) > ¢(a + h).

o if ¢(a) < ¢(a+ h), then the step-length k > h is increased
until we have ¢(a + h — k) > ¢(a).

@ This method is called forward-backward method.

B

One-Dimensional Minimization 4 /30

Interval of Search

Algorithm (forward-backward method)

©Q Let us be given o and h > 0 and a multiplicative factort > 1
(usually 2).

Q@ If p(a) > ¢(a + h) goto forward step
otherwise goto backward step
© forward step: a — a; n<— a+h;
@ h— ht; b—a-+h;
@ if ¢(b) > ¢(n) then return [a, b];
© a«— n; n— b,’
@ goto step 1;
Q backward step: 1 — a; b<+— a+ h;
@ h— ht; a~—b—h;
@ if ¢(a) > ¢(n) then return [a,b];
© b« n; n— a;
@ goto step 1; &

v

One-Dimensional Minimization 5/ 30

Unimodal function

Definition (Unimodal function)

A function ¢(x) is unimodal in [a,b] if there exists an x* € (a,b)
such that ¢(x) is strictly decreasing on [a,x*) and strictly
increasing on (x*,b].

Another equivalent definition is the following one

Definition (Unimodal function)

A function ¢(x) is unimodal in [a,b] if there exists an z* € (a,b)
such that for all a < o < 3 < b we have:

o if 3 < x* then ¢(a) > ¢(B);
o ifa > z* then ¢(a) < ¢(B);

B

One-Dimensional Minimization 6 /30

Unimodal function

Golden search and Fibonacci search are based on the following
theorem

Theorem (Unimodal function)

Let ¢(x) unimodal in [a,b] and let be a < o < 3 < b. Then
Q ifp(a) < ¢(B) then ¢(x) is unimodal in [a, (3]
Q if () > ¢(B) then ¢(x) is unimodal in [, b)

Proof.
© From definition ¢(x) is strictly decreasing over [a,x*), since
¢(a) < ¢(B) then z* € (a, §).
@ From definition ¢(x) is strictly increasing over (z*,b], since

d(a) > ¢(0) then z* € (o, b).

In both cases the function is unimodal in the respective
intervals. [] §‘

y
One-Dimensional Minimization 7/ 30

Golden Section minimization

Golden Section minimization

Let ¢(x) an unimodal function on [a,b], the golden section scheme
produce a series of intervals [ax, b;] where

o [ap, bo] = la, b];
® |aki1,bry1] C lag, bel;
o llmk,_)oo bk = hmki—>oo ap = x*;

Algorithm (Generic Search Algorithm)

Q Letag=a,byg=0>
Q fork=0,1,2,...
choose A\ and py such that ap < A\ < pp < b,

(1] If¢(>\k:) S ¢(Mk;) then Ap4+1 = Ak and bk+1 = Uk,
(2] If¢(>\k;) > Qb(,uk) then Ap4+1 =)\k and bk’—i—l — bk,.

B

One-Dimensional Minimization 8 /30

Golden Section minimization
Golden Section minimization

@ When an algorithm for choosing the observations Ax and uy is
defined, the generic search algorithm is determined.

@ Apparently the previous algorithm needs the evaluation of
®(Ax) and ¢(ux) at each iteration.

@ In the golden section algorithm, a fixed reduction of the
interval 7 is used, i.e:

bi+1 — apt1 = T(by — ag)
@ Due to symmetry the observations are determined as follows
A = b, — 7(b — ax)
pr = ag + 7(br, — ax)

@ By a carefully choice of 7, golden search algorithm permits to
evaluate only one observation per step. §‘

One-Dimensional Minimization 9 /30

Golden Section minimization

Golden Section minimization

Consider case 1 in the generic search: then,
A = by — 7(bg, — ag), pr = ai + 7(by — ax)
and
A+1 = Ak, b1 = pk = ag + 7(bg — a)
Now, evaluate
Mot = b1 — T(bgr1 — agg1) = ag + (1 — 72) (b — ay,)

i1 = g1+ 7(bpg1 — apy1) = ag + 7% (bp — ay,)

The only value that can be reused is Ay so that we try Ay = Mg
and pg1 = Ak

B

One-Dimensional Minimization 10 / 30

Golden Section minimization
Golden Section minimization

@ If \yr1 = Ag, then

b —T(bk—ak) :ak+(7—72)(bk—ak)
andl—7=7—72 = 7 = 1. In this case there is no
reduction so that A1 must be computed.

o If Uk+1 = Ak, then
bk—T(bk—CLk) :ak—I—TQ(bk—ak)
and

—1++5
1—7=r12 = Ti=—2\/_

By choosing the positive root, we have
7= (v/5 —1)/2 ~ 0.618. In this case, yj1 does not need to
be computed. §‘

One-Dimensional Minimization 11 / 30

Golden Section minimization

Golden Section minimization

Graphical structure of the Golden Section algorithm.
@ White circles are the extrema of the successive
@ Yellow circles are the newly evaluated values;

@ Red circles are the already evaluated values;

O O O O
O O © O
O o—C O
o—e—0—0
o—0e—O

B

One-Dimensional Minimization 12 / 30

Golden Section minimization

Algorithm (Golden Section Algorithm)

Let ¢(z) be an unimodal function in [a, b],

Q@ Setk=0,6>0andT=(\/5—1)/2. Evaluate
A=b—7(b—a), p=a+7b—a), p, = ¢(a), p» = ¢(b),
Oxr = O(A), dp = d().

Q If o) > ¢, go to step 3, else go to step 4

©Q /fb— X <0 stop and output
otherwise, set a «— A\, X\ < i, ¢ < ¢, and evaluate
p=a+7(b—a)and ¢, = o(n).

Go to step 5

Q /fu—a <0 stop and output A,
otherwise, set b < p, p < A, ¢, < ¢ and evaluate
A=b—71(b—a) and ¢) = d(N).

Go to step 5

Q@ k< k+ 1 goto step 2. g‘;

v

One-Dimensional Minimization 13 / 30

Golden Section minimization Convergence Rate

Golden Section convergence rate

@ At each iteration the interval length containing the minimum
of ¢(x) is reduced by 7 so that by, — aj, = 7%(bg — aq).

@ Due to the fact that z* € [ag, by| for all k£ then we have:
(bk — LB*) S (bk — ak) S Tk(bo — a())
(33* — ak) < (bk — ak) < Tk(bo — CLQ)

@ This means that {a;} and {by} are r-linearly convergent
sequence with coefficient 7 ~ 0.618.

B

One-Dimensional Minimization 14 / 30

Fibonacci Search Method
Fibonacci Search Method

@ In the Golden Search Method, the reduction factor 7 is
unchanged during the search.

@ If we allow to change the reduction factor at each step we
have a chance to produce a faster minimization algorithm.

@ In the next slides we see that there are only two possible
choice of the reduction factor:

o The first choice is 7, = (v/5 — 1)/2 and gives the golden
search method.

e The second choice takes 75 as the ratio of two consecutive
Fibonacci numbers and gives the so-called Fibonacci search
method.

Be

One-Dimensional Minimization 15 / 30

Fibonacci Search Method

Fibonacci Search Method

Consider case 1 in the generic search: the reduction step 73 can
vary with respect to the index k as

e = by, — (b — ag), pi = ap + 1 (b — ag)

and

Qg1 = Ak, bpy1 = pgp = ap + 7r(by — ag)
Now, evaluate
Aet1 = b1 — Tt (b1 — agr1) = ag + (Th — TwTer1) (b — ag)
Pkl = g1+ Try1(Okg1 — agg1) = ap + ToTrg1 (b — ag)

The only value that can be reused is A\, so that we try A\p11 = Mg
and pig4+1 = Ak &

One-Dimensional Minimization

Fibonacci Search Method
Fibonacci Search Method

@ If \p11 = Ag, then
by — k(b — ag) = ap + (7% — T6Trt1) (b — ag)

and 1 — 7, = 7, — TxTx+1. By searching a solution of the form
Tk = Zk+1/ %k, We have the recurrence relation:

2k — 22p41 + 2842 =10
which has a generic solution of the form
zp =c1+co(k+1)

In general, we have limg, ., 7 = 1, so that reduction is
asymptomatically worse than golden section.

Be

One-Dimensional Minimization 17 / 30

Fibonacci Search Method

Fibonacci Search Method

o If Ue+1 = Ak, then

b — T (br, — ax) = ag + TETr+1(bk — ag)

and 1 — 7, = 7 Tx11. By searching a solution of the form
T = Zk+1/%2k, We have the recurrence relation:

2k = Zk+1 T Zk42

which is a reverse Fibonacci succession. The computation of
Z1 involves complex number.

One-Dimensional Minimization

Fibonacci Search Method
Fibonacci Search Method

@ A simpler way to compute zj is to take the length of the
reduction step constant, say n and compute the Fibonacci
sequence up to n as follows

Fo=F1 =1, Frp1=Fp+ Fr

then, set zp, = F,, k11 so that 7, = Fy, g/ Fp_k11-

@ In the Fibonacci search we evaluate reduction factor 7. by
choosing the number of reductions before starting the
algorithm

@ A way to evaluate this number is to choose a tolerance ¢ so
that

b, —a, <0
K

One-Dimensional Minimization 19 / 30

Fibonacci Search Method

Fibonacci Search Method

© From the definition of the reduction factor 7, it is easy to
evaluate b,, — a,:

F Fy F:
bn — Qn = F;(bn—l - an—l) = éfz(bn—2 - an—2)
Fy Fy Fy bo — agp
- - “ ... (bO_aO):
F2 F3 Fn_|_1 Fn—l—l

@ In this way the number of reductions n is deduced from:

bop — ag

Fn—l—l > 5

B

One-Dimensional Minimization 20 / 30

Fibonacci Search Method

Algorithm (Fibonacci Search Algorithm)

Let ¢(x) be an unimodal function in |a, b]

@ Set k=0, 0 >0 and n such that F, 11 > (bg — ag)/d.
Evaluate T = F,,/Fpy1, A=b—7(b—a), p=a+ 7(b— a),
Pa = ¢(a), gp = P(b), dr = d(N), dp = d(u).

Q If ¢ > ¢, go to step 3, else go to step 4

©Q /fb— X < stop and output
otherwise set a «— X\, A < i, ¢ < ¢, evaluate
p=a+7(b—a) and 6, = ().
Go to step 5

Q /fu—a <6 stop and output A,
otherwise set b < u, p < X, ¢, < ¢y evaluate
A=b—7(b—a) and ¢y = ¢(N).
Go to step 5

Q setk«—k+1and T« F,_/F,_ ki1 goto step 2. g‘;

v

One-Dimensional Minimization 21 / 30

Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

@ At each iteration, the interval length containing the minimum

of ¢(x) is
b — ar = (bo — ao)(Fr—k+1/Fns1)
@ Due to the fact that 2* € [ay, bi] for all k, we have:
(br — %) < (bk — ar) < (Fo—gt1/Fnt1)(bo — ao)

(% —ag) < (b — ag) < (Fnka1/Fny1)(bo — ao)

B

One-Dimensional Minimization 22 /30

Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

@ To estimate convergence rate we need the expression of F}

F_l 1+\/5 k+1 1_\/5 k+1
N 9 B 9

@ and for large k

k+1
moo L (1Y

@ in this way we can approximate

Fr_k1 ~ <1+\/5>k: (Vgl)k
Frs 2 2
2

One-Dimensional Minimization 23 /30

Fibonacci Search Method Convergence Rate

Fibonacci Search convergence rate

@ This means that {a;} and {by} are r-linearly convergent
sequences with coefficient 7 =~ 0.618.

@ So, golden search and Fibonacci search perform similarly for
large n. Golden search is easier, for this reason, normally
Golden search is preferre to Fibonacci search.

B

One-Dimensional Minimization 24 /30

Polynomial Interpolation
Polynomial Interpolation

@ Fibonacci and golden search are r-linearly convergent
methods.

@ Approximating the function ¢(x) with a polynomial model
and minimizing the polynomial result in algorithms which are
normally superior to Fibonacci and golden search.

Be

One-Dimensional Minimization 25 / 30

Polynomial Interpolation
Polynomial Interpolation

@ Suppose that an initial guess xg is known, and the interval
[0, xo] contains a minimum.

@ We can form the quadratic approximation p(x) to ¢(x) by
interpolating ¢(0), ¢(xg) and ¢'(0).

Lo

The new trial minimum is defined as the minimum of the
polynomial approximation ¢(x), an takes the value:

One-Dimensional Minimization

Polynomial Interpolation
Polynomial Interpolation

o If ¢'(x1) is small enough (we are near a stationary point) we
can stop the iteration, otherwise we can construct a cubic
polynomial that interpolates ¢(0), ¢'(0), ¢(z¢) and ¢(x1).

c(x) = Ay’ + Bia? + ¢'(0)z + ¢(0).
where
(z‘h) _ 1 (g —x%) (Qb(ﬂfl) — ¢(0) — ¢/(0)$1)
B4 x%x%(wl — CC()) —338 33% Qb(mO) - gb(O) - ¢/(0)x0
The new trial minimum is defined as the minimum of the
polynomial approximation c(z).

Be

One-Dimensional Minimization 27 / 30

Polynomial Interpolation
Polynomial Interpolation

e By differentiating c¢(z) and taking the root nearest the 0

values we obtain:

—B1 +/Bi —34,¢/'(0)
Aq
_ —¢'(0)
By ++/B? — 34:¢/(0)

Tro =

where for stability reason we use the first expression when
B; < 0, the second expression when B; > 0.

@ If the new trial minimum is not accepted, we repeat the
procedure with ¢(0), ¢'(0), ¢(x1) and ¢(x2).

One-Dimensional Minimization

Polynomial Interpolation
Polynomial Interpolation

@ In general we can approximate the minimum by the procedure

_B, + \/Bg — 34,,¢/(0)
Ay

—¢'(0)
By, + \/ B} — 34¢/(0)

(gz) B 231w (wg — Tp-1) (x;i 1 k)
X(¢(f£ 13 2585 2’25 ixk 1) 5

One-Dimensional Minimization 29 / 30

References

References

Th+1 =

@ where

[3 J. Stoer and R. Bulirsch
Introduction to numerical analysis

Springer-Verlag, Texts in Applied Mathematics, 12, 2002.

[3 J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and
Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996.

One-Dimensional Minimization

