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Definition (Global minimum)

Given a function ¢ : [a,b] — R, a point =* € [a,b] is a global
minimum if

#(a*) < ¢(x),  Vax € [a,b].

Definition (Local minimum)

Given a function ¢ : [a,b] — R, a point z* € [a,b] is a local
minimum if there exist a § > 0 such that

Va € [a,0] 0 (2% = 6,2% + ).

*) < ola),

Finding a global minimum is generally not an easy task even in the
1D case. The algorithms presented in the following approximate
local minima.
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One-Dimensional Minimization
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@ Convergence Rate

@ Fibonacci Search Method
@ Convergence Rate

@ Polynomial Interpolation

Interval of Searchi

o In many practical problem, ¢(z) is defined in the interval
(—o0,00); if ¢(x) is continuous and coercive (i.e

limg, 400 f(2) = 400), then there exists a global minimum.
A simple algorithm can determine an interval [a, b] which
contains a local minimum. The method searches 3 consecutive
points a, 1, b such that ¢(a) > ¢(n) and ¢(b) > ¢(n) in this
way the interval [a, b] certainly contains a local minima.

o In practice the method start from a point a and a step-length
h > 0;if ¢(a) > ¢(a+ h) then the step-length k > h is
increased until we have ¢(a + k) > ¢(a + h).

if ¢(a) < ¢(a + h), then the step-length k > h is increased
until we have ¢(a + h — k) > ¢(a)

This method is called forward-backward method.

One-Dimensions! Minimization
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Interval of Search modal functi

Algorithm (forwar

ackward method)

Q@ Let us be given o and h > 0 and a multiplicative factor t > 1

Definition (Unimodal function)

(usually 2). A function ¢(x) is unimodal in [a,b] if there exists an x* € (a,b)
@ If¢(a) > ¢(a + h) goto forward step such that ¢(x) is strictly decreasing on [a, x*) and strictly
otherwise goto backward step

increasing on (z*,b].
@ forward step: a — a; 0 — a+h;
©® heht; b—a+h;
@ if¢(b) = ¢(n) then return [a,b]; Definition (Unimodal function)
@ a—n neb;
0 goto step 1;

Another equivalent definition is the following one

A function ¢(x) is unimodal in [a,b] if there exists an x* € (a,b)
such that for all a < a < 8 < b we have:

o if B < a* then ¢(a) > ¢(B);
; o ifa > a* then ¢(a) < ¢(8);
Q@ b—mn n—a

@ backward step:  — o; b a+h;
© h—ht; a—b—h;
@ if ¢(a) > ¢(n) then return [a.b];

@ goto step I; | >
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Golden Section minimizati

nimodal functiol

Golden search and Fibonacci search are based on the following
theorem

Let ¢(x) an unimodal function on [a, b, the golden section scheme
Theorem (Unimodal function) produce a series of intervals [ay., by] where

o [ag, bo] = [a, B];

@ [ags1,b41] C [ag, bil;

Let ¢(x) unimodal in [a,b] and let be a < a < B < b. Then
0 if ¢(a) < &(B) then ¢(x) is unimodal in [a, 3]

Q@ if ¢(a) > ¢(B) then ¢(x) is unimodal in [, b] @ limpoo b = limgoo ar = 2%

Proof.

Algorithm (Generic Search Algorithm)
@ From definition ¢(x) is strictly decreasing over [a, z*), since @ Letap=a,bp=b
#(e) < ¢(B) then 2* € (a, ). Q fork=0,1,2,..

oo o . . choose Ay and ju; such that aj, < A < < by;
@ From definition ¢(x) is strictly increasing over (z*,b], since % and K DSBS B

if ¢ < = =
#(c) > B(B) then 2* € (a,b). @ if () < &(ux) then ayr = ay and by = px;

@ if6(\) > ¢(ux) then asr = A and by = by
In both cases the function is unimodal in the respective

intervals. () P
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Golden Section minimization

When an algorithm for choosing the observations A and i is
defined, the generic search algorithm is determined

Apparently the previous algorithm needs the evaluation of
@(Ar) and @(ui) at each iteration.

In the golden section algorithm, a fixed reduction of the
interval 7 is used, i.e:

b1 — a1 = 7(bk — ag)

Due to symmetry the observations are determined as follows
e = by, — (b — ax)

ke = ag + (b — ag)

By a carefully choice of 7, golden search algorithm permits to
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evaluate only one observation per step.

Golden Section minimizatio

o If Apy1 = Ak, then

b = 7(by, — ag) = ap + (1 — 72) (b — az.)

andl—7=7— = 7 = 1. In this case there is no

reduction so that A\i41 must be computed.

o If jigp1 = A, then
by, — (b, — ai) = ay + 72 (b — ay,)
and
—1+V5
= Tt = — Ve

By choosing the positive root, we have
7=(v5—1)/2~ 0.618. In this case, y4; does not need to
be computed

Golden Section minimiztion

Golden Section minimization

Consider case 1 in the generic search: then,

Mo = by —7(bp —ag), = ag +7(bk — ax)

and
Qg1 = g, b1 = pu = ag + (b — ag)
Now, evaluate
eyt = bt = 7(bkgr — aggr) = ag + (1 — 7°) (b — ax)

i = gy + 7(bkgn — ager) = ag + (b — ag)

The only value that can be reused is ;. so that we try Apy1 = A
and pupg1 = A

Golden Section minimizati

Graphical structure of the Golden Section algorithm
o White circles are the extrema of the successive
@ Yellow circles are the newly evaluated values;
@ Red circles are the already evaluated values;

Lo, O
o—-o0—eo——20
o——e—0—=0
o—e—0—0
o—0e—0




Algorithm (Golden Section Algorithm)
Let ¢(x) be an unimodal function in [a,b],
@ Setk=0,6>0and7 = (v/5—1)/2. Evaluate
A=b—7(b—a), p=a+7(b—a), po = é(a), ¢y = H(b),
= 6N, ¢ = (1)
Q If ¢\ > ¢, go to step 3; else go to step 4
@ Ifb— X\ <4 stop and output yu;
otherwise, set a «— A, A — ju, ¢ +— ¢y, and evaluate
p=a+7(b—a) and ¢, = ¢().
Go to step 5
Q Ifpu—a < 4 stop and output A;
otherwise, set b« 1, jt — \, ¢, — 6y and evaluate
A=b—1(b—a) and 65 = 6()).
Go to step 5
Q k— k+1 goto step 2

rch Method

cci Sea

@ At each iteration the interval length containing the minimum
of ¢(x) is reduced by 7 so that by — ax = 7F(by — ap).
@ Due to the fact that z* € [ay, by] for all k then we have:

(b — 2*) < (b — ag) < 7%(bg — ag)
(a* — ag) < (b — ag) < 7%(bo — ag)

o This means that {a;} and {b;} are r-linearly convergent
sequence with coefficient 7 ~ 0.618.

@ In the Golden Search Method, the reduction factor 7 is
unchanged during the search
o If we allow to change the reduction factor at each step we
have a chance to produce a faster minimization algorithm
@ In the next slides we see that there are only two possible
choice of the reduction factor:
o The first choice is 7. = (v/5 — 1)/2 and gives the golden
search method.
o The second choice takes 7 as the ratio of two consecutive
Fibonacci numbers and gives the so-called Fibonacci search
method.

Consider case 1 in the generic search: the reduction step 7 can
vary with respect to the index k as

Ak =bp —7i(be —ar), k= ar + k(b — ax)
and
Qi1 =g, bryr = e = ag + (b — ax)
Now, evaluate
Mest = brg1 — Thar (b1 — aks1) = ak + (7 — ThTha1) (b — ak)

Pt = a1 + T Bk — aig1) = ag + 77 (b — ag)

The only value that can be reused is Ay, so that we try Aps1 = A
and pp1 = Mg




Fibonacci Search Method

Fibonacci Search Method

o If Apst = A, then
by = Te(bi — ax) = ap + (7 — i1 (bk — ax)

and 1 — 7 = 7 — T7441. By searching a solution of the form
Tk = 2k+1/ 2k, we have the recurrence relation:

2k = 22k41 + 2ki2 =0
which has a generic solution of the form
2 =c+e(k+1)

In general, we have limj, .o 7. = 1, so that reduction is
asymptomatically worse than golden section

rch Method

cci Sea

o A simpler way to compute 2y is to take the length of the
reduction step constant, say n and compute the Fibonacci
sequence up to n as follows

Fy=F =1, Frp1 = Fi+ Fr

then, set

k1 S0 that 7 = Fy i/ Fpi1

@ In the Fibonacci search we evaluate reduction factor 7, by
choosing the number of reductions before starting the
algorithm

o A way to evaluate this number is to choose a tolerance § so
that

by —an <6

Fibonacci Search Method

Fibonacci Search Method

o If s = Ay, then
by = 7 (b — ax) = a + 7kThs1 (bk — ax)

and 1 — 7 = 7 741. By searching a solution of the form
Tk = Zk+1/ 2k, we have the recurrence relation:

= 241t 2kt

which is a reverse Fibonacci succession. The computation of
zj involves complex number.

@ From the definition of the reduction factor 7y, it is easy to
evaluate b, — a,:

F F F
by —an = F];(b"’l —an-1) = F;Fi(b”’z —ap-2)
Fy F; F, by —

D5 (b —ag) = 2D

P Fui Fup
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@ In this way the number of reductions 7 is deduced from:




Let ¢(x) be an unimodal function in [a,b]
Q Set k=0, 6> 0 andn such that Fy,+1 > (by — ag)/d.
Evaluate T = Fy,/Fpp1, A=b—7(b—a), p=a+7(b—a),
a = d(a), &5 = B(b), dx = B(\), D = b(p).
If ¢\ > ¢, go to step 3; else go to step 4
Ifb— X < & stop and output ju;
otherwise set a — A\, A — j1, ¢y — ¢, evaluate
p=a+7(b—a) and ¢, = d(p).
Go to step 5

© 0

@ Ifpu—a <4 stop and output \;
otherwise set b« ju, j1 — A, ¢, — ¢y evaluate
A=0b—7(b—a) and g5 = ¢())
Go to step 5

@ seth— k+1and 7 — F,_/F,_ts1 goto step 2

= k+1
5
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o and for large k
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@ in this way we can approximate

-k
Forpr _ (14V5)
Frp 2

Fibonacci Search Method

Fibonacci Search convergence rate

@ At each iteration, the interval length containing the minimum
of ¢(x) is

b = ag = (bo — a0) (Fn—+1/Frs1)
o Due to the fact that 2* € [ay, by] for all k, we have:

(b = %) < (b — ak) < (Fa-gs1/Fns1)(bo — ao)

(@* = ag) < (b — ar) < (Fu-rs1/Fas1)(bo — ao)

o This means that {a;} and {b;} are r-linearly convergent
sequences with coefficient 7 &~ 0.618.

o So, golden search and Fibonacci search perform similarly for
large n. Golden search is easier, for this reason, normally
Golden search is preferre to Fibonacci search




Polynomia Interpolation

Polynomial Interpolation

o Fibonacci and golden search are r-linearly convergent
methods.

o Approximating the function ¢(z) with a polynomial model
and minimizing the polynomial result in algorithms which are
normally superior to Fibonacci and golden search

nial Interpolation

If ¢/(x1) is small enough (we are near a stationary point) we
can stop the iteration, otherwise we can construct a cubic
polynomial that interpolates ¢(0), ¢'(0), ¢(zo) and ¢(z1)

S Bia? + ¢/ (0)a + 6(0).

(1) — 6(0) — 9/(0)
(o) = $(0) — &' (0)ay
The new trial minimum is defined as the minimum of the
polynomial approximation ¢(z).

Pobnomal Interpoaton
Polynomial Interpolation

o Suppose that an initial guess x is known, and the interval
[0, 2] contains a minimum

@ We can form the quadratic approximation p(z) to ¢(x) by
interpolating ¢(0), ¢(x0) and ¢'(0)

20¢'(0)

$lwo) = 22+ ¢/(0)z + 6(0).

a(z) =

The new trial minimum is defined as the minimum of the
polynomial approximation ¢(x), an takes the value:

¢'(0)a3
9(0)

T =—

7 (0)a

2[é(o)

Polynomial Interpolatios

o By differentiating ¢(z) and taking the root nearest the 0
values we obtain:

—B1+/B} —34,0/(0)
Ay
?'(0)

By + /BT - 34,4/(0)

where for stability reason we use the first expression when
By < 0, the second expression when By > 0.

z9 =

o If the new trial minimum is not accepted, we repeat the
procedure with ¢(0), ¢/(0), ¢(z1) and ¢(x2).




Polynomial Interpolation

o In general we can approximate the minimum by the procedure
— By, + \/BE = 3A,¢/(0)
A
—¢'(0)

By +/ BE — 3A4¢/(0)

Try1 =

@ where
22 22

[ ( ‘kj 1 ’21«)

—@po1) \"Thoy T

i) = 9(0) ~ ¢/ (0)a
* (( 1) = 0(0) - a’(om,)
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