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The problem (1/3)

Given f : R" — R:

minimize f(x)
xTeR™

the following regularity about f(x) is assumed in the following:

Assumption (Regularity assumption)

We assume f € C1(R™) with Lipschitz continuous gradient, i.e.
there exists v > 0 such that

|Vi(@@)" = Vi) | <vlle—yl|, Vz,yeR"

Unconstrained minimization

The problem

Definition (Global minimum)

Given f : R" — R a point x, € R" is a global minimum if

f(z,) < f(z), VaecR™

Definition (Local minimum)

Given f : R" — R a point x, € R" is a local minimum if

f(xy) < f(x), Va € B(x4;9).

Obviously a global minimum is a local minimum. Find a global
minimum in general is not an easy task. The algorithms presented
in the sequel will approximate local minima’s.

B
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The problem (3/3)

Definition (Strict global minimum)

Given f : R" — R a point , € R" is a strict global minimum if

f(x,) < f(x), Ve € R"™ \ {x«}.

Definition (Strict local minimum)

Given f : R" — R a point x, € R" is a strict local minimum if

f(z,) < f(x), Vo € B(zy;d)\ {z).

Obviously a strict global minimum is a strict local minimum.

Be
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First order Necessary condition

Lemma (First order Necessary condition for local minimum)

Given f : R" — R satisfying the regularity assumption. If a point
x, € R" is a local minimum then

Vf(z,)! = 0.

v

Proof.

Consider a generic direction d, then for 6 small enough we have

A (f(me +Ad) — f(x)) <0,  0<A<)

so that
lim A Hf(zy + Ad) — f(xy)) = VF(z,)d <0,
because d is a generic direction we have Vf(z,)T = 0. O &
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Remark

© The first order necessary condition do not discriminate
maximum, minimum, or saddle points.

@ To discriminate maximum and minimum we need more
information, e.g. second order derivative of f(x).

© With second order derivative we can build necessary and
sufficient condition for a minima.

©Q In general using only first and second order derivative at the
point x, it is not possible to deduce a necessary and sufficient
condition for a minima.

v

Be
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Second order Necessary condition

Lemma (Second order Necessary condition for local minimum)

Given f € C*(R") if a point x, € R" is a local minimum then
Vi(z,)T = 0 and V3f(x,) is semi-definite positive, i.e.

d'V?*f(x,)d >0, VdecR"

Example

This condition is only, necessary, in fact consider f(x) = 22 — z3,

Vi(x) = (2%1, —3:5’22), V2f(ac) - ((2) _(6)3;2)

for the point x, = 0 we have Vf(0) = 0 and V?f(0) semi-definite
positive, but 0 is a saddle point not a minimum. &
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Proof.

The condition Vf(x,)? = 0 comes from first order necessary
conditions. Consider now a generic direction d, and the finite
difference:

f(x, + Ad) — 2f(xy) + f(zx — Ad)
22

>0

by using Taylor expansion for f(x)

)\2
f(x, £ \d) = f(x,) £ Vf(z,)\d + ?dTVQf(a:*)d + o(A\?)
and from the previous inequality
d'Vf(x,)d + 20(A\?) /A% > 0

taking the limit A — 0 and form the arbitrariness of d we have
that V2f(x,) must be semi-definite positive. O g

v
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Second order sufficient condition

Lemma (Second order sufficient condition for local minimum)

Given f € C>(R"™) if a point &, € R™ satisfy:
Q@ Vf(z,)! =0;
@ V>3f(x,) is definite positive; i.e.

d'V?*f(x,)d >0, VdecR"\ {x,}

then x, € R"™ is a strict local minimum.

| \

Remark

Because V?f (x4) is symmetric we can write

Amind? d < dTV*(x,)d < Apaxd’ d

If V2f(x,) is positive definite we have Ayin > 0. &

o
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Proof.

Consider now a generic direction d, and the Taylor expansion for

f(x)

flxx +d) = f(xy) + Vi(zy)d + %dTV2f(a}*)d + O(HdH2)

1
> (@) + = Amin ||d]]> + o(|d]|?)

=N

> (@) + 5 Amin [ (1+ o(lldl®)/ 1))
choosing d small enough we can write

1
flax +d) = f(z) + 3 Amin |d|I* > f(zy),  d#0, ||| <6.

l.e. T, IS a strict minimum. ]

o

Unconstrained minimization

General iterative scheme

Outline

€ General iterative scheme
@ Descent direction failure

|V
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General iterative scheme
How to find a minimum

Given f : R" — R: minimizegern  f(x).

@ We can solve the problem by solving the necessary condition.
i.e by solving the nonlinear systems

Vi(z)! = 0.

@ Using such an approach we looses the information about f(x).

© Moreover such an approach can find solution corresponding to
a maximum or saddle points.

@ A better approach is to use all the information and try to build
minimizing procedure, i.e. procedures that, starting from a
point x( build a sequence {x;} such that f(xy1) < f(xg). In
this way, at least, we avoid to converge to a strict maximum.

General iterative scheme
lterative Methods

@ In practice, rarely we are able to provide an explicit minimizer.

@ lterative method: given starting guess x(, generate the
sequence,

{x}, k=1,2,...

@ AIM: ensure that (a subsequence) has some favorable limiting
properties:

e satisfies first-order necessary conditions
e satisfies second-order necessary conditions
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General iterative scheme

Line-search Methods

A generic iterative minimization procedure can be sketched as
follows:

@ calculate a search direction pg from xy

@ ensure that this direction is a descent direction, i.e.
Vi(x)pr <0, whenever Vf(xz)? # 0

so that, at least for small steps along pg, the objective
function f(x) will be reduced

@ use line-search to calculate a suitable step-length a; > 0 so
that

f(wk + Oékpk;) < f($k>
@ Update the point:
Tk+1 = Tk + Pk §‘

General iterative scheme

Generic minimization algorithm

Written with a pseudo-code the minimization procedure is the
following algorithm:

Generic minimization algorithm

Given an initial guess xg, let k = 0;

while not converged do
Find a descent direction p; at xy;
Compute a step size aj using a line-search along py.
Set ¢y 11 = x} + agpr and increase k by 1.

end while

The crucial points which differentiate the algorithms are:
© The computation of the direction py;

© The computation of the step size «y.
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General iterative scheme

Practical Line-search methods

@ The first developed minimization algorithms try to solve

ap = argmin f(xp + apy)
a>0

e performing exact line-search by univariate minimization;
e rather expensive and certainly not cost effective.

@ Modern methods implements inexact line-search:

e ensure steps are neither too long nor too short
e try to pick useful initial step size for fast convergence
e best methods are based on:

e backtracking—Armijo search;

@ Armijo—Goldstein search;
@ Franke—Wolfe search:; %
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General iterative scheme

backtracking line-search

To obtain a monotone decreasing sequence we can use the
following algorithm:

Backtracking line-search

Given ajnit (e.8., Qinit = 1);

Given 7 € (0, 1) typically 7 = 0.5;

Let a(®) = qjnit;

while not f(z;, + a¥py) < f(z;,) do
set ot = 7o0;
increase /¢ by 1;

end while

Set oy = ¥ J

To be effective the previous algorithm should terminate in a finite
number of steps. In the following we prove that if p; is a descent
direction then a slight modification of the algorithm will terminate.
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General iterative scheme

Existence of a descent step (1/3)

Lemma (Descent Lemma)

Suppose that f(x) satisfy the standard assumptions and that py, is
a descent direction at xy, i.e. Vf(xy)pr < 0. Then we have

flay + apy) < f(zx) + aVF(xs)pr + %az 1px|I?

—2Vf(wk)pk
v |l

for all o € [0, ] where o} =

o

Assumption (Regularity assumption)

We assume f € C1(R™) with Lipschitz continuous gradient, i.e.
there exists v > 0 such that

[VE(x) - V()| <~z —-yl, Ve,yeR" g.;

v
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General iterative scheme

Existence of a descent step

Proof.
Let be g(a) = f(xr + apy) then we can write:

g(0) = 900) = [ g(©de = ag©)+ [ (46~ o0t
= aVf(xy)pr + /Oa (Vf(zr + Epr) — V() pr d€
< aVi(oupi+ | 9@+ gpi) = V)] el dé
< aVf(@pe+ lpl? [ 26

C¥2 (87
< aVi(@opi + 13- ol = o | Vi(@i)pi + 15 el

now the lemma follows trivially. 1
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General iterative scheme

Existence of a descent step (3/3)

@ The descent lemma means that there is a parabola that is
entirely over the function f(x) in the direction py if this is a
descent direction.

@ The second part of the lemma permits to ensure a minimal
reduction if the step length is chosen to be oy, = /2.

f(xr) + aVi(xr)pr + %@2 Hpk|]2

f(:ck —+ Ozpk)

-
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General iterative scheme Descent direction failure

Descent direction failure

@ The simple request to have a descent direction may be not
enough.

@ In fact, step length may be asymptotically too short
@ Or step length may be asymptotically too long
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General iterative scheme Descent direction failure

Steps may be too long

The objective function is f(x) = 22 and the iterates are generated
by the descent directions py = (—1)**! from zq = 2 with:
Tpy1 = Tk + QP ap =2+ 327+
AR
>  '4 xIro

05 |- L3 = ° i

0.0 - i

%0 15 20 o8 00 05 1o 18 2.0 &
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General iterative scheme Descent direction failure

Steps may be too short

The objective function is f(x) = 22 and the iterates are generated
by the descent directions pi = —1 from xg = 2 with:
—(k+1
Tp+1 = Tk + Pk, ay, = 27+
2.0
15 - _
1 a’)l
- 2 i)
os| # T3 ]
-0'5-2.0 -1‘.5 -1‘.0 —(;.5 010 O.‘5 1.‘0 1.‘5 2.0 &

Unconstrained minimization 24 / 64



Backtracking Armijo line-search

Outline

© Backtracking Armijo line-search
@ Global convergence of backtracking Armijo line-search
@ Global convergence of steepest descent

Be
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Backtracking Armijo line-search

Armijo condition

To prevent large steps relative to the decreasing of f(x) we require
that

f(zr + axpr) < f(xr) + axBVE(xk)pr
for some 3 € (0,1). Typical values of 3 ranges form 10~ to 0.1.
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Backtracking Armijo line-search

Given Ainit (e.g., Qinit — 1);

Given 7 € (0, 1) typically 7 = 0.5;

Let a(®) = ajni;

while not f(xj + aOpy) < f(x) + O BVE(zs)py do
set oz(eﬂ) = Toz(e);
increase /¢ by 1;

end while

Set a = al®).

@ Backtracking Armijo line-search prevents the step from
getting too large.

@ Now the question is: will the backtracking Armijo line-search
terminate in a finite number of steps ?

Be
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Backtracking Armijo line-search

Finite termination of Armijo line-search

Theorem (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and (3 € (0,1)
and that py is a descent direction at x;. Then the Armijo
condition

f(xr + arpr) < f(xr) + arBVE(xk)pi

2(8 — 1)Vf(z)p
v [l pw®

is satisfied when oy, € [0, wy| where — wjy =

Assumption (Regularity assumption)

We assume f € C1(R™) with Lipschitz continuous gradient, i.e.
there exists v > 0 such that

IVE(x) = Vi(y)| <vlle—yll,  Ve,yecR” B

v
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Backtracking Armijo line-search

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion
due to the regularity assumption:

flx 4+ ap) = f(z) + aVi(x)p+ E where |E|< %OP Ip|?

Proof.

If oo < wy, we have oy ||pil|* < 2(8 — 1)Vf(xx)pr and by using
Taylor expansion

flay + app) < f(z) + aVi(zy)ps + %oz2 Ilpx?

< f(xr) + aVi(xy)pr + (8 — 1)VE(z)pr

o) B
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Backtracking Armijo line-search

Finite termination of Armijo line-search

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and 3 € (0, 1)
and that py, is a descent direction at x;.. Then the step-size
generated by then backtracking-Armijo line-search terminates with

o > min {nie, Twg } wi = 2(8 — 1)V(zk)pr/ (v |pxl”)

v

Line-search will terminate as soon as a(9 < Wg:

@ May be that ajnjt satisfies the Armijo condition = ai = qjnit.

@ Otherwise in the last line-search iteration we have

0)

=1 > W, Qp = ald) = roé=1) > TWg-

Combining these 2 cases gives the required result. [ &
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Backtracking Armijo line-search

Backtracking-Armijo line-search

© The previous analysis permit to say that Backtracking-Armijo
line-search ends in a finite number of steps.

© The line-search produce a step length not too long due to the
condition

f(xr + appr) < f(xr) + ar V(L) pr

© The line-search produce a step length not too short due to the
finite termination theorem.

@ Armijo line-search can be improved by adding some further
requirements on the step length acceptance criteria.

Unconstrained minimization

Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Global convergence

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the Generic minimization algorithm with
backtracking Armijo line-search either:

Q@ Vf(xz,)" =0 for some k > 0;

Q orlimg . f(x) = —00;

© or limy oo [VF(a)pi| min {1, |pi 7} = 0.

Remark

| A

If the theorem, point 1 means that we found a stationary point in
a finite number of steps. Point 2 means that function f(x) is
unbounded below, so that a minimum does not exists. Point 3
alone do not imply convergence, but if Vf(xy) and p; do not
become orthogonal and ||py|| /4 0 then ||Vf(xy)|| — 0. &
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Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Proof. (1/3).
Assume points 1 and 2 are not satisfied, then we prove point 3.
Consider

k

f(xry1) < k) + apBVE(zr)pr < (o) + Z o fVE(x;)p;
j=0

by the fact that pg is a descent direction we have that the series:

> a; [Vi(@;)ps| < 67" lim [f(ao) — f(wrs1)] < 00

§=0
and then
lim oy |VE(xz;)p;| =0
J—00
w %

Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Proof. (2/3).

Recall that from finite termination Armijo theorem (slide n.28)

o > min {init, Twg } wi = 2(8 — 1)V(zk)pr/ (v |pxl?)
and consider the two index set:
Ki={k|ar> i}, Ko = {k | < cinit },

Obviously N = K1 U Kg and from limy_, o, oy |VE(xk)pr| = 0 we

have
lim (0773 ‘Vf(wk)pﬂ = O, (A)
kelk1—o0
li f =0 B
i ag [VE(zE)p| = 0, (B)

v

B
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Backtracking Armijo line-search Global convergence of backtracking Armijo line-search

Proof. (3/3).
For k € K1 we have a = ajnit and

ar |Vi(xr)pr| = ainit |Vi(xr)pr| and from (A) we have

lim  |Vf(zg)pr| =0 (%)

kek1—oo

For k € K9 we have Twi, < ap < wp so

Vi(x 2
0, [VF )pel = 7w [VF(ae)pi] = 27(1 — B) ¢ ’f”’j'
7 k|
and from (B) we have
T M =0 (%)
kek1—o00 ”pkH
Combining (%) and (x*) gives the required result. O

Be

Unconstrained minimization 35 / 64

Backtracking Armijo line-search Global convergence of steepest descent

Steepest descent algorithm

Steepest descent algorithm

Given an initial guess xg, let k = 0;

while not converged do
Compute a step-size oy, using a line-search along —Vf(z)”.
Set &1 = o — o V() and increase k by 1.

end while

@ The steepest descent algorithm is simply the generic
minimization algorithm with search direction the opposite of
the gradient in x.

@ The search direction —Vf(xy)? is always a descent direction
unless the point x; is a stationary point.

B
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Backtracking Armijo line-search

Global convergence of steepest descent
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Q orlimg o f(xy) = —00

@ orlimy_ ., Vf(z)! = 0.
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acking Armijo line-search

Global convergence of steepest descent
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be very slow
@ A classical example is the Rosenbrock function

It can

@ Although the steepest descent scheme is globally convergent
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Backtracking Armijo line-search Global convergence of steepest descent

The Rosenbrock example (2/3)

@ This function has a unique minimum at (1,1)7 inside a
banana shaped valley.

Unconstrained minimization

Backtracking Armijo line-search Global convergence of steepest descent

The Rosenbrock example (3/3)

o After 100 iteration starting from (—1.2,1)7 the approximate
minimum is far from the solution.

| | I | |

-1.0 0.5 0.0 0.5 1.0 &

Unconstrained minimization 40 / 64




Backtracking Armijo line-search Global convergence of steepest descent

@ The steepest descent is a slow method, not only on a difficult
test case like the Rosenbrock example.
@ Given the function f(x,y) = %x2 + gy2 starting from
xo = (9,1)7 we have the zig-zag pattern toward (0,0)7.
2.0
15
-4 1.0
405
-4 0.0
4-05
-4-1.0
-4-15
ofo 2fo 4%0 6%0 8%0 1o.c_)2'O §‘

Unconstrained minimization

Wolfe—Zoutendijk global convergence

Outline

© Wolfe-Zoutendijk global convergence
@ The Wolfe conditions
@ The Armijo-Goldstein conditions

B
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Wolfe—Zoutendijk global convergence

The Wolfe and Armijo Goldstein conditions

© The simple condition of descent step is in general not enough
for the convergence of a iterative minimization scheme.

@ The condition of sufficient decrease of backtracking Armijo
line-search may be insufficient on general inexact line-search
algorithm.

© Adding another condition to the sufficient decrease condition
such that we avoid too short step length we obtain globally
convergent numerical procedure.

© Depending on which additional condition is added we obtain
the:

® Wolfe conditions;
@ Armijo Goldstein conditions.

Be
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Wolfe—Zoutendijk global convergence The Wolfe conditions

The Wolfe conditions

Let c; and ¢ two constant such that 0 < ¢; < co < 1. We say
that the step length oy satisfy the Wolfe conditions if «; satisfy:

O sufficient decrease: f(xy + agppr) < f(xr) + c1 ap VI(xk)Dk;

@ curvature condition: Vf(xp + arpr)pr > co VI(xk)Dk.

f(ack + Oépk)

f(xg) + ac1 VE(xk)pr

B
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The strong Wolfe conditions

Let ¢; and co two constant such that 0 < ¢; < ¢ < 1. We say
that the step length «ay satisfy the strong Wolfe conditions if oy,
satisfy:

© sufficient decrease: f(xy + appr) < f(xx) + c1 o Vi(xk)Dk;

@ curvature condition: |Vf(xr + arpr)pr| < co |VI(xk) Dk

a:k + ozpk
f(xg) + ac1 VE(xk)pr

Be
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Existence of "Wolfe" step length

@ The Wolfe condition seems quite restrictive.

@ The next lemma answer to the question if a step length
satisfying Wolfe conditions does exists.

Lemma (strong Wolfe step length)

Let f : R"™ — R satisfying the regularity assumption. If the
following condition are satisfied:

© py. is a descent direction for the point xy, i.e. Vf(xg)pr <O0;
Q f(xy + apy) is bounded from below, i.e.
limgy—oo f(r + apy) > —o0.
then for any 0 < ¢; < cg < 1 there exists an interval |a, b] such
that all ay, € [a, b] satisfy the strong Wolfe conditions.

Unconstrained minimization 46 / 64



Wolfe—Zoutendijk global convergence The Wolfe conditions

Proof.

Define {(a) = f(xy) + acy VI(xg)pr and g(a) = f(xr + apy).
From lim,_,o /(a) = —oo and from condition 1 it follows that
there exists a, > 0 such that

() = glay) and la) > g(a), Ya e (0,ay)

so that all step length o € (0, o) satisfy strong Wolfe condition 1.
Because ¢(0) = g(0) form Cauchy-Rolle theorem there exists
s € (0, o) such that

g (0s) = £ (0a) =
0> Vf(wk = Ck**pk)pk = 61Vf(mk)pk > CQVf(CBk)pk

by continuity we find an interval around o, with step lengths
satisfying strong Wolfe conditions. [
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Wolfe—Zoutendijk global convergence The Wolfe conditions

The Zoutendijk condition

Theorem (Zoutendijk)

Let f : R™ — R satisfying the regularity assumption and bounded
from below, i.e.

inf f(x) > —o0
zcR™

Let {xy}, k=0,1,...,00 generated by a generic minimization
algorithm where line-search satisfy \Wolfe conditions, then

3 (cos 64)? ||V (ap) || < +oo
k=1

where

—Vf(mk)pk
IV ar)T ok B

v
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Proof. (1/3).
Using the second condition of Wolfe (with ;.1 = xx + axpx)
Vi(xg+1)pr > c2aVi(xr)pr

(Vf(zkt1) — V(@) pe > (c2 — 1) VF(zk)pr

by using Lipschitz regularity
| VE(xry1) — V(@) pr|| < 7|2k — zkll ok
= oy [|pl®

and using both inequality we obtain the estimate for ay:

62—1

ap > Vi(xy)px

= 2
7 1Pkl
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Wolfe—Zoutendijk global convergence The Wolfe conditions

||V

Proof. (2/3).

Using the first condition of Wolfe and lower bound estimate of a4,

f(wk+1) < f(:ck) + aquf(a}k)pk

< f(ay) — Cl(l—_?)(Vf(wk)pk)z
Y HpkH

setting A = ¢1(1 — ¢2) /v and using the definition of cos 6y
2
f(xpr1) < f(xk) — AlcosOy)? ||V (k)" ||

and by induction

k
f(xyp1) < f(x1) — AZ(COS 0;)° va(wj)Tuz

J=1
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Wolfe—Zoutendijk global convergence The Wolfe conditions

Proof. (3/3).
The function f(x) is bounded from below, i.e.
inf f(x) > —o0
xzcR"
so that
i 2
AZ(COS «%)2 HVf(a}j)TH < f(x1) — f(xr1)
j=1
and
AZ(COS 0;)? HVf(mj)THQ <f(xy) — klim f(xps1) < +o0
j=1 =
1] §

Wolfe—Zoutendijk global convergence The Wolfe conditions

Corollary (Zoutendijk condition)

Let f : R™ — R satisfying the regularity assumption and bounded
from below. Let {xy}, k=0,1,...,00 generated by a generic
minimization algorithm where line-search satisfy Wolfe conditions,
then

—Vf(ack)pk
V) ol |

If cos0, > 0 > 0 for all k from the Zoutendijk condition we have:

cos O ||Vf(:13k)TH —0 where cos Oy =

HVf(a:k)TH — 0

i.e. the generic minimization algorithm where line-search satisfy
Wolfe conditions converge to a stationary point.
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Wolfe—Zoutendijk global convergence The Armijo-Goldstein conditions

The Armijo-Goldstein conditions

Let c; and ¢ two constant such that 0 < ¢; < co < 1. We say
that the step length oy satisfy the Wolfe conditions if a; satisfy:

(1) f(a:k + Oékpk) < f(in> + 1 Oéka(CBk)pk;
Q f(xk + agpr) > f(k) + c2 ap VE(xk) Py

A

f(xg) + ac1 V(g )pr

f(xr + apy)

f(xy) + acaVi(xy)pr

Be
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Wolfe—Zoutendijk global convergence The Armijo-Goldstein conditions

The Armijo-Goldstein conditions

@ Armijo-Goldstein conditions has very similar theoretical
properties like the Wolfe conditions.

@ Global convergence theorems can be established.

© The weakness of Armijo-Goldstein conditions respect to Wolfe
conditions is that the former can exclude local minima’s from
the step length as you can see in the figure below.

A

f(xg) + ac1 VE(xk)pr
f(wk + Ozpk)

[

f(xr) + a02VfW &
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@ Algorithms for line-search
@ Armijo Parabolic-Cubic search
@ Wolfe linesearch
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Algorithms for line-search Armijo Parabolic-Cubic search

Armijo Parabolic-Cubic search

© Backtracking-Armijo line-search can be slow if a large number
of reduction must be performed to satisfy Armijo condition.

@ A better performance is obtained if instead of reducing by a
fixed factor we use polynomial interpolation to estimate the
location of the minimum.

© Assuming that that f(x;) and Vf(xg)py are known at the
first step we know also f(xx + Apg) if A is the first trial step.

@ In this case a parabolic interpolation can be used to estimate
the minimum.

© If we store the last trial step length, in the successive iteration
we can use cubic interpolation to estimate the minima's.

© The resulting algorithm is in the following slides.

B
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Algorithms for line-search

Algorithm (Armijo Parabolic-Cubic search)

Armijo Parabolic-Cubic search

1: armijo_linesearch(f, x,p, T)

2: fo « f(x), Vfy«— Vf(x)p, N\ 1;

3: while A > \,;, do

4 fy — f(x + Ap);

5 if fy <fy+ A\7Vfy then

6: return )\ ; successful search

7 else

8 if A\ =1 then

9 )\tmp — Vfo/ [Q(fo + Vfy — f)\)] ;
10: else
11: Atmp — cubic(fo, Vo, fx, A, fp, Ap);
12: end if
13: Ap — A, fp — a7 A — range(Agmp, A/10,A/2);
14: end if
15: end while
16: return A\, ; failed search §‘

Unconstrained minimization

Algorithm (Armijo Parabolic-Cubic search)

17: range(), a, b)

18: if A < a then

19: return a;

20: else if A\ > b then
21: return b;

22: else

23: return )\ ;

24: end if

y
Algorithms for line-search Armijo Parabolic-Cubic search
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Algorithms for line-search Armijo Parabolic-Cubic search

Algorithm (Armijo Parabolic-Cubic search)

25: CUbI'C(fo, Vo, fa, A, fp, )\p)
26: Evaluate:

a\ 1 A2 A2\ [y —fo — AV
b) 22— ) \ =X A3 )\, —fo — AV

27: if a = 0 then

28: return —Vfy/(2b), cubic is a quadratic
29: else

30: d«— b>—3aVfy,; discriminant
31: return (—b + v/d)/(3a); legitimate cubic
32: end if J

Algorithms for line-search Wolfe linesearch

Wolfe linesearch

@ Wolfe linesearch is identical to the Armijo Parabolic-Cubic
search, until a point satisfying the first condition is found.

@ At this point the Armijo algorithm stop while Wolfe search try
to refine the search until the second condition is satisfied.

© If the step estimated is too short then is is enlarged until it
contains a minimum.

@ If the step estimated is too long it is reduced until the second
condition is satisfied.
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Algorithm (Wolfe linesearch)

1: wolfe_linesearch(f, x, p, c1, c2)
2: fo « f(x), Vfy «— Vf(x)p, X\ 1;
3: while A > A\, do

4: fy — f(x + Ap);
5: if £y, <fyp+ Ae1 Vi then
6: go to ZOOM; found a \ satisfying condition 1
7: else
8: if A =1 then
9: Atmp Vfo/ [2(1‘0 + Vfy — f)\)] ;
10: else
11: Atmp — cubic(fo, Vo, fx, A, fp, Ap);
12: end if
13: Ap — A, fp — a7 A — range(Aimp, A/10,A/2);
14: end if
15: end while
16: return A\, ; failed search ] %
Algorithm (Wolfe linesearch)
17: ZOOM:
18: Vfy « Vf(x + A\p)p;
19: if V) > o Vfy then return \; found Wolfe point!
20: if A =1 then
21: forward search of an interval bracketing a minimum
22: while A < )\ .« do
23: {Ap, fo} — {2}, save values
24: A—2); )y — f(x+ \p);
25: if not f\ < fy+ Ac1 Vi then
26: {\p,fp} = {\, 2}, go to REFINE; swap values
27: end if
28: Vf\ « Vi(x + A\p)p;
29: if Vfy > coVfy then return \; found Wolfe point!
30: end while
31: return A\, ; failed search
32: end if &

| |
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Algorithms for line-search Wolfe linesearch

Algorithm (Wolfe linesearch)

33: REFINE:

34: {)\/O,flo, Vf/o} — {)\, f)\, Vf)\},' A «— )\p — Ao,
35: while A > ¢ do

36: O\ — AQVf/O/ [2 (fio + VA — fp)] ;

37: OA — range(dX,0.2A,0.8A);

38: A— Ao+ 0N ) «— f(a: =F )\p);

39: if £y, <fyp+ Ae1 Vi then

40: Viy « Vi(x + \p)p;

41: if Vf\ > o Vi then return \; found Wolfe point!
42: {)\/07 flo, Vf/o} — {)\, ), Vf)\},' A — A =0\

43: else

44: {)\p,fp} — {0}, Ao\

45: end if
46: end while
47: return )\; failed search §‘

Unconstrained minimization
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