Unconstrained minimization

Lectures for PHD course on Unconstrained Numerical Optimization

Enrico Bertolazzi

DIMS - Università di Trento

May 2008

Unconstrained minimization

Outline

- General iterative scheme
 - Descent direction failure
- 2 Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \mathsf{f}(\boldsymbol{x})$$

the following regularity about f(x) is assumed in the following:

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that

$$\|\nabla f(\boldsymbol{x})^T - \nabla f(\boldsymbol{y})^T\| \le \gamma \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

Unconstrained minimization

3 / 6

The problem

(2/3)

Definition (Global minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a global minimum if

$$\mathsf{f}(oldsymbol{x}_\star) \leq \mathsf{f}(oldsymbol{x}), \qquad orall oldsymbol{x} \in \mathbb{R}^n.$$

Definition (Local minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a local minimum if

$$f(\boldsymbol{x}_{\star}) \leq f(\boldsymbol{x}), \qquad \forall \boldsymbol{x} \in B(\boldsymbol{x}_{\star}; \delta).$$

Obviously a global minimum is a local minimum. Find a global minimum in general is not an easy task. The algorithms presented in the sequel will approximate local minima's.

The problem (3/3)

Definition (Strict global minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a strict global minimum if

$$\mathsf{f}(oldsymbol{x}_{\star}) < \mathsf{f}(oldsymbol{x}), \qquad \forall oldsymbol{x} \in \mathbb{R}^n \setminus \{oldsymbol{x}_{\star}\}.$$

Definition (Strict local minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a strict local minimum if

$$f(x_{\star}) < f(x), \quad \forall x \in B(x_{\star}; \delta) \setminus \{x_{\star}\}.$$

Obviously a strict global minimum is a strict local minimum.

Unconstrained minimization

First order Necessary condition

Lemma (First order Necessary condition for local minimum)

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption. If a point $oldsymbol{x}_{\star} \in \mathbb{R}^n$ is a local minimum then

$$abla \mathsf{f}(\boldsymbol{x}_{\star})^T = \mathbf{0}.$$

Proof.

Consider a generic direction d, then for δ small enough we have

$$\lambda^{-1}(f(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - f(\boldsymbol{x}_{\star})) \le 0, \qquad 0 < \lambda < \delta$$

so that

$$\lim_{\lambda \to 0} \lambda^{-1} \big(f(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - f(\boldsymbol{x}_{\star}) \big) = \nabla f(\boldsymbol{x}_{\star}) \boldsymbol{d} \le 0,$$

because $oldsymbol{d}$ is a generic direction we have $abla f(oldsymbol{x}_{\star})^T = oldsymbol{0}.$

Remark

- The first order necessary condition do not discriminate maximum, minimum, or saddle points.
- 2 To discriminate maximum and minimum we need more information, e.g. second order derivative of f(x).
- **3** With second order derivative we can build necessary and sufficient condition for a minima.
- **1** In general using only first and second order derivative at the point x_* it is not possible to deduce a necessary and sufficient condition for a minima.

4 D > 4 A > 4 B > 4 B > B

7 / 64

Unconstrained minimization

Second order Necessary condition

Lemma (Second order Necessary condition for local minimum)

Given $f \in C^2(\mathbb{R}^n)$ if a point $x_{\star} \in \mathbb{R}^n$ is a local minimum then $\nabla f(x_{\star})^T = \mathbf{0}$ and $\nabla^2 f(x_{\star})$ is semi-definite positive, i.e.

$$\mathbf{d}^T \nabla^2 \mathbf{f}(\mathbf{x}_{\star}) \mathbf{d} \ge 0, \qquad \forall \mathbf{d} \in \mathbb{R}^n$$

Example

This condition is only, necessary, in fact consider $f(m{x}) = x_1^2 - x_2^3$,

$$\nabla f(\boldsymbol{x}) = (2x_1, -3x_2^2), \quad \nabla^2 f(\boldsymbol{x}) = \begin{pmatrix} 2 & 0 \\ 0 & -6x_2 \end{pmatrix}$$

for the point $x_{\star} = 0$ we have $\nabla f(0) = 0$ and $\nabla^2 f(0)$ semi-definite positive, but 0 is a saddle point not a minimum.

Proof.

The condition $\nabla f(\boldsymbol{x}_{\star})^T = \mathbf{0}$ comes from first order necessary conditions. Consider now a generic direction d, and the finite difference:

$$\frac{\mathsf{f}(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - 2\mathsf{f}(\boldsymbol{x}_{\star}) + \mathsf{f}(\boldsymbol{x}_{\star} - \lambda \boldsymbol{d})}{\lambda^{2}} \ge 0$$

by using Taylor expansion for f(x)

$$\mathsf{f}(\boldsymbol{x}_{\star} \pm \lambda \boldsymbol{d}) = \mathsf{f}(\boldsymbol{x}_{\star}) \pm \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \lambda \boldsymbol{d} + \frac{\lambda^2}{2} \boldsymbol{d}^T \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} + \mathsf{o}(\lambda^2)$$

and from the previous inequality

$$\mathbf{d}^T \nabla^2 \mathsf{f}(\mathbf{x}_{\star}) \mathbf{d} + 2 \mathsf{o}(\lambda^2) / \lambda^2 \ge 0$$

taking the limit $\lambda \to 0$ and form the arbitrariness of \boldsymbol{d} we have that $abla^2 f(x_\star)$ must be semi-definite positive.

Unconstrained minimization

Second order sufficient condition

Lemma (Second order sufficient condition for local minimum)

Given $f \in C^2(\mathbb{R}^n)$ if a point $x_{\star} \in \mathbb{R}^n$ satisfy:

- $\nabla^2 f(x_\star)$ is definite positive; i.e.

$$\mathbf{d}^T \nabla^2 \mathbf{f}(\mathbf{x}_{\star}) \mathbf{d} > 0, \qquad \forall \mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{x}_{\star}\}$$

then $x_\star \in \mathbb{R}^n$ is a strict local minimum.

Remark

Because $\nabla^2 f(x_{\star})$ is symmetric we can write

$$\lambda_{\min} oldsymbol{d}^T oldsymbol{d} \leq oldsymbol{d}^T
abla^2 \mathsf{f}(oldsymbol{x}_\star) oldsymbol{d} \leq \lambda_{\max} oldsymbol{d}^T oldsymbol{d}$$

If $\nabla^2 f(\boldsymbol{x}_{\star})$ is positive definite we have $\lambda_{\min} > 0$.

Proof.

Consider now a generic direction d, and the Taylor expansion for $f(\boldsymbol{x})$

$$egin{aligned} \mathsf{f}(oldsymbol{x}_{\star}+oldsymbol{d}) &= \mathsf{f}(oldsymbol{x}_{\star}) +
abla \mathsf{f}(oldsymbol{x}_{\star}) + rac{1}{2}oldsymbol{d}^{T}
abla^{2} \mathsf{f}(oldsymbol{x}_{\star}) oldsymbol{d} + o(\|oldsymbol{d}\|^{2}) \ &\geq \mathsf{f}(oldsymbol{x}_{\star}) + rac{1}{2} \lambda_{min} \|oldsymbol{d}\|^{2} \left(1 + o(\|oldsymbol{d}\|^{2}) / \|oldsymbol{d}\|^{2}
ight) \ &\geq \mathsf{f}(oldsymbol{x}_{\star}) + rac{1}{2} \lambda_{min} \|oldsymbol{d}\|^{2} \left(1 + o(\|oldsymbol{d}\|^{2}) / \|oldsymbol{d}\|^{2}
ight) \end{aligned}$$

choosing d small enough we can write

$$f(\boldsymbol{x}_{\star} + \boldsymbol{d}) \ge f(\boldsymbol{x}_{\star}) + \frac{1}{4} \lambda_{min} \|\boldsymbol{d}\|^2 > f(\boldsymbol{x}_{\star}), \qquad \boldsymbol{d} \ne \boldsymbol{0}, \|\boldsymbol{d}\| \le \delta.$$

i.e. x_{\star} is a strict minimum.

Unconstrained minimization

11 / 64

General iterative scheme

Outline

- General iterative scheme
 - Descent direction failure
- 2 Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

How to find a minimum

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$: minimize_{$x \in \mathbb{R}^n$} f(x).

We can solve the problem by solving the necessary condition.
 i.e by solving the nonlinear systems

$$\nabla f(\boldsymbol{x})^T = \mathbf{0}.$$

- ② Using such an approach we looses the information about f(x).
- Moreover such an approach can find solution corresponding to a maximum or saddle points.
- 4 A better approach is to use all the information and try to build minimizing procedure, i.e. procedures that, starting from a point x_0 build a sequence $\{x_k\}$ such that $f(x_{k+1}) \leq f(x_k)$. In this way, at least, we avoid to converge to a strict maximum.

Unconstrained minimization

13 / 64

General iterative scheme

Iterative Methods

- In practice, rarely we are able to provide an explicit minimizer.
- Iterative method: given starting guess x_0 , generate the sequence,

$$\{\boldsymbol{x}_k\}, \qquad k=1,2,\ldots$$

- AIM: ensure that (a subsequence) has some favorable limiting properties:
 - satisfies first-order necessary conditions
 - satisfies second-order necessary conditions

Line-search Methods

A generic iterative minimization procedure can be sketched as follows:

- ullet calculate a search direction $oldsymbol{p}_k$ from $oldsymbol{x}_k$
- ensure that this direction is a descent direction, i.e.

$$\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k < 0$$
, whenever $\nabla f(\boldsymbol{x}_k)^T \neq \mathbf{0}$

so that, at least for small steps along p_k , the objective function f(x) will be reduced

ullet use line-search to calculate a suitable step-length $lpha_k>0$ so that

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) < f(\boldsymbol{x}_k).$$

• Update the point:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$$

 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$

15 / 6

Unconstrained minimization

General iterative scheme

Generic minimization algorithm

Written with a pseudo-code the minimization procedure is the following algorithm:

Generic minimization algorithm

Given an initial guess x_0 , let k=0;

while not converged do

Find a descent direction p_k at x_k ;

Compute a step size α_k using a line-search along p_k .

Set $x_{k+1} = x_k + \alpha_k p_k$ and increase k by 1.

end while

The crucial points which differentiate the algorithms are:

- **1** The computation of the direction p_k ;
- **2** The computation of the step size α_k .

Practical Line-search methods

• The first developed minimization algorithms try to solve

$$\alpha_k = \arg\min_{\alpha>0} f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$$

- performing exact line-search by univariate minimization;
- rather expensive and certainly not cost effective.
- Modern methods implements inexact line-search:
 - ensure steps are neither too long nor too short
 - try to pick useful initial step size for fast convergence
 - best methods are based on:
 - backtracking–Armijo search;
 - Armijo–Goldstein search;
 - Franke–Wolfe search;

Unconstrained minimization

17 / 64

General iterative scheme

backtracking line-search

To obtain a monotone decreasing sequence we can use the following algorithm:

Backtracking line-search

```
Given \alpha_{\text{init}} (e.g., \alpha_{\text{init}} = 1);

Given \tau \in (0,1) typically \tau = 0.5;

Let \alpha^{(0)} = \alpha_{\text{init}};

while not f(\boldsymbol{x}_k + \alpha^{(\ell)} \boldsymbol{p}_k) < f(\boldsymbol{x}_k) do set \alpha^{(\ell+1)} = \tau \alpha^{(\ell)};

increase \ell by 1;

end while

Set \alpha_k = \alpha^{(\ell)}.
```

To be effective the previous algorithm should terminate in a finite number of steps. In the following we prove that if p_k is a descent direction then a slight modification of the algorithm will terminate.

Existence of a descent step

Lemma (Descent Lemma)

Suppose that f(x) satisfy the standard assumptions and that p_k is a descent direction at x_k , i.e. $\nabla f(x_k)p_k < 0$. Then we have

$$f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \frac{\gamma}{2} \alpha^2 \|\boldsymbol{p}_k\|^2$$

for all
$$\alpha \in [0, \alpha_k^{\star}]$$
 where $\alpha_k^{\star} = \frac{-2\nabla \mathsf{f}(\boldsymbol{x}_k)\boldsymbol{p}_k}{\gamma \left\|\boldsymbol{p}_k\right\|^2} > 0$

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le \gamma \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

, ,

Unconstrained minimization

19 / 64

General iterative scheme

Existence of a descent step

(2/3)

Proof.

Let be $g(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$ then we can write:

$$g(\alpha) - g(0) = \int_0^\alpha g'(\xi) d\xi = \alpha g'(0) + \int_0^\alpha \left(g'(\xi) - g'(0) \right) d\xi$$

$$= \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \int_0^\alpha \left(\nabla f(\boldsymbol{x}_k + \xi \boldsymbol{p}_k) - \nabla f(\boldsymbol{x}_k) \right) \boldsymbol{p}_k d\xi$$

$$\leq \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \int_0^\alpha \| \nabla f(\boldsymbol{x}_k + \xi \boldsymbol{p}_k) - \nabla f(\boldsymbol{x}_k) \| \| \boldsymbol{p}_k \| d\xi$$

$$\leq \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \| \boldsymbol{p}_k \|^2 \int_0^\alpha \gamma \xi d\xi$$

$$\leq \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \| \boldsymbol{p}_k \|^2 \int_0^\alpha \gamma \xi d\xi$$

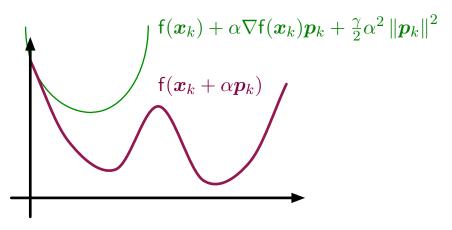
$$\leq \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \frac{\gamma \alpha^2}{2} \| \boldsymbol{p}_k \|^2 = \alpha \left[\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \frac{\gamma \alpha}{2} \| \boldsymbol{p}_k \|^2 \right].$$

now the lemma follows trivially.

(3/3)

Existence of a descent step

- The descent lemma means that there is a parabola that is entirely over the function f(x) in the direction p_k if this is a descent direction.
- The second part of the lemma permits to ensure a minimal reduction if the step length is chosen to be $\alpha_k = \alpha_k^{\star}/2$.



Unconstrained minimization

21 / 64

General iterative scheme

Descent direction failure

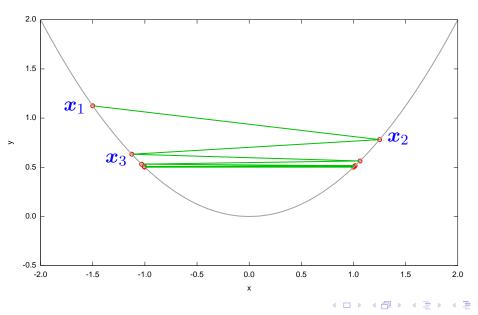
Descent direction failure

- The simple request to have a descent direction may be not enough.
- In fact, step length may be asymptotically too short
- Or step length may be asymptotically too long

Steps may be too long

The objective function is $f(x) = x^2$ and the iterates are generated by the descent directions $p_k = (-1)^{k+1}$ from $x_0 = 2$ with:

$$x_{k+1} = x_k + \alpha_k p_k, \qquad \alpha_k = 2 + 3 \cdot 2^{-(k+1)}$$



Unconstrained minimization 23 / 0

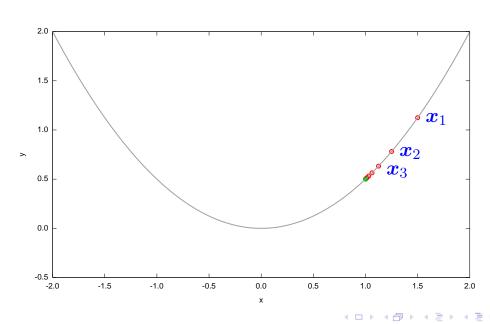
General iterative scheme

Descent direction failure

Steps may be too short

The objective function is $f(x)=x^2$ and the iterates are generated by the descent directions $p_k=-1$ from $x_0=2$ with:

$$x_{k+1} = x_k + \alpha_k p_k, \qquad \alpha_k = 2^{-(k+1)}$$



DIM

24 / 64

Outline

- General iterative scheme
 - Descent direction failure
- 2 Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

←□ → ←□ → ← □ → ← □ → □

25 / 64

Unconstrained minimization

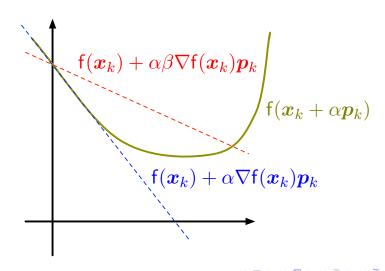
Backtracking Armijo line-search

Armijo condition

To prevent large steps relative to the decreasing of $f({m x})$ we require that

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

for some $\beta \in (0,1)$. Typical values of β ranges form 10^{-4} to 0.1.



Backtracking Armijo line-search

```
Given \alpha_{\text{init}} (e.g., \alpha_{\text{init}}=1);

Given \tau \in (0,1) typically \tau = 0.5;

Let \alpha^{(0)} = \alpha_{\text{init}};

while not f(\boldsymbol{x}_k + \alpha^{(\ell)}\boldsymbol{p}_k) \leq f(\boldsymbol{x}_k) + \alpha^{(\ell)}\beta\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k do set \alpha^{(\ell+1)} = \tau\alpha^{(\ell)};

increase \ell by 1;

end while

Set \alpha_k = \alpha^{(\ell)}.
```

- Backtracking Armijo line-search prevents the step from getting too large.
- Now the question is: will the backtracking Armijo line-search terminate in a finite number of steps?

Unconstrained minimization

Finite termination of Armijo line-search

Theorem (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and $\beta \in (0,1)$ and that p_k is a descent direction at x_k . Then the Armijo condition

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

is satisfied when $\alpha_k \in [0, \omega_k]$ where $\omega_k = \frac{2(\beta-1)\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k}{\gamma \left\|\boldsymbol{p}_k\right\|^2}$

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le \gamma \|\boldsymbol{x} - \boldsymbol{y}\|, \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion due to the regularity assumption:

$$\mathsf{f}(\boldsymbol{x} + \alpha \boldsymbol{p}) = \mathsf{f}(\boldsymbol{x}) + \alpha \nabla \mathsf{f}(\boldsymbol{x}) \boldsymbol{p} + E \quad \text{where} \quad |E| \leq \frac{\gamma}{2} \alpha^2 \left\| \boldsymbol{p} \right\|^2$$

Proof.

If $\alpha \leq \omega_k$ we have $\alpha \gamma \|\boldsymbol{p}_k\|^2 \leq 2(\beta - 1)\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k$ and by using Taylor expansion

$$f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k) \leq f(\boldsymbol{x}_k) + \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \frac{\gamma}{2} \alpha^2 \|\boldsymbol{p}_k\|^2$$

$$\leq f(\boldsymbol{x}_k) + \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \alpha (\beta - 1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

$$\leq f(\boldsymbol{x}_k) + \alpha \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

Unconstrained minimization

29 / 64

Backtracking Armijo line-search

Finite termination of Armijo line-search

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and $\beta \in (0,1)$ and that p_k is a descent direction at x_k . Then the step-size generated by then backtracking-Armijo line-search terminates with

$$\alpha_k \geq \min \left\{ \alpha_{\textit{init}}, \tau \omega_k \right\}, \qquad \omega_k = 2(\beta - 1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k / (\gamma \|\boldsymbol{p}_k\|^2)$$

Proof.

Line-search will terminate as soon as $\alpha^{(\ell)} \leq \omega_k$:

- **1** May be that α_{init} satisfies the Armijo condition $\Rightarrow \alpha_k = \alpha_{\text{init}}$.
- 2 Otherwise in the last line-search iteration we have

$$\alpha^{(\ell-1)} > \omega_k, \qquad \alpha_k = \alpha^{(\ell)} = \tau \alpha^{(\ell-1)} > \tau \omega_k.$$

Combining these 2 cases gives the required result.

Backtracking-Armijo line-search

- The previous analysis permit to say that Backtracking-Armijo line-search ends in a finite number of steps.
- The line-search produce a step length not too long due to the condition

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

- The line-search produce a step length not too short due to the finite termination theorem.
- Armijo line-search can be improved by adding some further requirements on the step length acceptance criteria.

Unconstrained minimization

31 / 64

Backtracking Armijo line-search

Global convergence of backtracking Armijo line-search

Global convergence

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the iterates generated by the Generic minimization algorithm with backtracking Armijo line-search either:

- \circ or $\lim_{k\to\infty}\mathsf{f}(x_k)=-\infty$;

Remark

If the theorem, point 1 means that we found a stationary point in a finite number of steps. Point 2 means that function f(x) is unbounded below, so that a minimum does not exists. Point 3 alone do not imply convergence, but if $\nabla f(x_k)$ and p_k do not become orthogonal and $\|p_k\| \not\to 0$ then $\|\nabla f(x_k)\| \to 0$.

Unconstrained minimization

Proof. (1/3).

Assume points 1 and 2 are not satisfied, then we prove point 3. Consider

$$f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k \leq f(\boldsymbol{x}_0) + \sum_{j=0}^k \alpha_j \beta \nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j$$

by the fact that p_k is a descent direction we have that the series:

$$\sum_{j=0}^{\infty} \alpha_j |\nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j| \leq \beta^{-1} \lim_{k \to \infty} [f(\boldsymbol{x}_0) - f(\boldsymbol{x}_{k+1})] < \infty$$

and then

$$\lim_{j \to \infty} \alpha_j \left| \nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j \right| = 0$$

Unconstrained minimization

33 / 64

Backtracking Armijo line-search

Global convergence of backtracking Armijo line-search

Proof. (2/3).

Recall that from finite termination Armijo theorem (slide n.28)

$$\alpha_k \ge \min \left\{ \alpha_{\mathsf{init}}, \tau \omega_k \right\}, \qquad \omega_k = 2(\beta - 1) \nabla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k / (\gamma \|\boldsymbol{p}_k\|^2)$$

and consider the two index set:

$$\mathcal{K}_1 = \{k \mid \alpha_k \ge \alpha_{\mathsf{init}}\}, \qquad \mathcal{K}_2 = \{k \mid \alpha_k < \alpha_{\mathsf{init}}\},$$

Obviously $\mathbb{N} = \mathcal{K}_1 \cup \mathcal{K}_2$ and from $\lim_{k\to\infty} \alpha_k |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| = 0$ we have

$$\lim_{k \in \mathcal{K}_1 \to \infty} \alpha_k |\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k| = 0, \tag{A}$$

$$\lim_{k \in \mathcal{K}_2 \to \infty} \alpha_k \left| \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k \right| = 0, \tag{B}$$

Proof. (3/3).

For $k \in \mathcal{K}_1$ we have $\alpha_k = \alpha_{\mathsf{init}}$ and $\alpha_k |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| = \alpha_{\mathsf{init}} |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k|$ and from (A) we have

$$\lim_{k \in \mathcal{K}_1 \to \infty} |\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k| = 0 \tag{*}$$

For $k \in \mathcal{K}_2$ we have $\tau \omega_k \leq \alpha_k \leq \omega_k$ so

$$||\alpha_k||\nabla \mathsf{f}(\boldsymbol{x}_k)\boldsymbol{p}_k| \geq au\omega_k ||\nabla \mathsf{f}(\boldsymbol{x}_k)\boldsymbol{p}_k|| \geq 2 au(1-eta) rac{||\nabla \mathsf{f}(\boldsymbol{x}_k)\boldsymbol{p}_k||^2}{\gamma ||\boldsymbol{p}_k||^2}$$

and from (B) we have

$$\lim_{k \in \mathcal{K}_1 \to \infty} \frac{|\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k|}{\|\boldsymbol{p}_k\|} = 0 \tag{**}$$

Combining (\star) and $(\star\star)$ gives the required result.

35 / 64

Unconstrained minimization

Backtracking Armijo line-search

Glob

Global convergence of steepest descent

Steepest descent algorithm

Steepest descent algorithm

Given an initial guess x_0 , let k = 0;

while not converged do

Compute a step-size α_k using a line-search along $-\nabla f(\boldsymbol{x}_k)^T$. Set $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k)^T$ and increase k by 1.

end while

- The steepest descent algorithm is simply the generic minimization algorithm with search direction the opposite of the gradient in x_k .
- The search direction $-\nabla f(x_k)^T$ is always a descent direction unless the point x_k is a stationary point.

Global convergence of steepest descent

Corollary (Global convergence of steepest descent)

Suppose that f(x) satisfy the standard assumptions, then, for the iterates generated by the steepest descent algorithm with backtracking Armijo line-search either:

- \circ or $\lim_{k\to\infty}\mathsf{f}(\boldsymbol{x}_k)=-\infty$;

 ${\sf Unconstrained\ minimization}$

37 / 64

Backtracking Armijo line-search

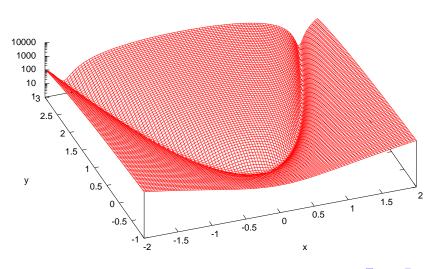
Global convergence of steepest descent

The Rosenbrock example

(1/3)

- Although the steepest descent scheme is globally convergent it can be very slow!
- A classical example is the Rosenbrock function:

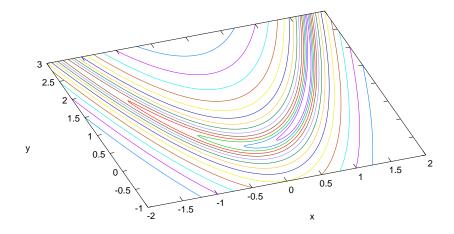
$$f(x,y) = 100 (y - x^2)^2 + (x - 1)^2$$



The Rosenbrock example

(2/3)

• This function has a unique minimum at $(1,1)^T$ inside a banana shaped valley.



Unconstrained minimization

39 / 64

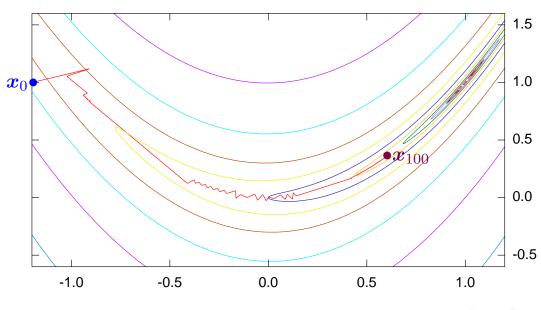
Backtracking Armijo line-search

Global convergence of steepest descent

The Rosenbrock example

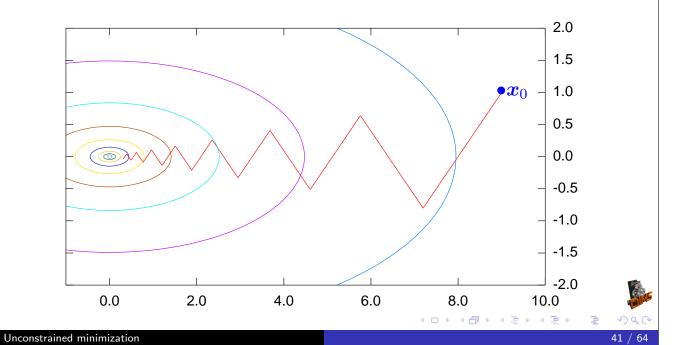
 $\overline{(3/3)}$

• After 100 iteration starting from $(-1.2,1)^T$ the approximate minimum is far from the solution.



10 / 64

- The steepest descent is a slow method, not only on a difficult test case like the Rosenbrock example.
- Given the function $f(x,y) = \frac{1}{2}x^2 + \frac{9}{2}y^2$ starting from $x_0 = (9,1)^T$ we have the zig-zag pattern toward $(0,0)^T$.



Wolfe–Zoutendijk global convergence

Outline

- General iterative scheme
 - Descent direction failure
- 2 Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

The Wolfe and Armijo Goldstein conditions

- **1** The simple condition of descent step is in general not enough for the convergence of a iterative minimization scheme.
- 2 The condition of sufficient decrease of backtracking Armijo line-search may be insufficient on general inexact line-search algorithm.
- Adding another condition to the sufficient decrease condition such that we avoid too short step length we obtain globally convergent numerical procedure.
- Oepending on which additional condition is added we obtain the:
 - Wolfe conditions;
 - Armijo Goldstein conditions.

Unconstrained minimization

43 / 64

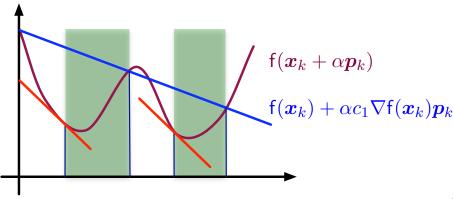
Wolfe-Zoutendijk global convergence

The Wolfe conditions

The Wolfe conditions

Let c_1 and c_2 two constant such that $0 < c_1 < c_2 < 1$. We say that the step length α_k satisfy the Wolfe conditions if α_k satisfy:

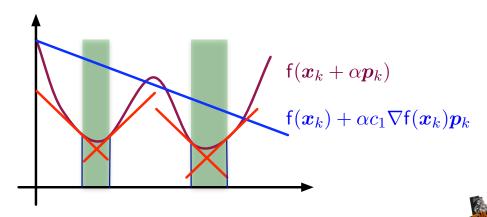
- **1** sufficient decrease: $f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f(x_k) p_k$;
- 2 curvature condition: $\nabla f(x_k + \alpha_k p_k) p_k \ge c_2 \nabla f(x_k) p_k$.



The strong Wolfe conditions

Let c_1 and c_2 two constant such that $0 < c_1 < c_2 < 1$. We say that the step length α_k satisfy the strong Wolfe conditions if α_k satisfy:

- sufficient decrease: $f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \leq f(\boldsymbol{x}_k) + c_1 \alpha_k \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$;
- 2 curvature condition: $|\nabla f(x_k + \alpha_k p_k)p_k| \leq c_2 |\nabla f(x_k)p_k|$.



(례) 〈토▷ 〈토▷ _ 토

Unconstrained minimization

45 / 64

Wolfe-Zoutendijk global convergence

The Wolfe conditions

Existence of "Wolfe" step length

- The Wolfe condition seems quite restrictive.
- The next lemma answer to the question if a step length satisfying Wolfe conditions does exists.

Lemma (strong Wolfe step length)

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption. If the following condition are satisfied:

- **1** p_k is a descent direction for the point x_k , i.e. $\nabla f(x_k)p_k < 0$;
- 2 $f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$ is bounded from below, i.e. $\lim_{\alpha \to \infty} f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k) > -\infty$.

then for any $0 < c_1 < c_2 < 1$ there exists an interval [a,b] such that all $\alpha_k \in [a,b]$ satisfy the strong Wolfe conditions.

Proof.

Define $\ell(\alpha) = f(\boldsymbol{x}_k) + \alpha c_1 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$ and $g(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$. From $\lim_{\alpha \to \infty} \ell(\alpha) = -\infty$ and from condition 1 it follows that there exists $\alpha_{\star} > 0$ such that

$$\ell(\alpha_{\star}) = g(\alpha_{\star})$$
 and $\ell(\alpha) > g(\alpha), \quad \forall \alpha \in (0, \alpha_{\star})$

so that all step length $\alpha \in (0,\alpha_\star)$ satisfy strong Wolfe condition 1. Because $\ell(0)=g(0)$ form Cauchy-Rolle theorem there exists $\alpha_{\star\star} \in (0,\alpha_\star)$ such that

$$g'(\alpha_{\star\star}) = \ell'(\alpha_{\star\star}) \implies$$

$$0 > \nabla f(\boldsymbol{x}_k + \alpha_{\star\star} \boldsymbol{p}_k) \boldsymbol{p}_k = c_1 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k > c_2 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

by continuity we find an interval around $\alpha_{\star\star}$ with step lengths satisfying strong Wolfe conditions.

47 / 64

Unconstrained minimization

Wolfe-Zoutendijk global convergence

The Wolfe conditions

The Zoutendijk condition

Theorem (Zoutendijk)

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption and bounded from below, i.e.

$$\inf_{oldsymbol{x} \in \mathbb{R}^n} \mathsf{f}(oldsymbol{x}) > -\infty$$

Let $\{x_k\}$, $k=0,1,\ldots,\infty$ generated by a generic minimization algorithm where line-search satisfy Wolfe conditions, then

$$\sum_{k=1}^{\infty} (\cos \theta_k)^2 \left\| \nabla \mathsf{f}(\boldsymbol{x}_k)^T \right\|^2 < +\infty$$

where

$$\cos heta_k = rac{-
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k}{\|
abla \mathsf{f}(oldsymbol{x}_k)^T\| \, \|oldsymbol{p}_k\|}$$

Proof. (1/3).

Using the second condition of Wolfe (with ${m x}_{k+1} = {m x}_k + lpha_k {m p}_k)$

$$\nabla \mathsf{f}(\boldsymbol{x}_{k+1})\boldsymbol{p}_k \geq c_2 \nabla \mathsf{f}(\boldsymbol{x}_k)\boldsymbol{p}_k$$

$$(\nabla f(\boldsymbol{x}_{k+1}) - \nabla f(\boldsymbol{x}_k))\boldsymbol{p}_k \ge (c_2 - 1)\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k$$

by using Lipschitz regularity

$$\left\|
abla \mathsf{f}(\boldsymbol{x}_{k+1}) -
abla \mathsf{f}(\boldsymbol{x}_k) \right) \boldsymbol{p}_k \right\| \le \gamma \left\| \boldsymbol{x}_{k+1} - \boldsymbol{x}_k \right\| \left\| \boldsymbol{p}_k \right\|$$

$$= \alpha_k \gamma \left\| \boldsymbol{p}_k \right\|^2$$

and using both inequality we obtain the estimate for α_k :

$$lpha_k \geq rac{c_2 - 1}{\gamma \left\| oldsymbol{p}_k
ight\|^2}
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k$$

Unconstrained minimization

49 / 6

Wolfe-Zoutendijk global convergence

The Wolfe conditions

Proof. (2/3)

Using the first condition of Wolfe and lower bound estimate of $lpha_k$

$$egin{aligned} \mathsf{f}(oldsymbol{x}_{k+1}) & \leq \mathsf{f}(oldsymbol{x}_k) + lpha_k c_1
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k \\ & \leq \mathsf{f}(oldsymbol{x}_k) - rac{c_1 (1 - c_2)}{\gamma \left\|oldsymbol{p}_k
ight\|^2} ig(
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_kig)^2 \end{aligned}$$

setting $A=c_1(1-c_2)/\gamma$ and using the definition of $\cos\theta_k$

$$f(\boldsymbol{x}_{k+1}) \le f(\boldsymbol{x}_k) - A(\cos \theta_k)^2 \|\nabla f(\boldsymbol{x}_k)^T\|^2$$

and by induction

$$f(\boldsymbol{x}_{k+1}) \le f(\boldsymbol{x}_1) - A \sum_{j=1}^{k} (\cos \theta_j)^2 \|\nabla f(\boldsymbol{x}_j)^T\|^2$$

Proof. (3/3).

The function f(x) is bounded from below, i.e.

$$\inf_{\boldsymbol{x} \in \mathbb{R}^n} \mathsf{f}(\boldsymbol{x}) > -\infty$$

so that

$$A\sum_{j=1}^{k}(\cos\theta_{j})^{2}\left\|\nabla\mathsf{f}(\boldsymbol{x}_{j})^{T}\right\|^{2}\leq\mathsf{f}(\boldsymbol{x}_{1})-\mathsf{f}(\boldsymbol{x}_{k+1})$$

and

$$A\sum_{j=1}^{\infty}(\cos\theta_j)^2 \left\|\nabla f(\boldsymbol{x}_j)^T\right\|^2 \leq f(\boldsymbol{x}_1) - \lim_{k \to \infty} f(\boldsymbol{x}_{k+1}) < +\infty$$

Unconstrained minimization

51 / 64

Wolfe-Zoutendijk global convergence

The Wolfe conditions

Corollary (Zoutendijk condition)

Let $f: \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption and bounded from below. Let $\{x_k\}$, $k=0,1,\ldots,\infty$ generated by a generic minimization algorithm where line-search satisfy Wolfe conditions, then

$$\cos \theta_k \left\|
abla \mathsf{f}(oldsymbol{x}_k)^T
ight\| o 0 \qquad \textit{where} \qquad \cos \theta_k = rac{-
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k}{\|
abla \mathsf{f}(oldsymbol{x}_k)^T \| \, \| oldsymbol{p}_k \|}$$

Remark

If $\cos \theta_k \ge \delta > 0$ for all k from the Zoutendijk condition we have:

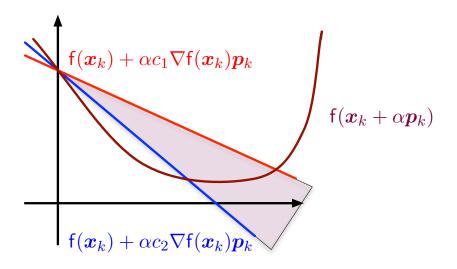
$$\|\nabla \mathsf{f}(\boldsymbol{x}_k)^T\| \to 0$$

i.e. the generic minimization algorithm where line-search satisfy Wolfe conditions converge to a stationary point.

The Armijo-Goldstein conditions

Let c_1 and c_2 two constant such that $0 < c_1 < c_2 < 1$. We say that the step length α_k satisfy the Wolfe conditions if α_k satisfy:

$$(x_k + \alpha_k p_k) \ge f(x_k) + c_2 \alpha_k \nabla f(x_k) p_k;$$



DIMS

Unconstrained minimization

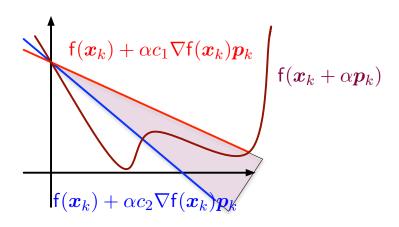
53 / 64

Wolfe-Zoutendijk global convergence

The Armijo-Goldstein conditions

The Armijo-Goldstein conditions

- Armijo-Goldstein conditions has very similar theoretical properties like the Wolfe conditions.
- Global convergence theorems can be established.
- The weakness of Armijo-Goldstein conditions respect to Wolfe conditions is that the former can exclude local minima's from the step length as you can see in the figure below.



Outline

- General iterative scheme
 - Descent direction failure
- 2 Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

55 / 64

Unconstrained minimization

Algorithms for line-search

Armijo Parabolic-Cubic search

Armijo Parabolic-Cubic search

- Backtracking-Armijo line-search can be slow if a large number of reduction must be performed to satisfy Armijo condition.
- A better performance is obtained if instead of reducing by a fixed factor we use polynomial interpolation to estimate the location of the minimum.
- 3 Assuming that that $f(x_k)$ and $\nabla f(x_k)p_k$ are known at the first step we know also $f(x_k + \lambda p_k)$ if λ is the first trial step.
- In this case a parabolic interpolation can be used to estimate the minimum.
- **1** If we store the last trial step length, in the successive iteration we can use cubic interpolation to estimate the minima's.
- **1** The resulting algorithm is in the following slides.

Algorithm (Armijo Parabolic-Cubic search)

```
1: armijo\_linesearch(f, x, p, \tau)
 2: f_0 \leftarrow f(x); \nabla f_0 \leftarrow \nabla f(x)p; \lambda \leftarrow 1;
  3: while \lambda \geq \lambda_{\min} do
              f_{\lambda} \leftarrow f(\boldsymbol{x} + \lambda \boldsymbol{p});
  4:
              if f_{\lambda} \leq f_0 + \lambda \tau \nabla f_0 then
  5:
                      return \lambda; successful search
  6:
               else
  7:
                      if \lambda = 1 then
  8:
                             \lambda_{tmp} \leftarrow \nabla f_0 / [2(f_0 + \nabla f_0 - f_\lambda)];
  9:
                      else
10:
                             \lambda_{\textit{tmp}} \leftarrow \textit{cubic}(\mathsf{f}_0, \nabla \mathsf{f}_0, \mathsf{f}_{\lambda}, \lambda, \mathsf{f}_p, \lambda_p);
11:
                      end if
12:
                      \lambda_p \leftarrow \lambda; f_p \leftarrow f_{\lambda}; \lambda \leftarrow range(\lambda_{tmp}, \lambda/10, \lambda/2);
13:
               end if
14:
15: end while
16: return \lambda_{\min} ; failed search
```


Unconstrained minimization

57 / 64

Algorithms for line-search

Armijo Parabolic-Cubic search

Algorithm (Armijo Parabolic-Cubic search)

```
17: range(\lambda, a, b)
18: if \lambda < a then
19: return a;
20: else if \lambda > b then
21: return b;
22: else
23: return \lambda;
24: end if
```


Algorithm (Armijo Parabolic-Cubic search)

25: cubic(f_0 , ∇f_0 , f_λ , λ , f_p , λ_p)

26: Evaluate:

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\lambda^2 \lambda_p^2 (\lambda - \lambda_p)} \begin{pmatrix} \lambda_p^2 & -\lambda^2 \\ -\lambda_p^3 & \lambda^3 \end{pmatrix} \begin{pmatrix} \mathsf{f}_{\lambda} - \mathsf{f}_0 - \lambda \nabla \mathsf{f}_0 \\ \mathsf{f}_p - \mathsf{f}_0 - \lambda_p \nabla \mathsf{f}_0 \end{pmatrix}$$

27: **if** a = 0 **then**

28: **return** $-\nabla f_0/(2b)$;

cubic is a quadratic

29: **else**

31:

30: $d \leftarrow b^2 - 3 a \nabla f_0$;

return $(-b + \sqrt{d})/(3a)$:

discriminant legitimate cubic

32: end if

Unconstrained minimization

59 / 64

Algorithms for line-search

Wolfe linesearch

Wolfe linesearch

- Wolfe linesearch is identical to the Armijo Parabolic-Cubic search, until a point satisfying the first condition is found.
- 2 At this point the Armijo algorithm stop while Wolfe search try to refine the search until the second condition is satisfied.
- If the step estimated is too short then is is enlarged until it contains a minimum.
- If the step estimated is too long it is reduced until the second condition is satisfied.

Algorithm (Wolfe linesearch)

```
1: wolfe_linesearch(f, \boldsymbol{x}, \boldsymbol{p}, c_1, c_2)
 2: f_0 \leftarrow f(\boldsymbol{x}); \nabla f_0 \leftarrow \nabla f(\boldsymbol{x}) \boldsymbol{p}; \lambda \leftarrow 1;
  3: while \lambda \geq \lambda_{\min} do
              f_{\lambda} \leftarrow f(\boldsymbol{x} + \lambda \boldsymbol{p});
  4:
              if f_{\lambda} \leq f_0 + \lambda c_1 \nabla f_0 then
  5:
                     go to ZOOM; found a \lambda satisfying condition 1
  6:
              else
  7:
                     if \lambda = 1 then
  8:
                            \lambda_{tmp} \leftarrow \nabla f_0 / [2(f_0 + \nabla f_0 - f_\lambda)];
  9:
                     else
10:
                            \lambda_{tmp} \leftarrow cubic(f_0, \nabla f_0, f_{\lambda}, \lambda, f_p, \lambda_p);
11:
                     end if
12:
                     \lambda_p \leftarrow \lambda; f_p \leftarrow f_\lambda; \lambda \leftarrow range(\lambda_{tmp}, \lambda/10, \lambda/2);
13:
              end if
14:
15: end while
16: return \lambda_{\min} ; failed search
```


Unconstrained minimization

Wolfe linesearch

Algorithms for line-search

```
Algorithm (Wolfe linesearch)
```

```
17: ZOOM:
18: \nabla f_{\lambda} \leftarrow \nabla f(\boldsymbol{x} + \lambda \boldsymbol{p}) \boldsymbol{p};
19: if \nabla f_{\lambda} \geq c_2 \nabla f_0 then return \lambda;
                                                                                          found Wolfe point!
20: if \lambda = 1 then
              forward search of an interval bracketing a minimum
21:
             while \lambda \leq \lambda_{\max} do
22:
                    \{\lambda_p, \mathsf{f}_p\} \leftarrow \{\lambda, \mathsf{f}_{\lambda}\};
                                                                                                        save values
23:
                    \lambda \leftarrow 2\lambda; f_{\lambda} \leftarrow f(\boldsymbol{x} + \lambda \boldsymbol{p});
24:
                    if not f_{\lambda} < f_0 + \lambda c_1 \nabla f_0 then
25:
                           \{\lambda_p, f_p\} \rightleftharpoons \{\lambda, f_\lambda\}; go to REFINE; swap values
26:
                    end if
27:
                    \nabla f_{\lambda} \leftarrow \nabla f(\boldsymbol{x} + \lambda \boldsymbol{p}) \boldsymbol{p};
28:
                    if \nabla f_{\lambda} > c_2 \nabla f_0 then return \lambda;
                                                                                found Wolfe point!
29:
             end while
30:
             return \lambda_{\max}; failed search
31:
32: end if
```

Algorithm (Wolfe linesearch)

```
33: REFINE:
34: \{\lambda_{lo}, \mathsf{f}_{lo}, \nabla \mathsf{f}_{lo}\} \leftarrow \{\lambda, \mathsf{f}_{\lambda}, \nabla \mathsf{f}_{\lambda}\}; \ \Delta \leftarrow \lambda_p - \lambda_{lo};
35: while \Delta > \epsilon do
                 \delta \lambda \leftarrow \Delta^2 \nabla f_{lo} / [2(f_{lo} + \nabla f_{lo} \Delta - f_p)];
36:
                 \delta \lambda \leftarrow range(\delta \lambda, 0.2\Delta, 0.8\Delta);
37:
                 \lambda \leftarrow \lambda_{lo} + \delta \lambda; f_{\lambda} \leftarrow f(x + \lambda p);
38:
                 if f_{\lambda} \leq f_0 + \lambda c_1 \nabla f_0 then
39:
                          \nabla f_{\lambda} \leftarrow \nabla f(\boldsymbol{x} + \lambda \boldsymbol{p}) \boldsymbol{p};
40:
                         if \nabla f_{\lambda} > c_2 \nabla f_0 then return \lambda; found Wolfe point!
41:
                          \{\lambda_{lo}, f_{lo}, \nabla f_{lo}\} \leftarrow \{\lambda, f_{\lambda}, \nabla f_{\lambda}\}; \ \Delta \leftarrow \Delta - \delta \lambda;
42:
                 else
43:
                          \{\lambda_n, \mathsf{f}_n\} \leftarrow \{\lambda, \mathsf{f}_{\lambda}\}; \ \Delta \leftarrow \delta \lambda;
44:
45:
                 end if
46: end while
47: return \lambda; failed search
```

Unconstrained minimization

63 / 64

References

References

- J. Stoer and R. Bulirsch Introduction to numerical analysis Springer-Verlag, Texts in Applied Mathematics, **12**, 2002.
- J. E. Dennis, Jr. and Robert B. Schnabel
 Numerical Methods for Unconstrained Optimization and
 Nonlinear Equations
 SIAM, Classics in Applied Mathematics, 16, 1996.

