[—
Outline

@ General iterative scheme
Unconstrained minimization @ Descent direction failure

Lectures for PHD course on
Unconstrained Numerical Optimization

@ Backtracking Armijo line-search
@ Global convergence of backtracking Armijo line-search
@ Global convergence of steepest descent

Enrico Bertolazzi © Wolfe-Zoutendijk global convergence

N o The Wolfe conditions
- Universita di Trento o The Armijo-Goldstein conditions
May 2008 @ Algorithms for line-search
o Armijo Parabolic-Cubic search
o Wolfe linesearch

The problem 1/3) The problem (

Given f : R" — R:

Definition (Global minimum)

Given f : R" — IR a point @, € R" is a global minimum if
minimize ~ f()
inimi

f(z,) < f(z), VaoeR"

the following regularity about f(a) is assumed in the following;

Definition (Local minimum)

Assumption (Regularity assumption)

Given f : R™ R a point x, € R" is a local minimum if
We assume f € C'(R™) with Lipschitz continuous gradient, i.e.

there exists 5 > 0 such that f(z,) <f(x), Vo€ B(a.o).

|Vi@)T = V@) || < vllz—yl. VYe.yeR" Obviously a global minimum is a local minimum. Find a global
minimum in general is not an easy task. The algorithms presented
in the sequel will approximate local minima's.

Definition (Strict global minimum)

Given f : R™ — R a point x, € R" is a strict global minimum if

f(z.) < f(x), Vo eR"\{a.}.

Definition (Strict local minimum)

Given f : R" — R a point x, € R™ is a strict local minimum if

f(z,) <f(@), Vo e B@ao)\ ().

Obviously a strict global minimum is a strict local minimum.

5

5/ 64

@ The first order necessary condition do not discriminate
maximum, minimum, or saddle points.

@ To discriminate maximum and minimum we need more
information, e.g. second order derivative of f(x).

@ With second order derivative we can build necessary and
sufficient condition for a minima.

@ In general using only first and second order derivative at the
point x, it is not possible to deduce a necessary and sufficient
condition for a minima.

rstrained minimization

First

der Necessary c

Lemma (First order Necessary condition for local minimum)

Given f : R™ — R satisfying the regularity assumption. If a point
x, € R™ is a local minimum then

V()" = 0.

Proof.
Consider a generic direction d, then for § small enough we have

A (e + Ad) — () <0, 0<A<d
so that
lim A (e + Ad) — f(=4)) = Vi(z,)d < 0,
because d is a generic direction we have Vf(z,)T = 0. ol B

6/ 64

Second order Necessary conditi

Lemma (Second order Necessary condition for local minimum)

Given f € C2(R™) if a point z, € R" is a local minimum then
Vf(x,)T = 0 and V2f(x,) is semi-definite positive, i.e.

d"V*f(z,)d >0, VdeR"

This condition is only, necessary, in fact consider f(z) = 7

2 0
~\0 6z,

for the point &, = 0 we have Vf(0) = 0 and V>f(0) semi-definite
positive, but 0 is a saddle point not a minimum

V(@) = (21, -323), V(=

)

[
C order sufficient conditi

The condition Vf(z,)” = 0 comes from first order necessary
conditions. Consider now a generic direction d, and the finite

Lemma (Second order su nt condition for local mi

difference: Given f € C2(R™) if a point a, € R" satisfy:
f(@, + Ad) — 2f(x,) + f(z, — \d) 0 Vf(z,)" =0;
- x =20 @ V2f(x,) is definite positive; i.e
by using Taylor expansion for f(x) d'VH(z,)d>0, VdeR"\ {z,}
f(n £ 2d) = () + V(@) Ad+ %ﬂfvzf(z*)d +o(?) then @, € R" is a strict local minimum

() 4+ 20038/ > 0 Because V2f(x.) is symmetric we can write

Amindd < d"V*(@,)d < Auaxd”d
taking the limit A — 0 and form the arbitrariness of d we have

that V2f(x,) must be semi-definite positive.] y If V2f(x,) is positive definite we have Ay > 0. 5‘

Pro

Consider now a generic direction d, and the Taylor expansion for
f(x) @ General iterative scheme

© Descent direction failure

f(@s +d) = f(x,) + V(z.)d + %dTvZf(m,)d +o(||d|*)

1 5
> f(@s) + 5 hmin | d]* + o d]]*)

1
> 8(a) + 5 Amin [l (1+ o)/)
choosing d small enough we can write

. d#o, d<a

1
(s +d) > F(@) + Poin] > ()

i.e. x, is a strict minimum. [m]

How to find a minimum

Given f : R" - RR: minimizegern ()
@ We can solve the problem by solving the necessary condition

i.e by solving the nonlinear systems
Vi(x)" = 0.

@ Using such an approach we looses the information about ().

@ Moreover such an approach can find solution corresponding to
a maximum or saddle points.

@ A better approach is to use all the information and try to build
minimizing procedure, i.e. procedures that, starting from a
point @ build a sequence {a;} such that f(aj1) < f(z). In
this way, at least, we avoid to converge to a strict maximum.

A generic iterative minimization procedure can be sketched as
follows:

o calculate a search direction py from @y,

@ ensure that this direction is a descent direction, i.e.
Vf(zk)pr < 0, whenever V()" #0

so that, at least for small steps along py, the objective
function f(@) will be reduced

o use line-search to calculate a suitable step-length aj > 0 so
that

@y + arpr) < fxp).
o Update the point:

Tp+1 = T + kP

rstrained minimization

5

Iterative Methods

@ In practice, rarely we are able to provide an explicit minimizer.
o Iterative method: given starting guess @y, generate the
sequence,

k=1,2,...

{x}.
o AIM: ensure that (a subsequence) has some favorable limiting
properties:

@ satisfies first-order necessary conditions
@ satisfies second-order necessary conditions

Generic minimizati

algorithm

Written with a pseudo-code the minimization procedure is the
following algorithm:

Generic minimization algorithm

Given an initial guess o, let k
while not converged do
Find a descent direction py, at a;
Compute a step size oy, using a line-search along pj.
Set @1 = @) + Py and increase k by 1
end while

The crucial points which differentiate the algorithms are:
@ The computation of the direction py;
@ The computation of the step size ay.

Practical Line-search methods

earch

o The first developed minimization algorithms try to solve To obtain a monatone decreasing sequence we can use the

following algorithm:
o =

argmin f(zx . —
argmip f(zx + apr) Backtracking line-search
Given ainie (€-g., ainit = 1);
o performing exact line-search by univariate minimization; Given z € (0,1) typically 7 = 0.5;
o rather expensive and certainly not cost effective. Let a© = qinie;
while not f(z; + a¥p;) < f(z;) do
set altH) = ra®;

@ Modern methods implements inexact line-search increase £ by 1;

end while
Set oy = alf).

@ ensure steps are neither too long nor too short

@ try to pick useful initial step size for fast convergence
@ best methods are based on

o backtracking-Armijo search; To be effective the previous algorithm should terminate in a finite
o Armijo-Goldstein search;

number of steps. In the following we prove that if py is a descent
o Franke-Wolfe search; & direction then a slight modification of the algorithm will terminate.

al iteative scheme

Existence of a descent step Existence of a descent step

n P
Lemma (Descent Lemma) i .
. n . Let be g(a) = f(zx + apy) then we can write
Suppose that f(x) satisfy the standard assumptions and that py is

a descent direction at @y, i.e. Vf(zy)py < 0. Then we have

(@)= a0) = [(€1 =g+ [(o€~ 5 0)at

f(ax + apr) < f(@r) + aVi(ak)pr + %uz lpel®

= aVf(@y)pr + /" (Vf(=r + Epr) — Vi(ak))pr dé
Vi@ipe Jo
7 llpel®

for all o € [0, o] where o

< aVf(z)pk +/ [IVf(@r + Epr) — V(@) [1] dE
0
Assumption (Regularity assumption

A

We assume f € C'(R") with Lipschitz continuous gradient, i.e.

.
< aVt(em.+ ol [ede
b
there exists y > 0 such that

2

[IVf(z) — V)l < v

a? Yoo
< aVi@u)ps + 25 el = o [Ve@rpn + 5 o]
-y, Vz,yeR" 2 2

O

now the lemma follows trivially.

Existence of a descent step

@ The descent lemma means that there is a parabola that is
entirely over the function f(z) in the direction py, if this is a
descent direction.

o The second part of the lemma permits to ensure a minimal
reduction if the step length is chosen to be aj. = aj}/2

f(xi) + aVi(@y)pr + 202 |pil®

f(a, + apy)

5

Steps may be too lo

2 and the iterates are generated
—1)*+1 from @y = 2 with:

The objective function is f|
by the descent directions pj.

Tpyr = o+ agp, o =24 3270

I

t direction fai

o The simple request to have a descent direction may be not
enough.

o In fact, step length may be asymptotically too short
@ Or step length may be asymptotically too long

Steps may be too short

The objective function is f(x) and the iterates are generated
by the descent directions py = —1 from x = 2 with:
9—(k+1)

1 = T + apPr, ajp =2

Backtracking Armijo line-search

Outline

© Backtracking Armijo line-search
@ Global convergence of backtracking Armijo line-search
@ Global convergence of steepest descent

5

25/ 64

Backtracking Armijo line-search

Backtracking Armijo line-search
Given init (€.g., ainit = 1);
Given 7 € (0,1) typically 7 = 0.5;
Let () = aigi;
while not f(ay, + a(/)pk) < f(xx) + a9 gV (2y)pr do
set aléHD) =
increase (by l,
end while
Set o =)

® Backtracking Armijo line-search prevents the step from
getting too large.

o Now the question is: will the backtracking Armijo line-search
terminate in a finite number of steps ?

rstrained minimization

To prevent large steps relative to the decreasing of () we require
that

f(@ + arpr) < f(xr) + axBVF(r)pr
for some 3 € (0, 1). Typical values of 3 ranges form 10~ to 0.1.

T + apy)

(1) + aVF(zi)pi

Finite termination of Armijo lin

Theorem (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and 3 € (0, 1)
and that py, is a descent direction at @y. Then the Armijo
condition

f(@x + arpr) < fzr) + axBVE(zr)pr

2(3 — 1) Vf| 3
is satisfied when ay, € [0,wy] where — wy, = %
Y 11Pr

Assumption (Regularity assumption)

We assume f € C'(IR™) with Lipschitz continuous gradient, i.e.
there exists y > 0 such that

V(@) - V@)l <7 llz—yll,

Va,y € R" }

Backtracking Armijo line-search

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion
due to the regularity assumption:

f(x + ap) =f(x) + aVf(z)p+ E where |E| < %“z HpH2

If & < wi, we have a [|p||* < 2(8 — 1)Vf(zx)px and by using
Taylor expansion

f(ax + apg) < f(zx) + aVi(p)pr + 2*/02 loxl?

< f(@) + aVf(zr)pr + a8 — 1) Vi(@k)pr
< f(xr) + afVi(zr)pr

@ The previous analysis permit to say that Backtracking-Armijo
line-search ends in a finite number of steps.

@ The line-search produce a step length not too long due to the
condition
f(@r + axpr) < Fx) + BV (ag)pi
@ The line-search produce a step length not too short due to the
finite termination theorem.

@ Armijo line-search can be improved by adding some further
requirements on the step length acceptance criteria.

rstrained minimization

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and 3 € (0, 1)
and that py, is a descent direction at .. Then the step-size
generated by then backtracking-Armijo line-search terminates with

a > min {ajnie 7wr, wk =208 = DVF(@)pe/ (7 [|pl*)

Proof.
Line-search will terminate as soon as a(?) < wy:
@ May be that a,;¢ satisfies the Armijo condition = aj. = jnit.
@ Otherwise in the last line-search iteration we have
ol >y, ar = a® = 7ot > 1.

Combining these 2 cases gives the required result. =18 %

Global converg

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the Generic minimization algorithm with
backtracking Armijo line-search either:

Q Vf(zy)T = 0 for some k > 0;
@ or limy_ f(y) = —00;

Q@ or limy o0 |VF(2x)ps| min {1. \\pk*‘})

1 s i, s) s G i) ey s
& (i it s s, (it £ s hets et 16) 5
Unbotnded belowo thabialmirimimltoes noh e N Poin s
i o et ey G, s o) s ot
become orthogonal and ||py| /5 0 then [[Vf(ay)]| > 0. &

Backracking Armijo linesearch

Global convergence of backtracking Armijo ine-search |

Assume points 1 and 2 are not satisfied, then we prove point 3.
Consider

k
f(@is1) < F(@x) + axBVF(@r)pr < (o) + Y a;BVH(x;)p;
=0

by the fact that py, is a descent direction we have that the series:
=

> a5 Vi@y)psl < 87" lim [f(wo) — f(@iin)] < o0

=0 >

and then

lim a; |Vf(x;)p;| =
j—o0

For k € K1 we have a = aigie and
i [VE(2i)pi| = cinit | VF(2)pi| and from (A) we have

reim [V(ze)pi| =0 ()

For k € K3 we have Twy < oy, < wy so

V(x|
Vel > e [Vi@y)pil > 2r(1 —)L EIRE
7 [Pkl
and from (B) we have
lim V@R _ (%)
rekoo el
Combining (%) and () gives the required result o

rstrained minimization

Proof.

Recall that from finite termination Armijo theorem (slide n.28)
ok > min {aime, 7. wr =206 = DVF@ipe/ () oxl®)

and consider the two index set:
Ki={k|a>aini}, Ko={k|ax < i},

Obviously N = Ky UKy and from limy o a |VF(ak)pk| = 0 we

have
pelim _a [VE(@i)pi| = O, (A)
I vf =0, B
rehim o [VE(ze)pel (B)

Steepest descent algorithm

Steepest descent algorithm
Given an initial guess @, let k = 0;
while not converged do

Compute a step-size o using a line-search along —Vf(zx)7.

Set 41 = @ — o Vf(x)” and increase k by 1.
end while

@ The steepest descent algorithm is simply the generic
minimization algorithm with search direction the opposite of
the gradient in a;,

o The search direction —Vf(z;) is always a descent direction
unless the point ay, is a stationary point.

Backtracking Armijo line-search

Global convergenc of steepest descent [l Backtracking Armijo line-search

The Rosenbrock example

Global convergence of steepest descent

@ Although the steepest descent scheme is globally convergent
it can be very slow!

o A classical example is the Rosenbrock function
Corollary (Global convergence of steepest descent)

Suppose that f(x) satisfy the standard assumptions, then, for the
iterates generated by the steepest descent algorithm with
backtracking Armijo line-search either:

@ Vf(zy)" = 0 for some k > 0;
Q orlimy_,o () = —00;

Q or limy_.o, V(z)T = 0.

f(a,y) =100 (y — 2%)% + (2 — 1)*

The Rosenbrock example

o After 100 iteration starting from (—1.2,1)7 the approximate

o This function has a unique minimum at (1, 1) inside a minimurm is far from the solution.

banana shaped valley.

o The steepest descent is a slow method, not only on a difficult
test case like the Rosenbrock example.
1

)
o Given the function f(x,y) = =2 + ~y? starting from

© Wolfe~Zoutendijk global convergence
o The Wolfe conditions
o The Armijo-Goldstein conditions

The Wolfe and Armijo Goldstein col

The Wolfe conditions
Let ¢; and ¢y two constant such that 0 < ¢; < ¢o < 1. We say
that the step length ay, satisfy the Wolfe conditions if ay, satisfy:

@ The simple condition of descent step is in general not enough

for the convergence of a iterative minimization scheme. @ sufficient decrease: f(ax + axpr) < f(ax) + 1 o VF(k)pii
@ The condition of sufficient decrease of backtracking Armijo @ curvature condition: Vf(zx + axpr)pr > 2 Vi(xk)pr

line-search may be insufficient on general inexact line-search

algorithm

@ Adding another condition to the sufficient decrease condition
such that we avoid too short step length we obtain globally fon s
convergent numerical procedure \@k + opr)

@ Depending on which additional condition is added we obtain
the:

© Wolfe conditions;
@ Armijo Goldstein conditions

(@) + ac V(zp)py

T

The strong Wolfe conditions

Let ¢; and ¢; two constant such that 0 < ¢; < ¢o < 1. We say
that the step length oy, satisfy the strong Wolfe conditions if ay,
satisfy:

O sufficient decrease: f(ax + axpy) < f(@y) + c1 4 VF(@y)pr;

@ curvature condition: [Vf(ay + arpr)pr| < c2 [VF(xk)pr|

f(zy + apy)

f(@r) + ac, V() pi

45/ 61

The Wolfe conditions

Proof.
Define £(a) = f(xx) + ac) VF(xx)pr and g(a) = f(x; + apy).
From lim, .o £(a) = —oco and from condition 1 it follows that

there exists a, > 0 such that

fow) =g(ew) and L(a) > g(a), Ya € (0,a,)

so that all step length o € (0, a.) satisfy strong Wolfe condition 1.
Because £(0) = g(0) form Cauchy-Rolle theorem there exists
iy € (0, a,) such that

g'(@n) = €(au) =
0> V(g + anpr)pr = 1 V(zR)pe > c2VF()pr

by continuity we find an interval around a, with step lengths
satisfying strong Wolfe conditions. [m]

rstrained minimization

Existence of "Wolfe" step length

@ The Wolfe condition seems quite restrictive.

o The next lemma answer to the question if a step length
satisfying Wolfe conditions does exists

Lemma (strong Wolfe step length)

Let f: R™ — R satisfying the regularity assumption. If the
following condition are satisfied:
@ py is a descent direction for the point @y, i.e. V(x)py < 0;
Q f(xy + apy) is bounded from below, i.e.
lima—oo f(@r + api) > —c.
then for any 0 < ¢; < ¢y < 1 there exists an interval [a,b] such
that all oy, € [a, b] satisfy the strong Wolfe conditions.

Unconstrained minimization 46/ 64

The Zoutenduk condition

“The Wolfe conditions

Theorem (Zoutend|

)

Let f: R — R satisfying the regularity assumption and bounded
from below, i.e.

f f
>

Let {4}, k=0,1,...,00 by a generic minimization
algorithm where line-search satisfy Wolfe conditions, then

o
3 (cos) [| V(i) ||* < 400
k=1

where

—Vi(x)pr
V@) [1

cos O =

The Walfe conditions

Using the second condition of Wolfe (with @1 = @i + axpy)
Vi(@rs1)pe > c2VF(zk)pr
(Vf(zks1) = V(@) pr = (c2 = 1) VE(i)pr
by using Lipschitz regularity
[Vf(@rin) = VE@e)pr|| < vllzie — 2l [pel
= ay [lpell®
and using both inequality we obtain the estimate for ay:
c;

-1
ar > 2 Vf(a)pr
7 llpxl

Proof.

The function f(z) is bounded from below, i.e.

inf (@) > —o0
xTER"

so that
£ 2
A3 (e0s0,)2 [(a7 < flan) — i)
=1
and

A]z::(com%)z (9 ()7 [* < fla) = fim f(aigr) < +oo

rstrained minimization

Using the first condition of Wolfe and lower bound estimate of oy,
f(@rsr) < k) + arer V(@r)pr
a(l—c)

e (V(a)Pk)2

< f(@) -

setting A = ¢1(1 — ¢2)/ and using the definition of cos 6y,
f(@xe) < (k) — Alcos 0)? || V(i) |*
and by induction

‘2

k
f(@ii1) < (@) =AY (cos6;)* || V()"
=1

5

50/ 64

Corollary (Zoutendijk condition)

Let f: R" — R satisfying the regularity assumption and bounded

from below. Let {zx}, k = 0,1,...,00 generated by a generic

minimization algorithm where line-search satisfy Wolfe conditions,

then

Vi
[V (i) T [l |

If cos b > 6 > 0 for all k from the Zoutendijk condition we have:

cost ||VE(z)"|| =0 where cosf

(| V()| = 0

i.e. the generic minimization algorithm where line-search satisfy
Wolfe conditions converge to a stationary point. s

utendik global convergence

The Armijo-Goldstein conditions:

Wolfe-Zoutendij g

The Armijo-Goldstein conditions

The Armijo-Goldstein conditions

The Armijo-Goldstein conditions
Let 1 and ¢z two constant such that 0 < ¢ < ¢y < 1. We say
that the step length oy, satisfy the Wolfe conditions if ay, satisfy:
O f(ay + axpr) < fl@y) + c1 axVi(@i)pii
Q f(xk + arpr) > f@i) + c2 0 VF(ai)pi:

f(ar) + oel V() pr

f(ax + apr)

f(xr) + acaVi(xy)pr

@ Algorithms for line-search
@ Armijo Parabolic-Cubic search
@ Wolfe linesearch

e

© Armijo-Goldstein conditions has very similar theoretical
properties like the Wolfe conditions.

@ Global convergence theorems can be established

@ The weakness of Armijo-Goldstein conditions respect to Wolfe
conditions is that the former can exclude local minima's from
the step length as you can see in the figure below.

f(xy) + ac; VF
f(xx + apr)

(1) + aca V(@

@ Backtracking-Armijo line-search can be slow if a large number
of reduction must be performed to satisfy Armijo condition

@ A better performance is obtained if instead of reducing by a
fixed factor we use polynomial interpolation to estimate the
location of the minimum

© Assuming that that f(x;) and Vf(xy)py are known at the
first step we know also f(z + Apy) if A is the first trial step.

@ In this case a parabolic interpolation can be used to estimate
the minimum

@ If we store the last trial step length, in the successive iteration
we can use cubic interpolation to estimate the minima’s.

@ The resulting algorithm is in the following slides

5

54/ 64

Algorithm (
1: armijo_linesearch(f, z, p, T)
2 fo — f(z); Vo — Vf(z)p; A —1;
3: while A > \,,;,, do
4 fy — f(z + Ap);
53 if fy < fo + ATVfy then
6: return \ ; successful search
7: else
8; if A =1 then
9: Atmp — Vo / [2(fo + Vo —)]
10: else
11: Atmp — cubic(fo, Vo, fas A, fps Ap);
12: end if
13 Ap = A fp — i A range(Atmp, A/10,3/2);
14: end if
15: end while
16: return A, ; failed search &

Armijo Parabolic-Cubic search. |

Algorithms for line-search

Algorithm (Armijo Parabolic-Cubic search)

cubic(fo, Vo, fas Ay Fs Ap)
Evaluate:

2!
2

R

a\ _ 1 AN
b) A x) \-x A \f

27: if a = 0 then

28: return —Vfy/(20);

29: else

30 d—b*-3aViy

31 return (—b + Vd)/(3a);
32: end if

57/ 64

Armijo Parabs

fy—fo— AVF
» — fo — A Vfo
cubic is a quadratic

discriminant
legitimate cubic

rstrained minimization

17:
18:

22:

- else if A > b then

: end if

range(\, a, b)
if A < a then
return a;

return b;
else
return \ ;

© Wolfe linesearch is identical to the Armijo Parabolic-Cubic
search, until a point satisfying the first condition is found.

@ At this point the Armijo algorithm stop while Wolfe search try
@ If the step estimated is too short then is is enlarged until it

@ |If the step estimated is too long it is reduced until the second

to refine the search until the second condition is satisfied

contains a minimum

condition is satisfied

Wofe finesearch |

Algorithm (Wolfe linesearch)
1: wolfe_linesearch(f, x, p, c1, cz)
2 fo — f(z); Vfy — Vf(z)p; A 1;
3: while A > \,,;,, do

& fy—f(@+Ap);

53 if fy < fo + Ae1 Vi then

6 g0 to ZOOM; found a A satisfying condition 1
7: else

8; if A =1 then

9 Atmp — Vo/ [2(f0 + Vo —)]
10: else

11: Atmp — cubic(fo, Vo, fa, A, fp, Ap);

12: end if

13 Ap = A fp — i A range(Atmp, A/10,0/2);
14: end if

15: end while

16: return A, ; failed search &

Algorithm (Wolfe linesearch)

33: REFINE:

34 { Mo Floy Vi) — {AFas Vir} A = XAy — Aor
35: while A > ¢ do

36 0N A2V /[2(fio + VA —)]

37 A range(0),0.2A,0.84);

38: A Ao+ 06X fy — f(z+ Ap);

39: if fy < fo + Ae1 VA then

40: Vfy « Vf(z + A\p)p;

41 if Vfy > o Vf, then return); found Wolfe point!
2 {Nos fios Vio} — {0, Fa, VRLY A — A —4);

43: else

4 Do} — (LAY A < ox;

45: end if

46: end while
47: return \; failed search }

Algorithm (Wolfe linesearch)

17: ZOOM.

18: Vfy — Vf(z + Ap)p;

19: if Vfy > ¢oVfy then return \;
20: if A =1 then

found Wolfe point!

21: forward search of an interval bracketing a minimum

22: while A <)\, do

23 M B} = (MR} save values
24: A—2); fy —f(z+ Ap);

25: if not f\ < fy + A1V then

26: {Ap) = {\fa}; go to REFINE; swap values
27: end if

28: Vfy « Vf(z + Ap)p;

29: if Vfy > c2Vfy then return \; found Wolfe point!
30: end while

31: return Ay, ; failed search

32: end if 5‘

[@ J. Stoer and R. Bulirsch
Introduction to numerical analysis
Springer-Verlag, Texts in Applied Mathematics, 12, 2002

[B J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and
Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996

