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Quasi Newton Method

Algorithm (General quasi-Newton algorithm)

k « 0; x assigned; go = Vf(xo)T; Hy= V?f(xo)~!;
while || gi|| > € do
— compute search direction
di, = —Hygy,
Approximate argminy.f(xy + Ady) by linsearch;
— perform step
Sk = Ady;
Tiy1 = Tk + Sk;
gr1 = Vi(@e)'
Yx = Gk+1 — Gk,
— update Hj,
Hy 1= some,a/gorithm(Hk, Sk, yk) ;
k — k+1;
end while

5
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The symmetric rank one update

e Let By and approximation of the Hessian of f(x). Let oy,
Zi+1, gk and gi+1 points and gradients at k and k + 1-th
iterates. Using the Broyden update formula to force secant
condition to By we obtain

— Bysy)st
Bjy1 = By + (yk Tk k) k:’
Si. Sk
where sy = xp11 — xr and yr = gr+1 — gr. By using
Sherman—Morrison formula and setting Hy, = Bk_1 we obtain
the update:

(Hyy — sk)sy,
sts + st Hygri1

Hy, = Hy —

@ The previous update does not maintain symmetry. In fact if
Hj, is symmetric then Hy 1 not necessarily is symmetric. &
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The symmetric rank one update

@ To avoid the loss of symmetry we can consider an update of
the form:

Hy = Hy, +uu”
@ Imposing the secant condition (on the inverse) we obtain
Hiy 1y, = sk = Hyyy, + uu’y; = sy,
from previous equality
Y Hyyr + ypwu’ yp = yil sy =

yru = (yisp— ngkyk)1/2
we obtain
sy — Hyyr s — Hyyx
- ulye (yl'sk — yl Hyyy) 1/ &
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The symmetric rank one update

@ substituting the expression of u

s, — Hpyy

u= 1
(yl'sk — yl Hyyr)

/2

in the update formula, we obtain

wkwg

Hy = Hi + —
Wy Yk

wy, = s, — Hiyy

@ The previous update formula is the symmetric rank one
formula (SR1).

@ To be definite the previous formula needs w%yk #0.
Moreover if wgyk < 0 and Hjy, is positive definite then Hj
may loss positive definitiveness.

o Have Hj symmetric and positive definite is important for
global convergence &
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The symmetric rank one update

This lemma is used in the forward theorems

Lemma

Let be
1
q(x) = inAw —blx+ec

with A € R™*™ symmetric and positive definite. Then
Y = Gk+1 — Gk
= Axp,1 —b— Az + b
= Asy,

where g, = Vq(zi)?.

5
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The symmetric rank one update

Theorem (property of SR1 update)
Let be

1
q(x) = §wTAw bz +ec

with A € R™*"™ symmetric and positive definite. Let be xy and
H assigned. Let xj, and Hj, produced by

Q xi11 = + S/

@ Hj., updated by the SR1 formula

'wk'w
Hyp . = Hi + k wg = s — Hpyx
wk Yk
If sg, 81, ..., Sp—1 are linearly independent then H, = A~

5
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The symmetric rank one update

Proof. (1/2).
We prove by induction the hereditary property H;y,; = s; .

BASE: For i = 1 is exactly the secant condition of the update.
INDUCTION: Suppose the relation is valid for k£ > 0 the we prove
that it is valid for k£ + 1. In fact, from the update formula

T
Hp1y; = Hyyj + wi} Lwy, wy, = 8 — Hpyy
k

k

by the induction hypothesis for j < k and using lemma on slide 8
we have

wiy; = sty; — yi Hyyj = sLy; — yi s;
=y Ay; —y} Ay; =0

so that Hy1y; = Hyy; =s; for j=0,1,....,k—1. For j =k
we have Hj 1y, = Sj trivially by construction of the SR1 formula. &
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The symmetric rank one update

Proof. (2/2).
To prove that H,, = A~! notice that

H,y; = s, As; =yj, 7=0,1,...,n—1
and combining the equality
H, As; = s, 7=01,...,n—1

due to the linear independence of s; we have H, A = I i.e.
H,=A" O

5
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The symmetric rank one update

Properties of SR1 update

@ The SR1 update possesses the natural quadratic termination
property (like CG).
@ SRI1 satisfy the hereditary property Hyy; = s; for j < k.

© SR1 does maintain the positive definitiveness of Hj, if and
only if wgyk > 0. However this condition is difficult to
guarantee.

@ Sometimes wgyk becomes very small or 0. This results in
serious numerical difficulty (roundoff) or even the algorithm is
broken. We can avoid this breakdown by the following strategy

Breakdown workaround for SR1 update

0 if [wlyi| > €|lw]|| lykl (i.e. the angle between wy, and yy is far
from 90 degree), then we update with the SR1 formula.

@ Otherwise we set Hy 1 = Hj. &
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The symmetric rank one update

Properties of SR1 update

Theorem (Convergence of nonlinear SR1 update)

Let f(x) satisfying standard assumption. Let be {x}} a sequence
of iterates such that limy_. ., x = x.. Suppose we use the
breakdown workaround for SR1 update and the steps {sy} are
uniformly linearly independent. Then we have

Jim || H — V() || = 0.

[4 A.R.Conn, N.I.M.Gould and P.L.Toint
Convergence of quasi-Newton matrices generated by the
symmetric rank one update.
Mathematic of Computation 50 399-430, 1988.

5
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The Powell-symmetric-Broyden update
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The Powell-symmetric-Broyden update

@ The SR1 update, although symmetric do not have minimum
property like the Broyden update for the non symmetric case.

@ The Broyden update

Y — ApSy)st
A=A+ (T—)k
Sk Sk

solve the minimization problem
HAkJrl — AkHF < HA — Ak”F for all Ask = Yk

@ If we solve a similar problem in the class of symmetric matrix
we obtain the Powell-symmetric-Broyden (PSB) update

5
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The Powell-symmetric-Broyden update

Lemma (Powell-Symmetric-Broyden update)

Let A € R™™ ™ symmetric and s,y € R"™ with As # y. Consider
the set

B={BeR""|Bs=y, B=B"}
then there exists a unique matrix B € B such that
|A-=B|p<||A-C| g for all C € B

moreover B has the following form

T T T
ws sw 8s
é—(wTs)i w=y— As

B=A+ (sTs)2

sTs

then B is a rank two perturbation of the matrix A.

5
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The Powell-symmetric-Broyden update

Proof. (1/9).
First of all notice that B is not empty, in fact B satisfy Bs = y so
that the set is not empty. Next we reformulate the problem as a
constrained minimum problem:

1 n
argmin  — E (A;; — Bij)* subject to Bs =y and B = BT
BeRan 2 i,j:l

The solution is a stationary point of the Lagrangian:

g(B,A\, M) = *HA B|’F+}‘TBS_ +ZIU’U ij — Bji)
1<j
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The Powell-symmetric-Broyden update

Proof. (2/9).

taking the gradient we have

9(B, A, B) = Ajj — Bij + N\isj + M;; =0

831']'
where
pij i <j;
Mij = — i if ¢ > 7
0 If i = j.

The previous equality can be written in matrix form as

B=A+2xs" + M.

where M is an antisymmetric matrix.

R4
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The Powell-symmetric-Broyden update

Proof. (3/9).
Imposing the symmetry for B

A+AsT + M =AT + AT+ MT =A+sA\T - M

solving for M we have

M- sAT — xs”
2
substituting in B we have
T T
B— A+ EDN —;—)\s

5
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The Powell-symmetric-Broyden update

Proof. (4/9).

Imposing sT Bs = sT'y

sT As + sTsATs —;— sTAs”'s _ sTy N

A's = (sTw)/(sTs)

where w = y — As. Imposing Bs =y

AT AsT
Agy XatAsTs

next we compute the explicit form of B.

5
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The Powell-symmetric-Broyden update

Proof. it
Substituting
2w (sTw)s . sAT + AsT
A= — ——=% B=A+———
sTs  (sTs)? " + 2
we obtain
T T T
ws + sw T \ S8
B=A+ ——7p—— S)—— w=y— As
+ sl's ( )(STS)2 9
next we prove that B is the unique minimum.
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Proof. (6/9).

The matrix B is at minimum distance, in fact consider a
symmetric matrix C' which satisfy C's = y so that

w=y—As=(C—-A)s=Es where E=C - A,

substituting w with Es in B of slide N.16 and noticing that
ET = E we have

Ess’ + ss'E ssT
B-A=25%% T35 8 ((Tpe 55
sTs (" Es) (sT's)2

consider now the product (B — A)s which result in
(B—A)s=Es

so that

(B — A)s], = | Es], B




The Powell-symmetric-Broyden update

Proof. (7/9).

consider now the product (B — A)z where z is a vector
orthogonal to s (i.e z7's = 0) which result in

Ess” TE
(B—A)z = 58 ZS:}_SSS z_ (sTEs)

(sT's)?

so that using Frobenius norm

T

SS
I - A)2l, = |57 B2

S ‘
2

< [Ez], = [[(C - A)z]|,

T
SS
=5 et

5
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The Powell-symmetric-Broyden update

Proof. (8/9).

So that considering n othonormal vector {vi, v, ..., v,} with
v = s/ ||s||, we have

H(B_A)vk||2§H(C_A)vk||2v k=1,2,...,n

and using the properties of Frobenius norm

1B~ Al = ) _ (B~ Al
k=1

k=1
< |c - All;
i.e. we have |B — Al <||C — Al forall C € B. &
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The Powell-symmetric-Broyden update

Proof. (9/9).
Let B’ and B” two different minimum. Then (B’ + B") € B
moreover
A-twap| <lla-B|,+ia-B
2 s 2 Py F

If the inequality is strict we have a contradiction. From the
Cauchy—Schwartz inequality we have an equality only when
A — B’ =\ A — B”) so that

B -\B"=(1-))A
and

B's—AB"s=(1-\)As = (1-\Ny=(1-)\)As

cause As # y this is true only when A =1, i.e. B’ = B”. O &
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The Powell-symmetric-Broyden update

Algorithm (PSB quasi-Newton algorithm)

k«—0;
xo assigned; go « Vf(xzo)!; Bo «— V*f(x0);
while ||gy|| > € do
— compute search direction
d, = —B,;lgk; [solve linear system Bdy, = —gy]
Approximate argmin, . f(x; + ady) by linsearch;
— perform step
Tpi1 = Tp + ady;
— update By
gir1 = Vi(zpe)';

Wr = Gk+1 — Gk - aBkdkTZ gk;l + (= 1)gg;
diw; + wid d' wy,
B = B, + k k d dT,'
k+1 k odld, %
k — k+1;

end while &

v
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The Powell-symmetric-Broyden update

Algorithm (PSB quasi-Newton algorithm)

k 0,
x assigned; g «— Vf(x)T; B« V*(x);
while ||g|| > € do
— compute search direction
d — —B7lg; [solve linear system Bd = —g]
Approximate argmin . f(x + ad) by linsearch;
— perform step
T «— x+od;
— update By
— V@) +(a—1)g;
— Vi(z)T;
— (oszd)_l,'
-
-

dTw/oz;

B + (dw” + wd”) — vdd";
— k+1;
end while &
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The Davidon Fletcher and Powell rank 2 update
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The Davidon Fletcher and Powell rank 2 update

@ The SR1 and PSB update maintains the symmetry but do not
maintains the positive definitiveness of the matrix Hy 1. To
recover this further property we can try the update of the
form:

H,. = H;, + cuu® + pov’
@ Imposing the secant condition (on the inverse)
Hy 1y, = sk =
Hyyi + a(u’ yp)u + (o yp)v = sy -
a(uyr)u+ B(v" yr)v = s, — Hyys

clearly this equation has not a unique solution. A natural
choice for w and v is the following:

U = Sg v = Hyyy &
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The Davidon Fletcher and Powell rank 2 update

@ Solving for a and ( the equation

a(styr)sk + B(yi Hyyr) Hryr, = si — Hyyr

we obtain
1 1

o= —F— ﬁ = -
sty yl Hyyy,

@ substituting in the updating formula we obtain the Davidon
Fletcher and Powell (DFP) rank 2 update formula

T T
SES Hkyky Hk
Hpyy = Hy + 5 — ——F
81 Yk Y. Hiyy

@ Obviously this is only one of the possible choices and with
other solutions we obtain different update formulas. Next we
must prove that under suitable condition the DFP update
formula maintains positive definitiveness.

Quasi-Newton methods for minimization 30 / 62



The Davidon Fletcher and Powell rank 2 update

Positive definitiveness of DFP update

Theorem (Positive definitiveness of DFP update)

Given Hy, symmetric and positive definite, then the DFP update

T T
SKS Hkyky Hk

Hy1 = Hy + - — — 72k
S1. Yk Y. Hryy

produce Hy. 1 positive definite if and only if s;{yk: > 0.

Remark (Wolfe = DFP update is SPD)

Expanding s;fyk > 0 we have Vf(xyi1)sy > Vi(xy)sy -
Remember that in a minimum search algorithm we have s, = appy
with o, > 0. But the second Wolfe condition for line-search is
Vi(xy + arpr)pr > c2 VIi(xk)pr with 0 < ¢ < 1. But this imply:

Vf(aﬁk+1)8k > C2 Vf(:l?k)sk > Vf(mk)sk = S%yk > 0. &
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The Davidon Fletcher and Powell rank 2 update

Proof. (1/2).

Let be s y;, > 0: consider a z # 0 then

B HkykykTHk>z T, SkS;;Fz

yl Hyyy, I

zTHkHz =27 (Hk
SL Yk

(z" Hyyy) (yf Hy,z) n (2T s5)?

T
=z sz —
yi Hyyp, SL Yk

Hj. is SPD so that there exists the Cholesky decomposition
LL" = H,,. Defining a = Lz and b = LTy;, we can write

(a’a)(db) — (a'b)* (2 si)”

T _
z Hyz = bTb sty

from the Cauchy-Schwartz inequality we have
(aTa)(d"'b) > (a’b)? so that 2" Hy,, 12 > 0. &
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The Davidon Fletcher and Powell rank 2 update

To prove strict inequality remember from the Cauchy-Schwartz
inequality that (a”a)(b”b) = (a”b)? if and only if @ = \b, i.e.

LTz = \LTy, = z = \Yg
but in this case

s _ o (")

T
T T >0 = z " Hp112z > 0.
Sk Yk Sk Yk

Let be 2" H}, .1z > 0 for all z # 0: Choosing z = y;, we have

Ol

5
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The Davidon Fletcher and Powell rank 2 update

Algorithm (DFP quasi-Newton algorithm)

k «—0;
x assigned; g «— Vf(z)T;, H « V*f(z)~!;
while ||g|| > € do
— compute search direction
d — —Hg;
Approximate argmin, - f(x + ad) by linsearch;
— perform step
T — x+ad;
— update Hy
y — Vi) —g

z «— Hy;
g <« Vf(:r:)T,'
ddt  z2T
H— H —_— =
— —i—adTy P

kE «— k+1;
end while &

v
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The Davidon Fletcher and Powell rank 2 update

Theorem (property of DFP update)

Let be q(z) = 3(x — )T A(x — ) + ¢ with A € R™"
symmetric and positive definite. Let be xy and H assigned. Let
{xy} and {H}} produced by the sequence {sy}

Q xpi1 — T+ sk

T T
SiS Hkyky Hk
9 Hk+1<_ Hk + T k - T k ;
Si. Yk Y, Hiyg
where s, = aipr. with ay, is obtained by exact line-search. Then
for j < k we have

Q gls;=0; [orthogonality property]
Q@ Hy; =s;; [hereditary property]
Q sT'As;=0; [conjugate direction property]

Q The method terminate (i.e. Vf(xy,) = 0) at x,, = x, with
m <n. Ifn=m then H, = A~ L.

2
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The Davidon Fletcher and Powell rank 2 update

Proof. (1/4).

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for £ > 0. Due to
exact line search we have:

T
9i+15k =0

moreover by induction for j < k we have 91{+13j =0, in fact:
9ik+18; = 95 8 + Zi:j (gi+1—9i)" S;
k—1 .
=0+ Zi:j (A(@ir1 — z4) — Az — ) s;

= ZZ;(A(%H —x;))"s;

k—1
= E o sz-TAsj =0. [induction + conjugacy prop.] &
i=j
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The Davidon Fletcher and Powell rank 2 update

Proof. (2/4).
By using sy11 = —ag11Hii 1911 We have sfHAsj =0, in fact:
T 7
Sk+1A48; = —api1Gkp1 Hp (A — Ax)

= —op19ip1 Hir1(A(zj41 — o) — Az — )
= —ak+1glz+1Hk+1(gj+1 - g;)
= —apr1981 Hi1y;

= — Q117 115; [induction + hereditary prop.]

=0

5
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Proof. (3/4).

Due to DFP construction we have

Hy 1y = sg

by inductive hypothesis and DFP formula for j < k we have,
sfyj = szsj = 0, moreover

sksty;  Hiyey! Hry;
sty yi Hyyp

H, . ,y; = Hpy, +

sk0  Hyyryls;
sty yi Hoys

= s+ [Hyy; = s;]

e Hyyi(ge1 — gx)"s;
’ y} Hyyk

[y; = gj+1 — gj]

= a3 [induction + ortho. prop.] &

v
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The Davidon Fletcher and Powell rank 2 update

Proof. (4/4).
Finally if m = n we have s; with j = 0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on
slide 8

H, As;, = H,y;, = sy,
i.e. we have

HnAsk:Sk, k‘:O,l,...,TL—l

due to linear independence of {s;,} follows that H, = A1 O

V.

5
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

@ Another update which maintain symmetry and positive
definitiveness is the Broyden Fletcher Goldfarb and Shanno
(BFGS,1970) rank 2 update.

@ This update was independently discovered by the four authors.

@ A convenient way to introduce BFGS is by the concept of
duality.

@ Consider an update for the Hessian, say

By = U(By, sk, k)

which satisfy Bj.18, = yi (the secant condition on the
Hessian). Then by exchanging By = Hj, and s; = yj we
obtain the dual update for the inverse of the Hessian, i.e.

Hyy = U(Hy, Y, s1)

which satisfy Hy 1y = s (the secant condition on the
inverse of the Hessian). &
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

e Starting from the Davidon Fletcher and Powell (DFP) rank 2
update formula
skst  Hyyryl Hy,

Hy = Hi + -
St Yk vl Hyyp

by the duality we obtain the Broyden Fletcher Goldfarb and
Shanno (BFGS) update formula

T T
Yry Bksks Bk
By = By + St — Lk
Yj. Sk sy, Bysy,

@ The BFGS formula written in this way is not useful in the case
of large problem. We need an equivalent formula for the
inverse of the approximate Hessian. This can be done with a
generalization of the Sherman-Morrison formula.

5
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Sherman-Morrison-Woodbury formula

Sherman-Morrison-Woodbury formula permit to explicit write the
inverse of a matrix changed with a rank k perturbation

Proposition (Sherman—-Morrison—-Woodbury formula)

(A+Uvh)l=a"'—AU(I+VvTU) " 'vTA!

where

U:[ul,uz,...,uk] V:[vl,vg,...,vk]

The Sherman—Morrison—-Woodbury formula can be checked by a
direct calculation.

5
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Sherman-Morrison-Woodbury formula

The previous formula can be written as:

k
(A + Zuwf)_l —A - AlUCclvTA!
=1

where

CijZ(Sij—l—’UiT’U,j ,7=1,2,...,k

5

Quasi-Newton methods for minimization 44 / 62



The Broyden Fletcher Goldfarb and Shanno (BFGS) update
The BFGS update for H

By using the Sherman-Morrison-Woodbury formula the BFGS
update for H becomes:
Hyyys) + spyi Hy,
Hy = Hy — E_ s
S Yk
. . (4)
SkS Y Hiyk
SL Yk S Yk
Or equivalently
T T T
SkY YiS SkS
Hipo = (- 225 B, (1-228) 4 2% ()
S Yk S Yk S Yk
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Consider the Sherman-Morrison-Woodbury formula with £ = 2 and

Yk Bksk

ulzvlzi u2:_v2:7
(Sgyk)lﬂ (sz/yfsk)l/2

in this way (setting H), = B, ') we have

'
Ci1 = 1+v{u1 = 1+7ykT kYk
S Yk
g
s;. BLH;. Bys
Chy = 1—i—vgu2 — _wzl_lzo
sy, Bysy,
T yi Bysy, (sF Bysy,)'/?
Crz = vy up = (oTarN1/2(&T 172 = " (aTap\1/2
(8xYr)/*(s;, Brsy) (8 Yr)
Cor = v3 Uy = —C2 ) &
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (2/3).

In this way the matric C has the form

(B « 11 (0 -«
o=(L5) -6 F)

=1+ yi Hyyy, _ (sf Bysy,)/?
S Yk (sFyr)1/2

where setting U = H,U and V = H,V where
ﬁi:Hkui and @szvi i:1,2

we have

H,.,=H,-HUC'VTH,=H,-UC™'VT

1, _ o o 6 - -
= H (= 0L + o) — Sl
k+a( 105 + u2vy ) o2 42v2 &
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (3/3).
Substituting the values of «, 8, w's and ¥'s we have we have

T T
SiLS H
; A (1 ykT kyk>
S Yk S Yk

Hyyist + spyl Hy,

+
Sf’yk

Hyp, = Hy, —

At this point the update formula (B) is a straightforward
calculation. )
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Positive definitiveness of BFGS update

Theorem (Positive definitiveness of BFGS update)

Given Hy, symmetric and positive definite, then the BFGS update

T T T
S S SELS
Hk+1:<I— kyk)Hk<I—yk ’f)+ il

T T T
Sk Yk Sk Yk Sk Yk

produce Hy. 1 positive definite if and only if s;{yk: > 0.

Remark (Wolfe = BFGS update is SPD)

Expanding s;fyk > 0 we have Vf(xyi1)sy > Vi(xy)sy -
Remember that in a minimum search algorithm we have s, = appy
with o, > 0. But the second Wolfe condition for line-search is
Vi(xy + arpr)pr > c2 VIi(xk)pr with 0 < ¢ < 1. But this imply:

Vf(xpi1)se > co Vi(zg)sy > Vi(xp)s, = siyp > 0. &




The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Let be sgyk > 0: consider a z # 0 then

T o \2 T
z's S,z

zTHkHz = wTHk'w + (Tik) where w =z — yy; 7’3
Sk Yk Sk Yk

In order to have z” H},, 12 = 0 we must have w = 0 and

278, = 0. But 27s, = 0 imply w = z and this imply z = 0.

Let be 2" H}, 1z > 0 for all z # 0: Choosing z = y; we have

T,y )2
Sk Yk
0 < y{ Heayr = G Dy E g ST Yk
S Yk
and thus sfyk > 0. O

5
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Algorithm (BFGS quasi-Newton algorithm)

k0,
x assigned; g «— Vf(x)'; H « V?*f(xz)"!;
while ||g|| > € do
— compute search direction
d — —Hg;
Approximate argmin . f(x + ad) by linsearch;
— perform step
T «— T+ od;
— update Hy
y « Vi(@)" —g
z «— Hy/(d"y),
g «— Vf(az)T;
B (a+y'z)/(d"y),
H«— H — (z2d" +dz") + 3dd"’;
k — k+1;
end while &
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Theorem (property of BFGS update)

Let be q(z) = 3(x — )T A(x — ) + ¢ with A € R™"
symmetric and positive definite. Let be xy and H assigned. Let
{xy} and {H}} produced by the sequence {sy}

o L1 < Ty + Sk,

T T T
S S Si.S
S Yk S Yk S Yk

where s, = aipr. With ay, is obtained by exact line-search. Then
for j < k we have

Q gls;=0; [orthogonality property]
Q@ Hy; =s;; [hereditary property]
Q sT'As;=0; [conjugate direction property]

Q The method terminate (i.e. Vf(xy,) = 0) at x,, = x, with
m <n. Ifn=m then H, = A~ L.

2
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (1/4).

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for £ > 0. Due to
exact line search we have:

T
9i+15k =0

moreover by induction for j < k we have 91{+13j =0, in fact:
9ik+18; = 95 8 + Zi:j (gi+1—9i)" S;
k—1 .
=0+ Zi:j (A(@ir1 — z4) — Az — ) s;

= ZZ;(A(%H —x;))"s;

k—1
= E o sz-TAsj =0. [induction + conjugacy prop.] &
i=j

Quasi-Newton methods for minimization 53 / 62



The Broyden Fletcher Goldfarb and Shanno (BFGS) update

By using sy11 = —agr1Hp1gr11 We have sfHAsj =0, in fact:
T | Asj = — I Hy1(Azj — Ax))
Sk+148) = —Qk+19k+141k+1(ATj+1 L

= —ak+1gg+1Hk+1(A($j+l —x,) — A(z; — z,))
= —ps19i1 Hrv1(g541 — gj)

= —apr1981 Hr1y;

= —akﬂggﬂsj [induction + hereditary prop.]

=0

notice that we have used As; = y;.

5

Quasi-Newton methods for minimization 54 / 62



The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (3/4).
Due to BFGS construction we have

Hy 1y = si

by inductive hypothesis and BFGS formula for j < k& we have,
Ty =slAs; =0
SkYi = S A4S :

T T T
SkY S Yj SkSLY;
Hir1ys = (I_ sTy];)Hk (yj - s"?y;yk) - ST];kj
k k k
T
SkYp ) si0
= (I- Hyyj+ 7 —  [Hpy; = sj]
T
Y. Sj
= 8§ — 735‘, J Sk
r Yk

— 2
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (4/4).
Finally if m = n we have s; with j = 0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on
slide 8

H, As;, = H,y;, = sy,
i.e. we have

HnAsk:Sk, k‘:O,l,...,TL—l

due to linear independence of {s;,} follows that H, = A1 O

V.

5
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The Broyden class

Outline

@ The Broyden class

5
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The Broyden class

@ The BFGS update

_ Hyyrs), + sryg Hy N SkSL (1 n ykTHkyk>

FJBFGS i
k41 ¢ k T T T
SLYk Sk Yk Sk Yk

and DFP update

sksi _ Hyy,yl Hy,

HPHEY — Hy +
* 81 Yk yl Hyyy

maintains the symmetry and positive definitiveness.
@ The following update

HY., — (1— 0P + 0HPECS

maintain for any 6 the symmetry, and for 6 € [0, 1] also the
positive definitiveness.

5
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The Broyden class
Positive definitiveness of Broyden Class update

Theorem (Positive definitiveness of Broyden Class update)

Given Hy, symmetric and positive definite, then the Broyden Class
update

Hj, — (1-0)HZN" +0HPL™

produce H]‘ZH positive definite for any 0 € [0, 1] if and only if

sfyk. > 0.

5
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The Broyden class

Theorem (property of Broyden Class update)

Let be q(z)=3i(x—z)TA(x—z,)+c with A€ RV™
symmetric and positive definite. Let be xy and Hy assigned. Let
{xi} and {H}} produced by the sequence {sy}

QO Ty — T+ Sk

O HY,, — (1-0)HPEP + 6HPECS,

where s, = aipr. with ay, is obtained by exact line-search. Then
for j < k we have

Q gls;=0; [orthogonality property]
Q@ H,y; = s;; [hereditary property]
Q sI'As;=0; [conjugate direction property]

Q The method terminate (i.e. Vf(xy,) = 0) at &, = x, with
m <n. Ifn=m then H, = A~".

5
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The Broyden class

@ The Broyden Class update can be written as
ng+1 = HljészlP + Qwpwy
= Hi)l%% + (0 — Dwywy,

where

Sk chyk]

T 1/2

@ For particular values of 6 we obtain

@ 0 =0, the DFP update

@ 0 =1, the BFGS update

© 0=slyi/(sky — Hyyi)"yi the SR1 update

Q 0= (1% (y} Hyyx/styr)) ' the Hoshino update

B
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The Broyden class
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