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Quasi Newton Method

Algorithm (General quasi-Newton algorithm)

k « 0; xq assigned; go = Vf(xg)!;, Hy= V?f(xq)~L;
while ||gx|| > ¢ do
— compute search direction
di = —Hygy;
Approximate argminyf(xy + Ady) by linsearch;
— perform step
Sk = Apdy;
T+l = Tk + Sk,
git1 = Vi(xp)?,
Yo = Gk+1 — Gk,
— update Hy,
Hy = some_a/gorithm(Hk, Si, yk) ;
k — k+1;
end while
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The symmetric rank one update

@ Let By and approximation of the Hessian of f(x). Let oy,
Tk+1, g and gr1 points and gradients at £ and k 4 1-th
iterates. Using the Broyden update formula to force secant
condition to By we obtain

(yx — Bysk)si
Bk+1 — Bk‘ + T k )
Sk: Sk

where sy = g1 — xx and Y = gx+1 — gx- By using
Sherman—Morrison formula and setting Hy = Bk_1 we obtain
the update:

@ The previous update does not maintain symmetry. In fact if
Hj, is symmetric then H 1 not necessarily is symmetric. &
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The symmetric rank one update

@ To avoid the loss of symmetry we can consider an update of
the form:

Hy,, = Hy + uu’
@ Imposing the secant condition (on the inverse) we obtain
Hiy1yr = sk = Hyyy, + uu' y, = sy,
from previous equality
yr Hyyr + i uu’ yi = yj. s =
yru = (Y sk — yi Hyyy)
we obtain

sy — Hryr Sk — Hyyg
T o 1/2
w Yk (yF sk — yF Hyyr) Y 5.

u =
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The symmetric rank one update

@ substituting the expression of u

s — Hpy

u = 1
(yi'sk — yl Hyyy)

/2

in the update formula, we obtain
fwkwg

T
Wi Yk

H, ,=H;+ wy, = S, — Hiyy

@ The previous update formula is the symmetric rank one
formula (SR1).

@ To be definite the previous formula needs fw,{yk =+ 0.
Moreover if w,{yk < 0 and Hj, is positive definite then Hy
may loss positive definitiveness.

@ Have Hj; symmetric and positive definite is important for

global convergence %

The symmetric rank one update

This lemma is used in the forward theorems

Lemma

Let be

q(x) = %a:TAa: —blx +c

with A € R™ ™ symmetric and positive definite. Then
Ye = Gk+1 — Gk
= Az 1 —b— Axp + b
= Asy,

where g, = Vq(z)?!.

Quasi-Newton methods for minimization




The symmetric rank one update

Theorem (property of SR1 update)
Let be
1

q(x) = §$TA£B —blx +c

with A € R™ ™ symmetric and positive definite. Let be xy and
Hy assigned. Let x;, and Hy, produced by

Q Ty 1 = T + S,

@ Hj.., updated by the SR1 formula

T
(TR T
Hjy1 = Hy + kT i wy, = s — Hyyy,
W Yk
If 8o, S1, ..., Sn_1 are linearly independent then H,, = A~
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Proof. (1/2).

We prove by induction the hereditary property H;y; = s; .
BASE: For 7 = 1 is exactly the secant condition of the update.
INDUCTION: Suppose the relation is valid for £ > 0 the we prove
that it is valid for £ + 1. In fact, from the update formula

T

Hy1y; = Hyy; + § 2wy, wy, = s, — Hpyy

Wi Yk

by the induction hypothesis for j < k and using lemma on slide 8
we have

wiy; = sLy; — yr Hey; = sLY; — i S;

= y), Ay, — y; Ay; =0

sothat Hy,1y; = Hyy; =s; forj=0,1,...,k—1. For j =k
we have Hy. 1y = s trivially by construction of the SR1 formula. &
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The symmetric rank one update

Proof. (2/2).
To prove that H,, = A~! notice that

H,y; = sj, As; =y, 7=0,1,....n—1
and combining the equality
HnASjZSj, ij,l,...,n—l

due to the linear independence of s; we have H, A = I i.e.
H,=A"1 [

Be
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The symmetric rank one update

Properties of SR1 update

@ The SR1 update possesses the natural quadratic termination
property (like CG).
@ SR1 satisfy the hereditary property Hyy; = s; for j < k.

© SR1 does maintain the positive definitiveness of H}, if and
only if wkTyk > (. However this condition is difficult to
guarantee.

Q@ Sometimes w,{yk becomes very small or 0. This results in
serious numerical difficulty (roundoff) or even the algorithm is
broken. We can avoid this breakdown by the following strategy

Breakdown workaround for SR1 update

@ if |wiyk| > €||wl||llyxll (i-e. the angle between wy, and yj, is far
from 90 degree), then we update with the SR1 formula.

@ Otherwise we set Hy.1 = H. &
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The symmetric rank one update

Properties of SR1 update (2/2)

Theorem (Convergence of nonlinear SR1 update)

Let f(x) satisfying standard assumption. Let be {x;} a sequence
of iterates such that limy_.o, € = x,. Suppose we use the
breakdown workaround for SR1 update and the steps {s} are
uniformly linearly independent. Then we have

lim ||Hy— V()" = 0.

k—oo

[§ A.R.Conn, N.I.M.Gould and P.L.Toint
Convergence of quasi-Newton matrices generated by the
symmetric rank one update.
Mathematic of Computation 50 399-430, 1988.

Be
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The Powell-symmetric-Broyden update

@ The SR1 update, although symmetric do not have minimum
property like the Broyden update for the non symmetric case.

@ The Broyden update
(yr — Arsi)s;,

Ap+1 = Ak + 7
Sk Sk

solve the minimization problem
||Ak_|_1 _AkHF < ”A_AkHF for all ASk = Yk

@ If we solve a similar problem in the class of symmetric matrix
we obtain the Powell-symmetric-Broyden (PSB) update
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The Powell-symmetric-Broyden update

Lemma (Powell-Symmetric-Broyden update)

Let A € R™"™ symmetric and s,y € R"™ with As # y. Consider
the set

B={BeR""|Bs=y, B=B"}
then there exists a unique matrix B € B such that
|A—-B|p<||[A-C|g for all C € B
moreover B has the following form

T T T
ws® + sw T ss
B:A‘I— STS —(w S)m w:y—As

then B is a rank two perturbation of the matrix A.
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The Powell-symmetric-Broyden update

Proof. (1/9).
First of all notice that B is not empty, in fact B satisfy Bs = y so

that the set is not empty. Next we reformulate the problem as a
constrained minimum problem:

1 n
argmin = — Z (A;j — Bij)? subject to Bs =y and B = BT

BGRTLXTL ’L’j:]_

The solution is a stationary point of the Lagrangian:

g(B,A\, M) = —||A B||F+)‘TBS_ +Zﬂw ij — Bji)

1<J

Be

Proof. (2/9).
taking the gradient we have
0
0B - g(B,)\,B) = A@'j = Bij R )\isj =F Mij =0
ij
where
pij  if i <j;
Mz’j — —[ij if 2> g;
0 If 7+ = 7.

The previous equality can be written in matrix form as
B=A+Xs" + M.

where M is an antisymmetric matrix.
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The Powell-symmetric-Broyden update

Proof.
Imposing the symmetry for B

A+XAsT + M= AT + s AT+ MT = A+ AT - M

solving for M we have

M — sAT — XsT
2
substituting in B we have
AT 4+ AsT
B— A+ S —;— S

(3/9).
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Proof.

Imposing s’ Bs = s’y

sT As + sTsATs —;— sTAsT's _ Ty N

A's = (sTw)/(sTs)

where w = y — As. Imposing Bs =y

sATs + AsT's

2w (sTw)s
-~ sTs  (sTs)2

next we compute the explicit form of B.

(4/9).
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The Powell-symmetric-Broyden update

Proof. (5/9).
Substituting

2w (sTw)s _ sAT + As?

sTs (sTs)? " i 2
we obtain

T T T
ws® + sw T | SS
B=A+ Ts — (w 8>(3Ts)2 w=1y— As

next we prove that B is the unique minimum.

Be
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Proof. (6/9).

The matrix B is at minimum distance, in fact consider a
symmetric matrix C' which satisfy C's = y so that

w=y—As=(C—-A)s=FEs where E=C - A,

substituting w with Es in B of slide N.16 and noticing that
ET = E we have
Ess’ + ss'E ssT

B-A= — (s"E
sTs (s" Es) (sTs)?

consider now the product (B — A)s which result in
(B—A)s=Es
so that

|(B — A)s||, = | Es]|, £

v
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The Powell-symmetric-Broyden update

Proof. (7/9).

consider now the product (B — A)z where z is a vector

orthogonal to s (i.e 27's = 0) which result in
Ess’z +ss'Ez T sslz
(B—A)z = T — (s" Es) (T5)°
T
ss
= T h*

so that using Frobenius norm

SST

sT

SST

Ez
sTs

<
2

(B = A)z|l, =

1Bz
F

va)

< [|Ez]y = [(C = A)z]|,

Be
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Proof. (8/9).

So that considering n othonormal vector {vy,vo, ..., v,} with
v1 = s/ ||s||, we have

||(B_A)vk7||2§H(C_A>’Uk‘|27 k:1727"'7n

and using the properties of Frobenius norm

n

1B~ Allp =) (B~ Al

k=1
< llc - Al
i.e. we have |B — Al <||C - A| forall CeB. &
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The Powell-symmetric-Broyden update

Proof. (9/9).
Let B’ and B” two different minimum. Then 1(B’ + B") € B
moreover
A- 1(3’+B~) <lja-B|,+1)a-B
) 2 F2 F

If the inequality is strict we have a contradiction. From the
Cauchy—Schwartz inequality we have an equality only when
A — B = \A — B”) so that

B — \B" = (I1-NA
and

B's—AB"s=(1-))As = (1-MNy=(1-))As

cause As # y this is true only when A =1, i.e. B’ = B”. O §
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Algorithm (PSB quasi-Newton algorithm)

k—0;
Lo assigned; go < Vf(ZB())T,' BO — VQf(wo),'
while ||g;|| > € do
— compute search direction
dp, = —Bk_lgk; [solve linear system Bdj, = —gy]
Approximate argmin, - f(xy + ady) by linsearch;
— perform step
Tpi1 = @ + ady,
— update By
grt1 = Vi(zrp)'

W = gk+1 — Gk ; @Bkdk;T: gk—Tf—l + (Oé - 1)9k;
drw; + wid d" w;
Bjyi1= B+ —= B dydl;
k+1 k ad;;pdk ka;,
k — k+1;

end while J &
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The Powell-symmetric-Broyden update

Algorithm (PSB quasi-Newton algorithm)

k<« 0;

x assigned; g « Vf(x)!; B« V*f(x);

while ||g|| > € do
— compute search direction
d — —Blg; [solve linear system Bd = —g]
Approximate argmin, - f(x + ad) by linsearch;
— perform step
r «— x+ad;
— update By,

— Vf(z)' + (a - 1)g;

Vi(x)T;

(ad’d)~!;

dTw/a;

B + ﬂ(dwT + wdT) — ~dd”;

— k+1;

end while §‘

v
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The Davidon Fletcher and Powell rank 2 update

@ The SR1 and PSB update maintains the symmetry but do not
maintains the positive definitiveness of the matrix Hy. 1. To
recover this further property we can try the update of the
form:

Hy ., = Hy+ auu’ + vaT

@ Imposing the secant condition (on the inverse)

Y

Hy 1y, = sg

4

Hiyi + a(u’yr)u + B(v yp)v = s
a(ulyp)u + B(vlyr)v = sy — Hyys

clearly this equation has not a unique solution. A natural
choice for u and v is the following:

u = Sy v = Hyyy §‘
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The Davidon Fletcher and Powell rank 2 update

@ Solving for o and (3 the equation

a(styr)sk + Byl Hyye) Hyye = sk — Hyyy,

we obtain

1 4 1
o = = ———-
st yk vyl Hyyx

@ substituting in the updating formula we obtain the Davidon
Fletcher and Powell (DFP) rank 2 update formula

T T
SKS Hyy,y, Hy

Hk—|—1 - Hk + T LA T k

Si. Yk v Hryx

@ Obviously this is only one of the possible choices and with
other solutions we obtain different update formulas. Next we
must prove that under suitable condition the DFP update
formula maintains positive definitiveness. &
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The Davidon Fletcher and Powell rank 2 update

Positive definitiveness of DFP update

Theorem (Positive definitiveness of DFP update)
Given H;, symmetric and positive definite, then the DFP update

T T
SES Hkyky Hk
Hyy = Hp + /% — K

sty yi Hyyy,

produce Hy | positive definite if and only if sfyk > 0.

A\

Remark (Wolfe = DFP update is SPD)

Expanding sgyk > 0 we have Vf(xgy1)sk > Vi(xy)sy .
Remember that in a minimum search algorithm we have s = o pg
with oy, > 0. But the second Wolfe condition for line-search is
Vi(xr + arpr)pr > co Vi(xg)pr with 0 < co < 1. But this imply:

Vi(xgi1)sg > co Vi(xg)sy > Vi(xg)sy = sfyk > 0. g
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Proof. (1/2).

Let be s/ y; > 0: consider a z # 0 then

H ' SiLS
ZTHk_HZ = ZT(Hk— k;!kyk k)Z+ZT '_IZ{: kz
v, Hiyx 81 Yk
T (z" Hyyr) (yf Hyz) | (27sp)?
=z Hpz — — + —=
y;. Hiyi i, Yk

Hj. is SPD so that there exists the Cholesky decomposition
LLT = H,,. Defining a = LTz and b = LT y;, we can write

(a’a)(b"b) — (a’'b)? N (zT's1,)?

T _
S b'b Sgyk

from the Cauchy-Schwartz inequality we have
(a’a)(b'b) > (a’'b)? so that 2zl H} 12 > 0. &

v
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The Davidon Fletcher and Powell rank 2 update

Proof. (2/2).
To prove strict inequality remember from the Cauchy-Schwartz
inequality that (a”a)(b”b) = (a’b)? if and only if @ = \b, i.e.

LTz =)Ly, = zZ = \yYg
but in this case

(27 s8)" _ 2 (Y sk)”

T
T T >0 = z " Hp 1z > 0.
S Yk SL Yk

Let be zTHkHz > () for all z # 0: Choosing z = y; we have

(yTSk;)z

i i
0 <y Hir1yr = —7 = Sk, Yk
SL Yk
) &

The Davidon Fletcher and Powell rank 2 update

Algorithm (DFP quasi-Newton algorithm)

k0,
x assigned; g «— Vf(x)!; H « V?f(x)~};
while ||g|| > € do
— compute search direction
d — —Hg;
Approximate argmin, . f(x + ad) by linsearch;
— perform step
r — x+ad;
— update Hy,
y — Vi(z)' —g

z «— Hy;
g «— Vf(x)T,
ddT zz27T
H— H — :
k «— k—+1;
end while

v
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The Davidon Fletcher and Powell rank 2 update

Theorem (property of DFP update)

Let be q(z)=3(z—z. )T A(x —x,) +c  with A € R™"
symmetric and positive definite. Let be xy and H( assigned. Let
{x} and {H}} produced by the sequence {s;}

Q i1 — T+ Sk

T T
SkS Hkyky Hk

@ Hyy1— Hp+ 5 — k2
S1. Yk v, Hryx

where s = aypir with ay is obtained by exact line-search. Then
for 3 < k we have

Q gls;=0; [orthogonality property]
Q@ Hy; = s;; [hereditary property]
Q siAs; =0; [conjugate direction property]
© The method terminate (i.e. Vf(x,,) = 0) at x,, = x, with
m<mn. Ifn=m then H, = A™1. &
Proof. (1/4).

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for £ > 0. Due to
exact line search we have:

g
9i+15k =0

moreover by induction for 5 < k we have g,{_Hsj =0, in fact:
7 7 =l T
k—1 T
=04+ Zi:j (Al — i) — Az — 1)) 85

= ZZ;(A(%H —x;))"s;

k—1
= Z,_, s; As; = 0. [induction + conjugacy prop.] &
=]
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The Davidon Fletcher and Powell rank 2 update

Proof. (2/4).
By using si+1 = —ag+1Hi+19x+1 We have s;fHAsj =0, in fact:
si4148) = —akr1G541 Her1(Azjp — Axg)

= —@k+1gg+1Hk+1(A(wj+1 —x,) — Alz; —z,))
= —Oék+191z+1Hk+1(9j+1 — gj)

T
= —Qk419k4+1 Hy 1y,

= —ozk+1g,z+1sj [induction + hereditary prop.]

=0

Be

Quasi-Newton methods for minimization 37 /62
The Davidon Fletcher and Powell rank 2 update

Proof. (3/4).

Due to DFP construction we have

Hy 1y, = sg

by inductive hypothesis and DFP formula for 5 < k we have,
sk Y; = Si, Asj = (, moreover

T T
spsiy;  Hpyry, Hyy;
Hyy; = Hyy + —F= — . ’

st yk vyl Hyyx
sk0  Hpyryl's;
= Sy T — [Hyy; = s5]
Si. Yk vyl Hyyx
Hyyi(ger1 — gr)’'s;
= 8j — ly; = gj+1 — g5l
T O
= 8 [induction + ortho. prop.] &
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The Davidon Fletcher and Powell rank 2 update

Proof. (4/4).
Finally if m = n we have s; with j =0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on
slide 8

H, As; = H,y;, = si
i.e. we have

HnASkZSk, kzO,l,...,n—l

due to linear independence of {s;} follows that H,, = A~1. ]

v
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

@ Another update which maintain symmetry and positive
definitiveness is the Broyden Fletcher Goldfarb and Shanno
(BFGS,1970) rank 2 update.

@ This update was independently discovered by the four authors.

@ A convenient way to introduce BFGS is by the concept of
duality.

@ Consider an update for the Hessian, say

Biy1 = U(Byg, Sk, Yi)

which satisfy Bj.18; = yi (the secant condition on the
Hessian). Then by exchanging By = Hj, and s = y; we
obtain the dual update for the inverse of the Hessian, i.e.

Hi 1« = U(Hy, yg, sk)

which satisfy Hy 1y, = si (the secant condition on the

inverse of the Hessian). &

The Broyden Fletcher Goldfarb and Shanno (BFGS) update

@ Starting from the Davidon Fletcher and Powell (DFP) rank 2
update formula
skst  Hyyryl Hy

H; ., = Hy + —
SL Yk vyl Hyyx

by the duality we obtain the Broyden Fletcher Goldfarb and
Shanno (BFGS) update formula

T T
YrY By sys;, By,
Bk—|—1 = B + = k. - k
Yy Sk 83 Bysy

@ The BFGS formula written in this way is not useful in the case
of large problem. We need an equivalent formula for the
inverse of the approximate Hessian. This can be done with a
generalization of the Sherman-Morrison formula.

B
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Sherman-Morrison-Woodbury formula

Sherman-Morrison-Woodbury formula permit to explicit write the
inverse of a matrix changed with a rank k£ perturbation

Proposition (Sherman—Morrison—Woodbury formula)

(A+uvh)l=al-A U +Vviu)T'via!

where

Uz[ul,u2,...,uk] VZ[’Ul,’UQ,...,’Uk]

The Sherman—Morrison—Woodbury formula can be checked by a
direct calculation.

Be
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Sherman-Morrison-Woodbury formula

The previous formula can be written as:
K ~1
(A +y uiviT) — Al A luclvTal
i=1

where

Cij =06y +viu; i,j=1,2,...k

B
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update
The BFGS update for H

By using the Sherman-Morrison-Woodbury formula the BFGS
update for H becomes:

Hyyisi + siyl Hy,
Sfyk
SkSt (1 N yZHkyk>

_|_
s}{yk Sfyk

Hy, = Hy —

Or equivalently

T T T
Hk+1:<I_3k:yk>Hk(I_ykSk;>+8kskz (B)

T T T
SLYk S Yk S Yk

o %
Quasi-Newton methods for minimization 45 / 62
The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (1/3).

Consider the Sherman-Morrison-Woodbury formula with £ = 2 and

Y ey — vy — By sy,
(.f;.‘gyk)l/2 (s%Bksk)l/2

in this way (setting H, = Bk_l) we have

Uy = v =

I'H
Ci1 = l—l—vlTul = 1—|——ykayk
S Yk
T
s;. BLH;.B,s
Cpp=1+viuy= BT FE 110
Sk: Bksk
Cl2 = vlTuQ = y’szSk — <S;€Bk8k>1/2
(spyr)'/2(sy Brse)'?  (sye)'/?
Cor = v3 Uy = —C12 ] &
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (2/3).

In this way the matric C' has the form

(B « 11 /0 -«
c-(Ls) -l F)

=1+ vyl Hyyy, _ (sf Bysi)'/?
Sk Yk (s ye)'/?

where setting U = H,U and V = H,V where
w; = Hyu; and v; = Hpv; 1=1,2

we have
H,,, = H,- HUC'VTH, = H, -UC~'VT

L, -~ ¥ 5
= Hy + a(—ulvg + ugvy ) — 2 U2

o

Be
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Substituting the values of «, (3, u's and v's we have we have

Hyyisi + syl Hy  sis) yl Hyyy
Hiy = Hy, — b b= R (14 2=
SL Yk SL Yk S Yk

At this point the update formula (B) is a straightforward
calculation.

Proof. (3/3).

)
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Positive definitiveness of BFGS update

Theorem (Positive definitiveness of BFGS update)

Given H;, symmetric and positive definite, then the BFGS update

S & ST SST
Hk:—l-l:(I_ kyk)Hk(I_yk k>+ ESy

T T T
Sk Yk S Yk S Yk

produce Hy_ | positive definite if and only if sfyk > 0.

Remark (Wolfe = BFGS update is SPD)

Expanding s;{yk > 0 we have Vf(xgy1)sk > Vi(xy)sy .
Remember that in a minimum search algorithm we have s = o pg
with oy, > 0. But the second Wolfe condition for line-search is
Vi(xr + arpr)pr > co Vi(xg)pr with 0 < co < 1. But this imply:

Vi(xgi1)sg > co Vi(xg)sy > Vi(xg)sy = sfyk > 0. &
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Let be s/ y; > 0: consider a z # 0 then

T o \2 T

z" S Sz
zTHkHz = wTka + u where w =z — yy k
o T

LYk Sk Yk

In order to have zTHk+1z = 0 we must have w = 0 and
zTs;, = 0. But 27s;, = 0 imply w = z and this imply z = 0.

Let be 2" H; 1z > 0 for all z # 0: Choosing z = y; we have

(STyk)Q
0 <yp Hip1yp = o = siyp
S Yk
and thus s%yk > 0. []

B

Quasi-Newton methods for minimization 50 / 62




The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Algorithm (BFGS quasi-Newton algorithm)

k<« 0;
x assigned; g « Vf(x)!; H « V?f(x)~};
while ||g|| > € do
— compute search direction
d — —Hg;
Approximate argmin, - f(x + ad) by linsearch;
— perform step
r «— x+ad;
— update Hy,
y « Vi@@)' —g;
z «— Hy/(d"y);
g « V(@)
B (a+y"z)/(d"y),
H«— H — (zd" +dz") + pdd’;

k «— k+1;
end while ) &

The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Theorem (property of BFGS update)

Let be q(z) =3(z—x. ) Az —x,) +c  with A € R™"
symmetric and positive definite. Let be xy and H assigned. Let
{x} and {H}} produced by the sequence {sj}

Q i1 — T+ Sk,

T T T

S S SLS
@ Hyp— (1- 22V m (1-220) 4 22k,
S Yk SLYk Sk Yk

where s, = apr Wwith ay is obtained by exact line-search. Then
for j < k we have

Q gls;=0; [orthogonality property]

Q@ H,y,; =sj, [hereditary property]

Q@ slAs;=0; [conjugate direction property]

© The method terminate (i.e. Vf(x,,) = 0) at x,,, = x, with
m<n. Ifn=m then H, = A~1. &

Quasi-Newton methods for minimization 52 / 62



The Broyden Fletcher Goldfarb and Shanno (BFGS) update
Proof. (1/4).

Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for £ > 0. Due to
exact line search we have:

T
9i.+18k = 0

moreover by induction for 5 < k we have g,zﬂsj =0, in fact:
i i =L 5
9i+15; = 9555 + Zi:j (gi+1—9i)" s;
k—1 -
=0+ Zi:j (A(xit1 — Tx) — AT —x4))" S

— Zf:_jl(A(wH_l = wi))TSj

k—1
= Z'_' s; As; = 0. [induction + conjugacy prop.] §‘
i=]

v
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Proof. (2/4).
By using si41 = —ag+1Hy 119541 we have s;j;_lAsj =0, in fact:
k41485 = —akp19i1 Her1 (Azjp — Azy)

= —Oék+191Z+1Hk+1(A(mj+1 - ) — Az — 24))
= —ak+1g§+1ﬂk+1(9g‘+1 — gj)

= —Oék+19/{+1Hk+1yj

_ —Oék+1QZ+13j [induction + hereditary prop.]

=0

notice that we have used As; = y;.
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The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Proof. (3/4).

Due to BFGS construction we have
Hy. 1y, = sk

by inductive hypothesis and BFGS formula for j < k we have,
s%yj = S%Asj =0,

T T T
SLY SLY; SESLY;j
Hy 1y, = (I— = k>Hk(yj_ gl jyk:)—l-—Tk !
SLYk S Yk S Yk
T
skyk,) s;.0
— (1- 29V By, + 2 [Hyy, = )]
( sty Siuk T
g
Y. Sj
= sj_séi JSk
LYk
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Proof. (4/4).
Finally if m = n we have s; with j =0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on
slide 8

H, As, = H,y;, = si
i.e. we have

HnASk:Sk, k:(),l,...,n—l

due to linear independence of {s;} follows that H,, = AL []

v
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The Broyden class
Outline

@ The Broyden class
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@ The BFGS update

BFGS

Hyyis) + spyi Hy N SkS} (1 N ngkyk>
Sgyk S Yk

and DFP update

T T
SLS Hkyky Hk
Hk,D+F1P <_Hk+ = k = k

S1. Yk Y. Hryx

maintains the symmetry and positive definitiveness.

@ The following update
Hy — (1= 0)HZL" + 0HZLCS

maintain for any 6 the symmetry, and for 6 € [0, 1] also the
positive definitiveness.
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The Broyden class

Positive definitiveness of Broyden Class update

Theorem (Positive definitiveness of Broyden Class update)

Given Hj, symmetric and positive definite, then the Broyden Class
update

ng+1 N (1 - ‘9) lgﬁp + 0H£+F1GS

produce ng+1 positive definite for any 0 € [0, 1] if and only if

T
v
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Theorem (property of Broyden Class update)

Let be q(z) =1(z—z. )T A(x —x,) +¢c  with A € R™"
symmetric and positive definite. Let be xy and H( assigned. Let

{x} and {H}} produced by the sequence {s;}
Q xp 1 — x + S,
@ Hy\,— (1—0)HZL" +0H O,

where s = aipr With ay is obtained by exact line-search. Then
for j < k we have

Q gls;=0; [orthogonality property]
Q@ Hy; = s;; [hereditary property]
Q sl As;=0; [conjugate direction property]

© The method terminate (i.e. Vf(x,,) =0) at x,, = x, with
m<n. Ifn=m then H, = A™1.
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The Broyden class

@ The Broyden Class update can be written as

0 DFP T
Hk:—l—l :Hk:—l-l +0'lU]€'lUk.
BFGS T
= H;’[777 + (0 — 1)wiwy,

where

1/2{ Sk Hiyy, }
sty yi Hyyy

@ For particular values of 6 we obtain
© 0 =0, the DFP update
@ 0 =1, the BFGS update
Q 0= sgyk/(sk — Hyyi) Ty, the SR1 update
Q 0= (1= (y/ Hyryr/styxr))"' the Hoshino update

Quasi-Newton methods for minimization
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