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‘Quasi-Newton methods for minimization

Algorithm (Ge

k «— 0; @ assigned: gy = V(o)
while ||gi|| > ¢ do
— compute search direction
di = —Hygy;
Approximate argmin,_ f(zy, + Ady) by linsearch;
— perform step

sk = ndps
Thtl = Tp+ Sk

i1 = V(@)

Yk = Gkt~ GkS

— update Hy,.;

Hi1= some_algorithm(Hy, s, yr);
k —k+1;

end while

i Newton Method

Outline

@ Quasi Newton Method

@ The symmetric rank one update




he symmetric rank one update.

o Let By and approximation of the Hessian of f(x). Let @y,
@41, gk and gp4q points and gradients at k and k + 1-th

iterates. Using the Broyden update formula to force secant
condition to By, we obtain

(yx — Bise)s].
Errs

Bj1 = By +

where s = @1 — @ and yj, = gry1 — gk By using

Sherman-Morrison formula and setting Hy. = By, ' we obtain
the update:

(Hyyx — si)st

st sy + s} Higiy

Hypy = Hy — Hy,

@ The previous update does not maintain symmetry. In fact if
Hj, is symmetric then Hj,.; not necessarily is symmetric.
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“The symmetic rank one update

o substituting the expression of u

— Hyyy

(v}

in the update formula, we obtain

B e
s — yi Hyyr)

]

Hppy = Hy+ —
Wi Yk

wy = sp — Hyyp

o The previous update formula is the symmetric rank one
formula (SR1).

o To be definite the previous formula needs w] yx # 0.
Moreover if w[yk < 0 and Hj, is positive definite then Hj.q
may loss positive definitiveness.

o Have Hj, symmetric and positive definite is important for
global convergence
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o To avoid the loss of symmetry we can consider an update of
the form:
Hy. = Hy +uu”
o Imposing the secant condition (on the inverse) we obtain

Hyyp = si = Hyyy, +uuly, = s

from previous equality
vl Hiy +yluwn yp =yl =

) . s
yiu= (yi's — yi Hoyr) '

we obtain
_ sk~ Hyye
uTyy

sk — Hiyr
(v!'sk — vl Hyyr)

72

%zTAz —blz+ec
with A € R™*" symmetric and positive definite. Then
Yk = Gk+1 — Gk
= Axp —b— Az +b
= Asj

where gj, = Va(a)T.




T

he symmetric rank one update.

Theorem (property of SR1 update)
Let be
1
q(x) = 5mTAz —blz+c

with A € R"™ " symmetric and positive definite. Let be xq and
H, assigned. Let @y, and H. produced by

Q Tpy1 =@k + 8K/

Q@ Hy, updated by the SRI formula
ww]

wly;

Hyyy = Hi + wy. = s — Hyyy

If 80, 81, ..., 8n—1 are linearly independent then H,, = A~
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metric rank one update

To prove that H,, = A~ notice that

Huyy; =s;, Asj=vy;, j=01..n—1
and combining the equality

=01

H,As; = s;.

due to the linear independence of s; we have H, A = I i.e
H,=A"

Proof. (

We prove by induction the hereditary property Hjy; = s;

BASE: For i = 1 is exactly the secant condition of the update.
INDUCTION: Suppose the relation is valid for k& > 0 the we prove
that it is valid for £ + 1. In fact, from the update formula

Yi

T,
w,
Hy.1y; = Hyy; + ﬁwA- wy = s — Hyy
i Yk

by the induction hypothesis for j < k and using lemma on slide 8
we have
wi'y; = sty; — yi Hyyj = siy; — ui's;
=yl Ay; —y{Ay; =0

sothat Hyy; = Hyyj = s; for j=0,1,....k— 1. Forj =k
we have Hjy ) = 8. trivially by construction of the SR1 formula.

perties of SR1 update

@ The SR1 update possesses the natural quadratic termination
property (like CG)

@ SRI satisfy the hereditary property Hyy; = s; for j < k

© SR1 does maintain the positive definitiveness of H, if and
only if w]'y; > 0. However this condition is difficult to
guarantee.

@ Sometimes w] 'y, becomes very small or 0. This results in
serious numerical difficulty (roundoff) or even the algorithm is
broken. We can avoid this breakdown by the following strategy

Breakdown workaround for SR1 update

@ if |wlyk| > e||w]|| |lykl| (i.e. the angle between wy and y; is far
from 90 degree), then we update with the SR1 formula

@ Otherwise we set Hj., = Hj.




Properties of SR1 update

Theorem (Convergence of nonlinear SR1 update)

Let f(x) satisfying standard assumption. Let be {x}} a sequence
of iterates such that limy_.. xj, = x,. Suppose we use the
breakdown workaround for SR1 update and the steps {sy} are
uniformly linearly independent. Then we have

lim ||Hy — V*(,)~"[| = 0.
k—o0

& A.R.Conn, N.I.M.Gould and P.L.Toint
Convergence of quasi-Newton matrices generated by the
symmetric rank one update.
Mathematic omputation 50 399-430, 1988.
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“The Powell-symmetric-Broyden update

o The SR1 update, although symmetric do not have minimum
property like the Broyden update for the non symmetric case.
o The Broyden update

solve the minimization problem
[[Aki1 = Aillp < A = Agllp  forall As =y

o If we solve a similar problem in the class of symmetric matrix
we obtain the Powell-symmetric-Broyden (PSB) update

@ The Powell-symmetric-Broyden update

Lemma (Powell-Symmetric-Broyden update)

Let A € R™™ symmetric and s,y € R" with As #y. Consider
the set

B={BeR"™"|Bs=y, B=B"}
then there exists a unique matrix B € B such that
|A-B|p<|A-Clp for all C € B
moreover B has the following form

551

(s"s)?

a e
B:AJFM,(WTS)
s's

w=y-As

then B is a rank two perturbation of the matrix A.




The Ponel-5y

First of all notice that B is not empty, in fact B satisfy Bs =y so
that the set is not empty. Next we reformulate the problem as a
constrained minimum problem:

n

1 P
argmin = 3 (4i; — By)?
argmin 5 3 (4= By

subject to Bs = y and B = BT
ij=1

The solution is a stationary point of the Lagrangian:

1 §
9(B,\, M) =5 | A= Bl + N (Bs —y) + > uj(Bij — Byi)

i<j

‘Quasi-Newton methods for minimization

metric-Broyden update

Imposing the symmetry for B
A+AsT + M =AT + AT + MT = A+ X" - M
solving for M we have

e AT — 2"

substituting in B we have

Proof.

where

taking the gradient we have

The previous equality can be written in matrix form as

where M is an antisymmetric matrix.

0 BB = Ay Byt hisy + My =0
9B;;

Hij ifi <j;
My =1 —pij ifi>ji
0 Ifi=3j.

B=A+Xs" + M.

where w =y — As. Imposing Bs =y

next we compute the explicit form of B.

To\T, T g7
s sA's+s'As's
Ay TIASIEATE ry

A = (sTw)/(s7's)

=

sATs +As”s
=

As

sTs  (sTs)?




The Pouell-symmetric-

Substituting

2w (sTw)s

W a
2w (s'w)s ; B-A4 s+ s
sTs  (sTs)? 2
we obtain
a o 7
ws' +sw T, 88
BoA+= = Wiy wov-4s

next we prove that B is the unique minimum
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Proof.

consider now the product (B — A)z where z is a vector

orthogonal to s (i.e z7's = 0) which result in
Ess'z+ss"Ez T 88Tz
(B-A)z = = —(s Es)W
T
sT's
so that using Frobenius norm
ss” ss?
B-A = ||==FE =& E.
L e e o
< [|B=, = [(C - A)z,

Proof.
The matrix B is at mi

mum distance, in fact consider a
symmetric matrix C' which satisfy C's = y so that

w=y—As=(C—-A)s=Es where E=C—-A,

substituting w with E's in B of slide N.16 and noticing that
E" = E we have

Ess” +ss"E - ss”
B-A=" """ _("Es)——
505 Cges) aosz

consider now the product (B — A)s which result in

(B—A)s=Es
so that

(B — A)s|l, = || Es||,

So that considering n othonormal vector {v;,vs,

.., vp} with
o1 = s/ [s]|, we have

(B = A)oll, < (C = A)vg|

by k=1,2,...,n

and using the properties of Frobenius norm

.
1B~ Al = > 1(B — A)will;

k=1

<Y IC - Aywli3
k=1

<|ic - Al3
i.e. we have |B —Allp < |C — Al forall CeB.




The Pouell-symmetric-

Proof.
Let B' and B" two different minimum. Then }(B' + B") € B
moreover
A-gB 4B <5lA- B+ gla- B
2 7 2 L) F

If the inequality is strict we have a contradiction. From the
Cauchy-Schwartz inequality we have an equality only when
A — B’ = \(A - B") so that

B —AB"=(1-)\)A
and

B's—)\B's=(1-)\)As = (1-Ay=(1-))As

cause As # y this is true only when A =1, i.e. B' = B'.
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Algorithm (PSB quasi-Newton algorithm
k—0;
 assigned: g «— Vf(z)
while ||g|| > ¢ do
— compute search direction
d « —B-lg; [solve linear system Bd = —g]
Approximate arg min, . f(@ + ad) by linsearch;
— perform step
x — x+ad;

T, B « V*(z);

— update By

w — V@) +(a—1)g;

g « Vi(@);

B — (adTd)%;

5 e dw/a;

B« B+ f(dw! +wdl) —~dd";

k — k+1;

end while

Algorithm (PSB quasi-Newton algorithm

k< 0;
x assigned: gy — Vf(zo)"; By — Vf(xp);
while ||gi|| > € do
— compute search direction
dy = —B;lgk, [solve linear system Bdy. = —gy.]
Approximate argmin,, - f(xx + ody) by linsearch;
— perform step
Tpy1 = X + ady;
— update Byy
Gk = Vi(@en)T;
= gki1 — Gk — aBidy, = g1 + (o — 1)gi/

Wi
diw! +wid!  dTwy
Bjs1= B+ —E -k dydf;
k41 ke ad{,dk = k
ko« k+1;
end while

@ The Davidon Fletcher and Powell rank 2 update




The Davidon Fletcher and Powel rank 2 update |

o The SR1 and PSB update maintains the symmetry but do not
maintains the positive definitiveness of the matrix Hy.;. To
recover this further property we can try the update of the
form:

Hjyy = Hy + auu” + oo’
o Imposing the secant condition (on the inverse)
Hi 1y, = sk =
Hyyy + a(ulyp)u+ B yp)v = sp =
a(u"ypu+ "y = s — Hyye

clearly this equation has not a unique solution. A natural
choice for u and v is the following:

u= s v = Hyyy
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“The Davidon Fletcher and Powell rank 2 updat

Positive definitiveness of DFP update

Theorem (Positive definitiveness of DFP update)
Given H}, symmetric and positive definite, then the DFP update

sesl Hyyy! Hi

styk yi Hiy,

Hyyy = Hy +

produce Hj. positive definite if and only if s} y;. > 0.

Remark (Wolfe = DFP update is SPD)

Expanding sy > 0 we have Vf(zii1)sk > Vi(@y)sy -

R ber that in a minir search i we have s = aipy
with . > 0. But the second Wolfe condition for line-search is
Vf(@k + axpr)pr > 2 VE(ax)pr with 0 < c; < 1. But this imply:

Vi(@pi1)sk > 2 Vi(xy)sy > Vi(zr)sy = sty >0.

o Solving for a and 3 the equation

alstyr)sk + Byl Hiye) Hyyr = si — Hyyy
we obtain

1 ) 1

=— B=———
Sty yl Hiy
o substituting in the updating formula we obtain the Davidon
Fletcher and Powell (DFP) rank 2 update formula
sesp Hpyry! H

slyk yl Hyys

Hypy = Hy +

@ Obviously this is only one of the possible choices and with
other solutions we obtain different update formulas. Next we
must prove that under suitable condition the DFP update
formula maintains positive definitiveness.

Let be 57y, > 0: consider a z # 0 then
Hy,yl Hy, i
THyz = 2" (Hk . — k)z I 9
Y Hyyr SLYk
(2" Hyyy) (yf Hyz) " (27s1)?

T
=z Hpz—
Yyl Heyye sTyr

H;, is SPD so that there exists the Cholesky decomposition
LL"” = Hy. Defining a = LTz and b = LTy, we can write
T THY _ (aTh)2 T o )2

ST Hyz = (a’a)(®") — (a’b)?  (2Tsk)

[0 sTyr

from the Cauchy-Schwartz inequality we have
(a”a)(b7b) > (a”b)? so that 2T Hy 12 > 0.




The Davidon Fletcher and Powel rank 2 update |

Proof.

To prove strict inequality remember from the Cauchy-Schwartz
inequality that (a”a)(b7b) = (a7b)? if and only if @ = Ab, i.e.

LTz =)Ly, = z =AYk

but in this case

T 2 T 2
Eo _ pWsl o L g s

SAT-yA- Sfyk

Let be 27 Hy 1z > 0 for all z # 0: Choosing z = yj, we have

T
0 < y{ Hipaye = T Sk Yk
&
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T

jdon Fletcher and Powel rank 2 update

Theorem (property of DFP update)
Letbe q(a)=l(@—a)TA(@—a,)+c with Ac R
symmetric and positive definite. Let be xo and Hy assigned. Let
{4} and {Hy} produced by the sequence {si}

Q Tppy — Tyt Sk
Sksk  Hwywyl Hy
stk yl Hyy
where s;. = aypy with ay, is obtained by exact line-search. Then
for j < k we have

Q Hyy— Hi+

Q gl's;=0; [orthogonality property]

Q Hpy; =

Q sl As; =0

@ The method terminate (i.e. Vf(zm =0) at x,,, = x, with
m <n. Ifn=m then H, = A~!

[hereditary property]
[conjugate direction property]

k—0;
@ assigned; g — VIf(
while ||g|| > € do
— compute search direction
d — —Hg;
Approximate argmin,, . f(z + ad) by linsearch;
— perform step
z — z+ad;
— update Hj,
y — Vi) —g;
z «— Hy;
g — V()"

Proof. (
Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for k > 0. Due to
exact line search we have:

T
Gk418k =0

moreover by induction for j < k we have g, s; = 0, in fact:

9is) s+ Z (9v+\ g:)"
= o+z A(z,ﬂ —x,) - Az —x.))'s;
= Y (A@in - )

k=1 5
=Y slAs;=0. [induction + conjugacy prop]
i=j




The Davidon Fletcher and Powel rank 2 update |

By using s+1 = —agp1Hir1gkr1 we have s, As; =0, in fact:

Si4148) = —ai1Gi Hir1(Azji1 — A))

= —opi197 11 Hir1(A(@j1 — 22) — Az — )

7 )

= —1Gip1Hir1(gj41 — 9j)
T

= —api1G 1 Her1y;

41974185 [induction + hereditary prop.]
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“The Davidon Fletcher and Powell rank 2 update

Finally if m = n we have s; with j =0,1,...,n — 1 are conjugate
and linearly independent. From hereditary property and lemma on
slide 8

H,Asy, = Hyy = 81
i.e. we have
H, As = sy, k=0,1,..., n—1

due to linear independence of {s.} follows that H, = A~! ()

Due to DFP construction we have
Hip1yy = s
by inductive hypothesis and DFP formula for j < k we have,

e — ol g =
81.y; = sj, As;j = 0, moreover

Hyp1y; =

_ Hiyr(ger1 — g1)
yl Hiyy

[y; = gj+1 — 9]

=s; [induction + ortho. prop.]

@ The Broyden Fletcher Goldfarb and Shanno (BFGS) update




The Broyden Fletcher Goldfarb and Shanno (BFGS) update

o Another update which maintain symmetry and positive
definitiveness is the Broyden Fletcher Goldfarb and Shanno
(BFGS,1970) rank 2 update.

o This update was independently discovered by the four authors.

@ A convenient way to introduce BFGS is by the concept of
duality.

o Consider an update for the Hessian, say

By = U(By, sk, yk)

which satisfy By, 18 =y (the secant condition on the
Hessian). Then by exchanging Bj = Hj and s), = yj, we
obtain the dual update for the inverse of the Hessian, i.e.

Hyy = U(Hg, yr si)

which satisfy Hj. 1y, = si (the secant condition on the
inverse of the Hessian)

Sherman-Morrison-Woodbury formula permit to explicit write the
inverse of a matrix changed with a rank k perturbation

Proposition (Sherman—Morrison-Woodbury formula)

(A+UVh)yl=A AU +VID) VAT
where

U=[uguzow] V= (om0

The Sherman—Morrison-Woodbury formula can be checked by a
direct calculation.

o Starting from the Davidon Fletcher and Powell (DFP) rank 2
update formula

sisf Hyywyp Hy
slyk yl Hyye

Hyyy = Hy +

by the duality we obtain the Broyden Fletcher Goldfarb and
Shanno (BFGS) update formula

eyl Bisis[ By

By = B+

yl s sf Brsk

o The BFGS formula written in this way is not useful in the case
of large problem. We need an equivalent formula for the
inverse of the approximate Hessian. This can be done with a
generalization of the Sherman-Morrison formula

The previous formula can be written as:
L -1
(A+X unl) =at-avciviat
i=1

where

Cij=dij+vfu; i,j=12..k




Th " Fl o

The BFGS update for H

By using the Sherman-Morrison-Woodbury formula the BFGS
update for H becomes:
Hyyis! + syl Hy
Hi = Hy — kyksk;rswk k
shyk
, “
yi Hyy )
SAT»QIA»
Or equivalently
T T T
TS S, 88
Hy = (- 28 m (1- %255 1 2% (p)
81 Yk S Yk Sk Yk
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In this way the matric C has the form

_ (B «a 1
()
yi Hiy P (st Brsi)'?

SEyk (styp)!/?

where setting U= H,U and V= H.V where

B=1+

@ = Huu; and o= Hyw;,  i=12

we have

Hp, = H, - HUC 'V'H, = H,, - UC'VT

1, _ o 7 =
= Hi+ E(*“l"é + @B} — puzvé

The Broyden !

Proof. (

Consider the Sherman-Morrison-Woodbury formula with k& = 2 and

wmvr = — Yy gy DR
(stun)'/? (st Brs)'/?
in this way (setting Hy, = B;') we have
7
. Hiyi
o = 1+ ofuy = 14 Y7k
S Yk
J ! B.H; B,
O =1+ vfup = — Kok Eob 3¢
s, Bisk
Ci2 = v]'up Vi By (oL Bysi) /2
Cla = o] = ===
Ly (s] Brsy)'/? (syi)/?

@
Co1 = vy uy =-Ci

Substituting the values of o, 3, u's and ¥'s we have we have

Hiyysi, + siyi Hy o A <1 N ?!%‘ka)
STy STy stye

At this point the update formula (B) is a straightforward

calculation.

Hy1 = Hi, —




The Broyden Fletcher Goldfarb and Shanno (BFGS) update

Positive definitiveness of BFGS update

Theorem (Positive definitiveness of BFGS update)
Given H}, symmetric and positive definite, then the BFGS update

Sf’y{)Hk(I = M) +

T
83 Yk Sk Yk

sis)
T
SLYk

Fln = (1 -

produce H.. positive definite if and only if sl y;. > 0

Remark (Wolfe = BFGS update is SPD)

Expanding sTyy. > 0 we have Vf(zyi1)sy > Vi(ay)sy

R that in a minimum search algorithm we have s, = aypy,
with o, > 0. But the second Wolfe condition for line-search is
V(i + coxpr)pr = 2 V(xp)pr with 0 < ca < 1. But this imply:

Algorithm (BFGS quasi-Newton algorithm

k—0;
x assigned: g — Vf(z
while ||g|| > ¢ do
— compute search direction
d — —Hg;
Approximate argmin, o f(z + ad) by linsearch;
— perform step

T, H — V(z)"};

x — x+ad;

— update Hy,.

y — Vi@)" -g;
z « Hy/(d"y);
g « Vi(@)"

B — (a+y'2)/dy)
H«— H

(zd” +dz") + pdd"’;
k — k+1;
end while

V(zpi)se > c2 Vi(zp)sp > Vi(ze)se = sty > 0. ‘i
[L_QuasiNewion methods forminimizatin _______ L _w/al

The Broyde

Let be 5.y > 0: consider a z # 0 then
T 2 1

- 2 2Tsy, Tz

2T Hyyz = w Hyw + EaF o w=5 P
i sty

In order to have 27 Hj.1z = 0 we must have w = 0 and
T

2Ts; = 0. But z7s;, = 0 imply w = z and this imply z = 0.
Let be 2" Hy. 1z > 0 for all z # 0: Choosing z = y; we have
(s ur)?
0 < yi Hipyr = 25 = sty
styk
and thus s7y; > 0. ]

Theorem (property of BFGS update)
Letbe q(a)=Li(@—a)TA(@—a,)+c with A cR"™"
symmetric and positive definite. Let be o and Hy assigned. Let
{ax} and {Hy} produced by the sequence {si}
Q iy — Tt Sy
T T i
SkYj; kS| SES)
Q@ Hyyi— <I— V) (1 B2y SR
S Yk Sk Yk 81 Yk
where s}, = ay,py, with ay, is obtained by exact line-search. Then
for j < k we have
@ gls;=0;
Q Hy; g [hereditary property]
Q s/ As; =0; [conjugate direction property]
@ The method terminate (i.e. Vf(zy) = 0) at @, = @, with
m < n. Ifn=m then H, = A™'. }

[orthogonality property]




Points (1), (2) and (3) are proved by induction. The base of
induction is obvious, let be the theorem true for k > 0. Due to
exact line search we have:
sk =0
moreover by induction for j < k we have g[ | s; =0, in fact:
i Iy =1 @
Gk115; = g 8 + ZL:/ (gi+1— i)' s;

—0+ z:(A(zH — ) — A(zi - z,))Ts;

_ (A@in —2)"s;

k-1
=X sTAs;=0. [induction + conjugacy prop.]

i,

Due to BFGS construction we have
Hiyr = sk

by inductive hypothesis and BFGS formula for j < k we have,
sTy; = sTAs; =0,

y e T
51y sty sisly
Hyy; = (I o )HA-(y, L ’yk) p ok
S Yk 81 Yk Sk Yk
v
skyk) 540
—(1- Huy+ 20 [Huy;=s))
(1= S B+ 7y =2
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By using sj41 = —ag1 Hip1gks1 we have sf, | As; =0, in fact:

si1As; = —axpigl Hipi(Az — Azy)
= —arngi Hiii (A — 20) — Az — )
= —o 19811 Hi1(9j+1 — )
= —arpigl Hiny;
= —ags1gfiys;  [induction + hereditary prop.]

=0

notice that we have used As; = y;.

Finally if m = n we have s; with j =0,1,..., n — 1 are conjugate
and linearly independent. From hereditary property and lemma on
slide 8

HyAsi = Hyyi = s

i.e. we have

H, Asj, = s,

0,1,...,n—1

due to linear independence of {s;} follows that H,, = A~'. o




@ The Broyden class

Theorem (Positive definitiveness of Broyden Class update)

Given H}, symmetric and positive definite, then the Broyden Class
update

HY.y (1= OHPE + 0HEESS
produce HY

positive definite for any 0 € [0, 1] if and only if
sty >0

@ The BFGS update

. Hyys] + syl He | sis)
HEFES — H, - & i Hi | sisi

Sﬁ Y SZ. Yk
and DFP update

HPFP H 4 sisl Hyyey! Hy
k ) TH,
stye  ylHiyk

725%

maintains the symmetry and positive definitiveness.
o The following update
Hiy o (- 0 HPEP + 0HEESS

maintain for any 6 the symmetry, and for 6 € [0, 1] also the
positive definitiveness.

Theorem (property of Broyden Class update)

Letbe q(@)=Li(w—a)TA(@—a,)+c with AcR™"
symmetric and positive definite. Let be o and Hy assigned. Let
(@} and {Hy} produced by the sequence {sy}

Q w1 — Tt Sy

Q@ H{, — (1-0)HPH" +60HPICS;

where sy, = aypy, with ay. is obtained by exact line-search. Then
for j < k we have

@ gls;j= [orthogonality property]
Q Hy; [hereditary property]
Q sfAs; =

[conjugate direction property]
@ The method terminate (i.e. Vf(zm) =0) at &, = @, with
m <n. Ifn=m then H, = A~L.




o The Broyden Class update can be written as

0 DFP vy
Hip = Hizy + Qwpwy [ J. Stoer and R. Bulirsch
_ pBFGS _ i Introduction to numerical analysis
= Heor™ + (0 = Dwgw Springer-Verlag, Texts in Applied Mathematics, 12, 2002

where [ J. E. Dennis, Jr. and Robert B. Schnabel

T 1/2[ Sk Hyy;. Numerical Methods for Unconstrained Optimization and
wi = (e Hiwe) | o~ o - Nonlinear Equations

siyr Y Hiye q
SIAM, Classics in Applied Mathematics, 16, 1996

o For particular values of 6 we obtain

© 0=0, the DFP update [@ Robert B. Schnabel
Q0= 1' the BFGS update Minimum Norm Symmetric Quasi-Newton Updates Restricted
@ 0= sTyr/(sx — Hiy) yi the SR1 update to Subspaces

Q@ 0= (1% (y] Hiye/s]yr)~" the Hoshino update Mathematics of Computation, 32. 1978
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