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The Nonlinear Least Squares Problem Introduction

An important class on minimization problem when
f : Rn 7→ R is the nonlinear least squares and takes the form:

f(x) =
1

2

m∑
i=1

Fi(x)
2, m ≥ n

When n = m finding the minimum coincide to finding the
solution of the non linear system F(x) = 0 where:

F(x) =
(
F1(x),F2(x), . . . ,Fn(x)

)T
Thus, special methods developed for the solution of nonlinear
least squares can be used for the solution of nonlinear
systems, but not the converse if m > n.
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The Nonlinear Least Squares Problem Introduction

Example

Consider the the following fitting model

M(x, t) = x3 exp(x1t) + x4 exp(x3t)

which can be used to fit some data. The model depend on the
parameters x = (x1, x2, x3, x4)

T . If we have a number of points

(tk, yk)
T , k = 1, 2, . . . ,m

we want to find the parameters x such that
1
2

∑m
k=1(M(x, tk)− yk)

2 is minimum. Defining

Fk(x) =M(x, tk)− yk, k = 1, 2, . . . ,m

then can be viewed as a non linear least squares problem.
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The Nonlinear Least Squares Problem Introduction

To solve nonlinear least squares problem, we can use any of
the previously discussed method. For example BFGS or
Newton method with globalization techniques.

If for example we use Newton method we need to compute

∇2f(x) = ∇2 1

2

m∑
i=1

Fi(x)
2 =

1

2

m∑
i=1

∇2Fi(x)
2

=
1

2

m∑
i=1

∇(2Fi(x)∇Fi(x))T

=

m∑
i=1

∇Fi(x)T∇Fi(x) +
m∑
i=1

Fi(x)∇2Fi(x)
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The Nonlinear Least Squares Problem Introduction

If we define

J(x) =


∇F1(x)
∇F2(x)

...
∇Fm(x)


then we can write

∇2f(x) = J(x)TJ(x) +

m∑
i=1

Fi(x)∇2Fi(x)

However, in practical problem normally J(x) is known, while
∇2Fi(x) is not known or impractical to compute.

Non linear Least Squares 6 / 18



The Nonlinear Least Squares Problem Introduction

A common approximation is given by neglecting the terms
∇2Fi(x) obtaining,

∇2f(x) ≈ J(x)TJ(x)

This choice can be appropriate near the solution if n = m in
solving nonlinear system. In fact near the solution we have
Fi(x) ≈ 0 so that the contribution of the neglected term is
small.

This choice is not good when near the minimum we have large
residual (i.e. ‖F(x)‖ is large) because the contribution of
∇2Fi(x) cant be neglected.
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The Nonlinear Least Squares Problem Introduction

From previous consideration applying Newton method to
∇f(x)T = 0, we have

xk+1 = xk −∇2f(xk)
−1∇f(xk)T

and when f(x) =
1

2
‖F(x)‖2:

∇f(x)T = J(x)F(x)

∇2f(x) = J(x)TJ(x) +

m∑
i=1

Fi(x)∇2Fi(x) ≈ J(x)TJ(x)

And using the last approximation we obtain the Gauss-Newton
algorithm.
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The Nonlinear Least Squares Problem Introduction

Notice that the approximate Newton direction

d = −
(
J(x)TJ(x)

)−1
J(x)F(x) ≈ −∇2f(x)−1∇f(x)T

is a descent direction, in fact

∇f(x)d = −∇f(x)
(
J(x)TJ(x)

)−1
∇f(x)T < 0

when J(x) is full rank.
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The Nonlinear Least Squares Problem Introduction

Algorithm (Gauss-Newton algorithm)

x assigned;
f ← F(x);
J ← ∇F(x)
while

∥∥JTf∥∥ > ε do
— compute search direction
d← −(JTJ)−1JTf ;
Approximate argminα>0 f(x+ αd) by linsearch;
— perform step
x← x+ αd;

end while
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The Levemberg–Marquardt step
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The Levemberg–Marquardt step

The Levenberg–Marquardt Method

Levenberg (1944) and later Marquardt (1963) suggested to use a
damped Gauss-Newton method:

d = −
(
J(x)TJ(x) + µI

)−1
∇f(x)T , ∇f(x)T = J(x)F(x)

1 for all µ ≥ 0 is a descent direction, in fact

∇f(x)d = −∇f(x)
(
J(x)TJ(x) + µI

)−1
∇f(x)T < 0

2 for large µ we have d ≈ − 1
µ∇f(x)

T the gradient direction.

3 for small µ we have d ≈ −(J(x)TJ(x))−1∇f(x)T the
Gauss-Newton direction
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The Levemberg–Marquardt step

1 The choice of parameter µ affect both size and direction of
the step

2 Levenberg–Marquardt becomes a method without line-search.

3 As for Trust region each step (approximately) solve the
minimization of the model problem

min m(x+ s) = f(x) +∇f(x)s+
1

2
sTH(x)s

where H(x) = J(x)TJ(x) + µI is symmetric and positive
definite (SPD).

4 H(x) is SPD and the minimum is

s = −H(x)−1g(x), g(x) = ∇f(x)T
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The Levemberg–Marquardt step

Algorithm (Generic LM algorithm)

x, µ assigned; η1 = 0.25; η2 = 0.75; γ1 = 2; γ2 = 1/3;
f ← F(x); J ← ∇F(x);
while ‖f‖ > ε do

s ← argmin m(x+s) = 1
2 ‖f‖

2+fTs+ 1
2(J

TJ+µI)s;
pred ← m(x+ s)−m(x);
ared ← 1

2 ‖F(x+ s)‖2 − 1
2 ‖f‖

2;
r ← (ared/pred);
if r < η1 then

x← x; µ← γ1µ; — reject step, enlarge µ
else
x← x+ s; — accept step
if r > η2 then
µ← γ2µ; — reduce µ

end if
end if

end while
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The Levemberg–Marquardt step

Let r the ratio of expected and actual reduction of a step a faster
strategy for the µ update is the following

Algorithm (Generic LM algorithm)

if r > 0 then

µ← µmax

{
1

3
, 1− (2r − 1)3

}
ν ← 2

else
µ← µ ν;
ν ← 2 ν;

end if

H.B. Nielsen
Damping Parameter in Marquardt’s Method
IMM, DTU. Report IMM-REP-1999-05, 1999.
http://www.imm.dtu.dk/~hbn/publ/TR9905.ps
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The Dog-Leg step

The Dog-Leg step

As for the Thrust Region method we have 2 searching direction:
One is the Gauss-Newton direction (when µ = 0)

dGN = −
(
J(x)TJ(x)

)−1
∇f(x)T , ∇f(x)T = J(x)F(x)

and the gradient direction (when µ =∞)

dSD = −∇f(x)T = −J(x)TF(x),

to be finished!
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The Dog-Leg step
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