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The problem to solve

Problem

Given F : D ⊆ Rn 7→ Rn
Find x? ∈ D for which F(x?) = 0.

Example

Let

F(x) =

(
x 2
1 + x 3

2 + 7
x1 + x2 + 1

)
which has F(x?) = 0 for x? = (1,−2)T .
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The Newton Raphson
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The Newton Raphson The Newton procedure

The Newton procedure (1/3)

Consider the following map

F(x) =

(
x 2
1 + x 3

2 + 7
x1 + x2 + 1

)
we known an approximation of a root x0 ≈ (1.1,−1.9)T .

Setting x1 = x0 + p we obtain 1

F(x0 + p) =

(
1.351
0.2

)
+

(
2.2 10.83
1 1

)(
p1
p2

)
+ ~O(‖p‖2)

if x0 is a good approximation of a root of F(x) then ~O(‖p‖2)
is a small vector.

1Here ~O(x) means (O(x), . . . ,O(x))T
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The Newton Raphson The Newton procedure

The Newton procedure (2/3)

Neglecting ~O(‖p‖2) and solving(
1.351
0.2

)
+

(
2.2 10.83
1 1

)(
p1
p2

)
= 0

we obtain p = (−0.094438,−0.105562)T .

Now we set

x1 = x0 + p =

(
1.005562
−2.0055612

)
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The Newton Raphson The Newton procedure

The Newton procedure (3/3)

Considering

F(x1 + q) =

(
−0.05576
8 10−7

)
+

(
2.0111 12.0668

1 1

)(
q1
q2

)
+ ~O(‖q‖2)

Neglecting ~O(‖q‖2) and solving(
−0.05576
8 10−7

)
+

(
2.0111 12.0668

1 1

)(
q1
q2

)
= 0

we obtain q = (−0.0055466, 0.0055458)T .

Now we set x2 = x1 + q = (1.000015,−2.000015)T
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The Newton Raphson The Newton procedure

The Newton procedure: a modern point of view (1/2)

The previous procedure can be resumed as follows:

1 Consider the following function F(x). We known an
approximation of a root x0.

2 Expand by Taylor series

F(x) = F(x0) +∇F(x0)(x− x0) + ~O(‖x− x0‖2)

3 Drop the term ~O(‖x− x0‖2) and solve

0 = F(x0) +∇F(x0)(x− x0)

Call x1 this solution.

4 Repeat 1− 3 with x1, x2, x3, . . .
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The Newton Raphson The Newton procedure

The Newton procedure: a modern point of view (2/2)

Algorithm (Newton iterative scheme)

Let x0 assigned, then for k = 0, 1, 2, . . .

1 Solve for pk:

∇F(xk)pk + F(xk) = 0

2 Update

xk+1 = xk + pk
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The Newton Raphson Standard Assumptions

Standard Assumptions

In the study of convergence of numerical scheme, some standard
regularity assumption are assumed for the function F(x).

Assumption (Standard Assumptions)

The function F : D ⊂ Rn 7→ Rn is continuous, differentiable with
Lipschitz derivative ∇F(x). i.e.

‖∇F(x)−∇F(y)‖ ≤ γ ‖x− y‖ ∀x,y ∈ D ⊂ Rn

Lemma (Taylor like expansion)

Let F(x) satisfy the standard assumptions, then

‖F(y)− F(x)−∇F(x)(y − x)‖ ≤ γ

2
‖x− y‖2 ∀x,y ∈ D ⊂ Rn
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The Newton Raphson Standard Assumptions

Proof.

From basic Calculus:

F(y)− F(x) =

∫ 1

0
∇F(x+ t(y − x))(y − x) dt

subtracting on both side ∇F(x)(y − x) we have

F(y)− F(x)−∇F(x)(y − x) =∫ 1

0

[
∇F(x+ t(y − x))−∇F(x)

]
(y − x) dt

and taking the norm

‖F(y)− F(x)−∇F(x)(y − x)‖ ≤
∫ 1

0
γt ‖y − x‖2 dt
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The Newton Raphson Standard Assumptions

Lemma (Jacobian norm control)

Let F(x) satisfying standard assumptions, and ∇F(x?) non
singular. Then there exists δ > 0 such that for all ‖x− x?‖ ≤ δ
we have

2−1 ‖∇F(x)‖ ≤ ‖∇F(x?)‖ ≤ 2 ‖∇F(x)‖

and

2−1
∥∥∇F(x)−1∥∥ ≤ ∥∥∇F(x?)−1∥∥ ≤ 2

∥∥∇F(x)−1∥∥
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The Newton Raphson Standard Assumptions

Proof. (1/3).

From standard assumptions choosing γδ ≤ 2−1 ‖∇F(x?)‖

‖∇F(x)‖ ≤ ‖∇F(x)−∇F(x?)‖+ ‖∇F(x?)‖

≤ γ ‖x− x?‖+ ‖∇F(x?)‖

≤ (3/2) ‖∇F(x?)‖ ≤ 2 ‖∇F(x?)‖

again choosing γδ ≤ 2−1 ‖∇F(x?)‖

‖∇F(x?)‖ ≤ ‖∇F(x?)−∇F(x)‖+ ‖∇F(x)‖

≤ γ ‖x− x?‖+ ‖∇F(x)‖

≤ 2−1 ‖∇F(x?)‖+ ‖∇F(x)‖

so that 2−1 ‖∇F(x?)‖ ≤ ‖∇F(x)‖ .
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The Newton Raphson Standard Assumptions

Proof. (2/3).

From the continuity of the determinant there exists a neighbor
with ∇F(x) non singular for all ‖x− x?‖ ≤ δ.∥∥∇F(x)−1 −∇F(x?)−1∥∥

≤
∥∥∇F(x)−1∥∥ ‖∇F(x?)−∇F(x)‖ ∥∥∇F(x?)−1∥∥

≤ γ ‖x− x?‖
∥∥∇F(x)−1∥∥∥∥∇F(x?)−1∥∥

and choosing δ such that γδ
∥∥∇F(x?)−1∥∥ ≤ 2−1 we have∥∥∇F(x)−1 −∇F(x?)−1∥∥ ≤ 2−1

∥∥∇F(x)−1∥∥
and using this last inequality∥∥∇F(x?)−1∥∥ ≤ ∥∥∇F(x?)−1 −∇F(x)−1∥∥+ ∥∥∇F(x)−1∥∥

≤ (3/2)
∥∥∇F(x)−1∥∥ ≤ 2

∥∥∇F(x)−1∥∥
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The Newton Raphson Standard Assumptions

Proof. (3/3).

Using last inequality again∥∥∇F(x)−1∥∥ ≤ ∥∥∇F(x)−1 −∇F(x?)−1∥∥+ ∥∥∇F(x?)−1∥∥
≤ 2−1

∥∥∇F(x)−1∥∥+ ∥∥∇F(x?)−1∥∥
so that

2−1
∥∥∇F(x)−1∥∥ ≤ ∥∥∇F(x?)−1∥∥

choosing δ such that for all ‖x− x?‖ ≤ δ we have ∇F(x) non
singular and γδ ≤ 2−1 ‖∇F(x?)‖ and γδ

∥∥∇F(x?)−1∥∥ ≤ 2−1 then
the inequality of the lemma are true.
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The Newton Raphson Local Convergence of Newton method

Theorem (Local Convergence of Newton method)

Let F(x) satisfying standard assumptions, and x? a simple root
(i.e. ∇F(x?) non singular). Then, if ‖x0 − x?‖ ≤ δ with Cδ ≤ 1
where

C = γ
∥∥∇F(x?)−1∥∥

then, the sequence generated by Newton method satisfies:

1 ‖xk − x?‖ ≤ δ for k = 0, 1, 2, 3, . . .

2 ‖xk+1 − x?‖ ≤ C ‖xk − x?‖2 for k = 0, 1, 2, 3, . . .

3 limk 7→∞ xk = x?.

The point 2 of the theorem is the second q-order of
convergence of Newton method.
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The Newton Raphson Local Convergence of Newton method

Proof.

Consider a Newton step with ‖xk − x?‖ ≤ δ and

xk+1 − x? = xk − x? −∇F(xk)−1
[
F(xk)− F(x?)

]
= ∇F(xk)−1

[
∇F(xk)(xk − x?)− F(xk) + F(x?)

]
taking the norm and using Taylor like lemma

‖xk+1 − x?‖ ≤ 2−1γ ‖xk − x?‖2
∥∥∇F(xk)−1∥∥

from Jacobian norm control lemma there exist a δ such that
2
∥∥∇F(xk)−1∥∥ ≥ ∥∥∇F(x?)−1∥∥ for all ‖xk − x?‖ ≤ δ. Reducing

eventually δ such that γδ
∥∥∇F(x?)−1∥∥ ≤ 1 we have

‖xk+1 − x?‖ ≤ γ
∥∥∇F(x?)−1∥∥ δ ‖xk − x?‖ ≤ ‖xk − x?‖ ,

So that by induction we prove point 1. Point 2 and 3 follows
trivially.
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The Newton Raphson Globalizing the Newton procedure

The problem of Newton method is that it converge normally
only when x0 is near x? a root of the nonlinear system.

A way to make a more robust non linear solver is to use the
techniques developed for minimization to make a globally
convergent nonlinear solver.

In particular if we consider the merit function

f(x) =
1

2
‖F(x)‖2

we have that f(x) ≥ 0 and if x? is such that f(x?) = 0 than
we have that

1 x? is a global minimum of f(x);
2 F(x?) = 0, i.e. is a solution of the nonlinear system F(x).

So that finding a global minimum of the merit function f(x) is
the same of finding a solution of the nonlinear system F(x).
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The Newton Raphson Globalizing the Newton procedure

We can apply for example the gradient method to the merit
function f(x). This produce a slow method.

Instead, we can use the Newton method to produce a search
direction. The resulting method is the following

1 Compute the search direction by solving
∇F(xk)dk + F(xk) = 0;

2 Find an approximate solution of the problem
αk = argminα≥0 ‖F(xk + αdk)‖2;

3 Update the solution xk+1 = xk + αkdk.

The previous algorithm work if the direction dk is a descent
direction.
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The Newton Raphson Globalizing the Newton procedure

Is dk a descent direction? (1/2)

Consider the gradient of f(x) = (1/2) ‖F(x)‖2:

∂

∂xk
f(x) =

1

2

∂

∂xk
‖F(x)‖2 = 1

2

∂

∂xk

n∑
i=1

Fi(x)
2

=

n∑
i=1

∂Fi(x)

∂xk
Fi(x)

this can be written as

∇f(x) = F(x)T∇F(x)
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The Newton Raphson Globalizing the Newton procedure

Is dk a descent direction? (2/2)

Now we check −∇f(xk)dk:

−∇f(xk)dk = −F(xk)T∇F(xk)dk

= F(xk)
T∇F(xk)∇F(xk)−1F(xk)

= F(xk)
TF(xk)

= ‖F(xk)‖2 > 0

so that Newton direction is a descent direction.

Non-linear problems in n variable 21 / 68



The Newton Raphson Globalizing the Newton procedure

Is the angle from dk and −∇f(xk) bounded from π/2?
(2/2)

Let θk the angle form −∇f(xk) and dk, then we have

cos θk =
−∇f(xk)dk
‖∇f(xk)‖ ‖dk‖

=
‖F(xk)‖2

‖F(xk)T∇F(xk)‖ ‖∇F(xk)−1F(xk)‖

≥ ‖F(xk)‖2

‖∇F(xk)‖ ‖∇F(xk)−1‖ ‖F(xk)‖2

=
1

‖∇F(xk)‖ ‖∇F(xk)−1‖

so that, if for example ‖∇F(x)‖
∥∥∇F(x)−1∥∥ is bounded from

below then the angle θk is strictly less then π/2 radiants. By the
Zoutendijk theorem then the globalized Newton scheme is globally
convergent.
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The Newton Raphson Globalizing the Newton procedure

Algorithm (The globalized Newton method)

k ← 0; x assigned;
f ← F(x);
while ‖f‖ > ε do

— Evaluate search direction
Solve ∇F(x)d = F(x);
— Evaluate dumping factor λ
Approximate λ = argminα>0 ‖F(x− αdk)‖

2 by line-search;
— perform step
x← x− λd;
f ← F(x);
k ← k + 1;

end while
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The Broyden method

The Broyden method (1/5)

Newton method is a fast (q-order 2) numerical scheme to
approximate the root of a function F(x) but needs the
knowledge of the Jacobian ∇F(x).
Sometimes Jacobian is not available or too expensive to
compute, in this case a numerical procedure to approximate
the root which does not use derivative is mandatory.

The Newton scheme find successively the root of the affine
approximation

Lk(x)
.
= ∇F(xk)(x− xk) + F(xk) = 0

Substituting the Jacobian in the affine approximation by Ak

Mk(x)
.
= Ak(x− xk) + F(xk) = 0

and solving successively this affine model produces the family
of different methods:
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The Broyden method

The Broyden method (2/5)

Algorithm (Generic Secant iterative scheme)

Let x0 and A0 assigned, then for k = 0, 1, 2, . . .

1 Solve for pk:

Mk(pk + xk) = Akpk + F(xk) = 0

2 Update the root approximation

xk+1 = xk + pk

3 Update the affine model and produce Ak+1.
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The Broyden method

The Broyden method (3/5)

1 The way an update of Mk →Mk+1 determine the algorithm.

2 A simple update is the forcing of a number of the secant
relation:

Mk+1(xk+1−`) = F(xk+1−`), ` = 1, 2, . . . ,m

notice that Mk+1(xk+1) = F(xk+1) for all Ak+1.

3 If Ak+1 ∈ Rn×n and m = n and d` = xk+1−` − xk+1 are
linearly independent then we have enough linear relation to
determine Ak+1.

4 Unfortunately vectors d` tends to become linearly dependent
so that this approach is very ill conditioned.

5 A more feasible approach uses less secant relation and others
conditions to determine Mk+1.
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The Broyden method

The Broyden method (4/5)

1 The way an update of Mk →Mk+1 in Broyden scheme is the
following:

1 Mk+1(xk) = F(xk);
2 Mk+1(x)−Mk(x) is small in some sense;

2 The first condition imply

Ak+1(xk − xk+1) + F(xk+1) = F(xk)

which set n linear equation that do not determine the n2

coefficients of Ak+1.
3 The second condition become

Mk+1(x)−Mk(x) = (Ak+1 −Ak)(x− xk)

|||Mk+1(x)−Mk(x)||| ≤ |||Ak+1 −Ak||| |||x− xk|||

where |||·||| is some norm. The term |||x− xk||| is not
controllable, so a condition should be |||Ak+1 −Ak||| is
minimum.
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The Broyden method

The Broyden method (5/5)

1 Defining

yk = F(xk+1)− F(xk), sk = xk+1 − xk

the Broyden scheme find the update Ak+1 which satisfy:
1 Ak+1sk = yk;
2 |||Ak+1 −Ak||| ≤ |||B −Ak||| for all B such that Bsk = yk.

2 If we choose for the norm |||·||| the Frobenius norm ‖·‖F

‖A‖F =

( n∑
i,j=1

A2
ij

)1/2

then the problem admits a unique solution.
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The Broyden method The Frobenius matrix norm

The Frobenius matrix norm (1/4)

The Frobenius norm ‖·‖F

‖A‖F =

( n∑
i,j=1

A2
ij

)1/2

is a matrix norm, i.e. it satisfy:

1 ‖A‖F ≥ 0 and ‖A‖F = 0⇐⇒ A = 0;

2 ‖λA‖F = |λ| ‖A‖F ;

3 ‖A+B‖F ≤ ‖A‖F + ‖B‖F ;

4 ‖AB‖F ≤ ‖A‖F ‖B‖F ;

The Frobenius norm is the length of the vector A if we consider A
as a vector in Rn

2
.
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The Broyden method The Frobenius matrix norm

The Frobenius matrix norm (2/4)

The first two point of the Frobenius norm ‖·‖F are trivial, to prove
point 3 and 4 we need two classical inequality:

Cauchy–Schwartz inequality

n∑
i=1

aibi ≤
( n∑
i=1

a2
i

)1/2( n∑
i=1

b2i

)1/2

The inequality is strict unless ai = λbi for i = 1, 2, . . . , n.

Triangular inequality

( n∑
i=1

(ai + bi)
2

)1/2

≤
( n∑
i=1

a2
i

)1/2

+

( n∑
i=1

b2i

)1/2

The inequality is strict unless ai = λbi for i = 1, 2, . . . , n.

Non-linear problems in n variable 31 / 68



The Broyden method The Frobenius matrix norm

The Frobenius matrix norm (3/4)

Proof of ‖A+B‖F ≤ ‖A‖F + ‖B‖F .
By using triangular inequality

‖A+B‖F =

( n∑
i,j=1

(Aij + Bij)
2

)1/2

≤
( n∑
i,j=1

A2
ij

)1/2

+

( n∑
i,j=1

B2
ij

)1/2

= ‖A‖F + ‖B‖F .
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The Broyden method The Frobenius matrix norm

The Frobenius matrix norm (4/4)

Proof of ‖AB‖F ≤ ‖A‖F ‖B‖F .
By using Cauchy–Schwartz inequality with

‖AB‖F =

( n∑
i,j=1

( n∑
k=1

AikBkj

)2)1/2

≤
( n∑
i,j=1

( n∑
k=1

A2
ik

)( n∑
k′=1

B2
k′j

))1/2

=

(( n∑
i=1

n∑
k=1

A2
ik

)( n∑
j=1

n∑
k′=1

B2
k′j

))1/2

= ‖A‖F ‖B‖F .
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The Broyden method The solution of Broyden problem

With the Frobenius matrix norm it is possible to solve the following
problem

Lemma

Let A ∈ Rn×n and s,y ∈ Rn with s 6= 0. Consider the set

B =
{
B ∈ Rn×n |Bs = y

}
then there exists a unique matrix B ∈ B such that

‖A−B‖F ≤ ‖A−C‖F for all C ∈ B

moreover B has the following form

B = A+
(y −As)sT

sTs

i.e. B is a rank one perturbation of the matrix A.
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The Broyden method The solution of Broyden problem

Proof. (1/4).

First of all notice that B is not empty, in fact

1

sTs
ysT ∈ B

[
1

sTs
ysT

]
s = y

So that the problem is not empty. Next we reformulate the
problem as a constrained minimum problem:

argmin
B∈Rn×n

1

2

n∑
i,j=1

(Aij − Bij)
2 subject to Bs = y.

The solution is a stationary point of the Lagrangian:

g(B,λ) =
1

2

n∑
i,j=1

(Aij − Bij)
2 +

∑
i=1

λi

( n∑
j=1

Bijsj − yi

)
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The Broyden method The solution of Broyden problem

Proof. (2/4).

taking the gradient we have

∂

∂Bij
g(B,λ) = Aij − Bij + λisj = 0

∂

∂λi
g(B,λ) =

n∑
j=1

Bijsj − yj = 0

The previous equality can be written in matrix form

B = A+ λsT Bs = y

so that we can solve for λ

Bs = As+ λsTs = y λ =
y −As
sTs

next we prove that B is the unique minimum.
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The Broyden method The solution of Broyden problem

Proof. (3/4).

The matrix B is a minimum, in fact

‖B −A‖F =

∥∥∥∥A+
(y −As)sT

sTs
−A

∥∥∥∥
F

=

∥∥∥∥(y −As)sTsTs

∥∥∥∥
F

for all C ∈ B we have Cs = y so that

‖B −A‖F =

∥∥∥∥(Cs−As)sTsTs

∥∥∥∥
F

=

∥∥∥∥(C −A)
ssT

sTs

∥∥∥∥
F

≤ ‖C −A‖F

∥∥∥∥ssTsTs
∥∥∥∥
F

= ‖C −A‖F

because in general

∥∥uvT∥∥
F
=

( n∑
i,j=1

u2
i v

2
j

) 1
2

=

( n∑
i=1

u2
i

n∑
j=1

v2j

) 1
2

= ‖u‖ ‖v‖
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The Broyden method The solution of Broyden problem

Proof. (4/4).

Let B′ and B′′ two different minimum. Then 1
2(B

′ +B′′) ∈ B
moreover∥∥∥∥A− 1

2
(B′ +B′′)

∥∥∥∥
F

≤ 1

2

∥∥A−B′∥∥
F
+

1

2

∥∥A−B′′∥∥
F

If the inequality is strict we have a contradiction. From the
Cauchy–Schwartz inequality we have an equality only when
A−B′ = λ(A−B′′) so that

B′ − λB′′ = (1− λ)A

and

B′s− λB′′s = (1− λ)As ⇒ (1− λ)y = (1− λ)As

but this is true only when λ = 1, i.e. B′ = B′′.
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The Broyden method The solution of Broyden problem

1 The update

Ak+1 = Ak +
(yk −Aksk)s

T
k

sTk sk

satisfy the secant condition: Ak+1sk = yk and Ak+1 is the
nearest matrix in the Frobenius norm that satisfy the secant
condition.

2 Changing the norm we can have different results and in
general you can loose uniqueness of the update.
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The Broyden method

The Broyden method (1/2)

Algorithm (The Broyden method)

k ← 0; x0 and A0 assigned;
f0 ← F(x0);
while ‖fk‖ > ε do

Solve for sk the linear system Aksk + fk = 0;
xk+1 ← xk + sk;
fk+1 ← F(xk+1);
yk ← fk+1 − fk;

Update: Ak+1 ← Ak +
(yk −Aksk)s

T
k

sTk sk
;

k ← k + 1;
end while
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The Broyden method

The Broyden method (2/2)

Notice that yk−Aksk = fk+1−fk+fk so that the update can be
written as Ak+1 ← Ak + fk+1s

T
k /s

T
k sk and yk can be eliminated.

Algorithm (The Broyden method (alternative version))

k ← 0; x and A assigned;
f ← F(x);
while ‖f‖ > ε do

Solve for s the linear system As+ f = 0;
x← x+ s;
f ← F(x);

Update: A← A+
fsT

sTs
;

k ← k + 1;
end while
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The Broyden method

Broyden algorithm properties (1/2)

Theorem

Let F(x) satisfy the standard regularity conditions with ∇F(x?)
nonsingular. Then there exists positive constants ε, δ such that if
‖x0 − x?‖ ≤ ε and ‖A0 −∇F(x?)‖ ≤ δ, then the sequence {xk}
generated by the Broyden method is well defined and converge
q-superlinearly to x?, i.e.

lim
k→∞

‖xk+1 − xk‖
‖xk − x?‖

= 0

C.G.Broyden, J.E.Dennis, J.J.Moré
On the local and super-linear convergence of quasi-Newton
methods.
J. Inst. Math. Appl, 6 222–236, 1973.
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The Broyden method

Broyden algorithm properties (2/2)

Theorem

Let F(x) = Ax− b where A ∈ Rn×n. Then the Broyden method
converge in at most 2n steps.

Theorem

Let F : Rn 7→ Rn satisfy the standard regularity conditions with
∇F(x?) nonsingular. Then there exists positive constants ε, δ
such that if ‖x0 − x?‖ ≤ ε and ‖A0 −∇F(x?)‖ ≤ δ, then the
sequence {xk} generated by the Broyden method satisfy

‖xk+2n − x?‖ ≤ C ‖xk − x?‖2

D.M.Gay
Some convergence properties of Broyden’s method.
SIAM J. Numer. Anal., 16 623–630, 1979.
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The Broyden method

Reorganizing Broyden update

Broyden method needs to solve a linear system for Ak at each
step

This can be onerous in terms of CPU cost

it is possible to update directly the inverse of Ak i.e. it is
possible to update Hk = A

−1
k .

The update of Ak solve the problem of efficiency but do not
alleviate the memory occupation

The matrix Ak can be written as a product of simple matrix,
this can save memory if the update are lesser respect to the
system dimension.
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The Broyden method

Sherman-Morrison formula

Sherman-Morrison formula permit to explicit write the inverse of a
matrix changed with a rank 1 perturbation

Proposition (Sherman–Morrison formula)

(A+ uvT )−1 = A−1 − 1

α
A−1uvTA−1

where

α = 1 + vTA−1u

The Sherman–Morrison formula can be checked by a direct
calculation.
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The Broyden method

Application of Sherman-Morrison formula (1/2)

From the Broyden update formula

Ak+1 = Ak +
fk+1s

T
k

sTksk

By using Sherman–Morrison formula

A−1k+1 = A−1k −
1

βk
A−1k fk+1s

T
kA
−1
k

βk = sTk sk + s
T
kA
−1
k fk+1

By setting Hk = A
−1
k we have the update formula for Hk:

Hk+1 = Hk −
1

βk
Hkfk+1s

T
kHk

βk = sTk sk + s
T
kHkfk+1
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The Broyden method

Application of Sherman-Morrison formula (2/2)

The update formula for Hk:

Hk+1 = Hk −
1

βk
Hkfk+1s

T
kHk

βk = sTk sk + s
T
kHkfk+1

Can be reorganized as follows
1 Compute zk+1 =Hkfk+1;
2 Compute βk = sTk sk + s

T
k zk+1;

3 Compute Hk+1=
(
I − β−1

k zk+1s
T
k

)
Hk;
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The Broyden method

The Broyden method with inverse updated

Algorithm (The Broyden method (updating inverse))

k ← 0; x0 assigned;
f0 ← F(x0);
H0 ← I or better H0 ← ∇F(x0)

−1;
while ‖fk‖ > ε do

— perform step
sk ← −Hkfk;
xk+1 ← xk + sk;
fk+1 ← F(xk+1);
— update H
zk+1 ← Hkfk+1;
βk ← sTk sk + s

T
k zk+1;

Hk+1←
(
I − β−1k zk+1s

T
k

)
Hk;

k ← k + 1;
end while
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The Broyden method

If n is very large then the storing of Hk can be very expensive.

Moreover when n is very large we hope to find a good
solution with a number m of iteration with m≪ n

So that instead of storing Hk we can decide to store the
vectors zk and sk plus the scalars βk. With this vectors and
scalars we can write

Hk =
(
I − βk−1zksTk−1

)
· · ·
(
I − β1z2sT1

)(
I − β0z1sT0

)
H0

Assuming H0 = I or can be computed on the fly we must
store only 2nm+m real number instead of n2 saving a lot of
memory.

However we can do better. It is possible to eliminate zk ad
store only nm+m real numbers.
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The Broyden method

Elimination of zk (1/3)

1 A step of the broyden iterative scheme can be rewritten as

dk ← Hkfk

xk+1 ← xk − dk

fk+1 ← F(xk+1)

zk+1 ← Hkfk+1

Hk+1 ←
(
I +

zk+1d
T
k

dTk dk − dTk zk+1

)
Hk

2 you can notice that zk and dk are similar and contains a lot
of common information.

3 It is possible exploring the iteration to eliminate zk from the
update formula of Hk so that we can store the whole
sequence without the vectors zk.
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The Broyden method

Elimination of zk (2/3)

dk+1 =Hk+1fk+1 =

(
I +

zk+1d
T
k

dTk dk − dTk zk+1

)
Hkfk+1

=

(
I +

zk+1d
T
k

dTk dk − dTk zk+1

)
zk+1

= zk+1 +
zk+1d

T
k zk+1

dTk dk − dTk zk+1

=
dTk dk

dTk dk − dTk zk+1
zk+1

substituting in the update formula for Hk+1 we obtain

Hk+1 ←
(
I +

dk+1d
T
k

dTk dk

)
Hk
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The Broyden method

Elimination of zk (3/3)

Substituting into the step of the broyden iterative scheme and
assuming dk known

xk+1 ← xk − dk

fk+1 ← F(xk+1)

zk+1 ← Hkfk+1

dk+1 ←
dTk dk

dTk dk − dTk zk+1
zk+1

Hk+1 ←
(
I +

dk+1d
T
k

dTk dk

)
Hk

notice that xk+1, fk+1 and zk+1 are not used in Hk+1 so that
only dk and its length need to be stored.
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The Broyden method

Algorithm (The Broyden method (low memory usage))

k ← 0; x assigned;
f ← F(x); H0 ← ∇F(x)−1; d0 ←H0f ; `0 ← dT0 d0;
while ‖f‖ > ε do

— perform step
x← x− dk;
f ← F(x);
— evaluate Hkf
z ←H0f ;
for j = 0, 1, . . . , k − 1 do
z ← z +

[
(dTj z)/`j

]
dj+1;

end for
— update Hk+1

dk+1 ←
[
`k/(`k − dTk z)

]
z;

`k+1 ← dTk+1dk+1;
k ← k + 1;

end while
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The dumped Broyden method

Outline

1 The Newton Raphson

2 The Broyden method

3 The dumped Broyden method

4 Stopping criteria and q-order estimation
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The dumped Broyden method

Algorithm (The dumped Broyden method)

k ← 0; x0 assigned;
f0 ← F(x0); H0 ← ∇F(x0)

−1;
while ‖fk‖ > ε do

— compute search direction
dk ←Hkfk;
Approximate argminλ>0 ‖F(xk − λdk)‖

2 by line-search;
— perform step
sk ← −λkdk;
xk+1 ← xk + sk;
fk+1 ← F(xk+1);
yk ← fk+1 − fk;
— update Hk+1

Hk+1← Hk +
(sk −Hkyk)s

T
k

sTkHkyk
Hk;

k ← k + 1;
end while

Non-linear problems in n variable 55 / 68



The dumped Broyden method

Elimination of zk (1/5)

Notice that

Hkyk =Hkfk+1 −Hkfk = zk+1 − dk, and sk = −λkdk

and

Hk+1 ← Hk +
(sk −Hkyk)s

T
k

sTkHkyk
Hk

← Hk +
(−λkdk − zk+1 + dk)(−λkdTk )

−λkdTk (zk+1 − dk)
Hk

←
(
I +

(−λkdk − zk+1 + dk)d
T
k

dTk (zk+1 − dk)

)
Hk

←
(
I +

(zk+1 + (λk − 1)dk)d
T
k

dTk dk − dTk zk+1

)
Hk
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The dumped Broyden method

Elimination of zk (2/5)

A step of the broyden iterative scheme can be rewritten as

dk ← Hkfk

xk+1 ← xk − λkdk

fk+1 ← F(xk+1)

zk+1 ← Hkfk+1

Hk+1 ←
(
I +

(zk+1 + (λk − 1)dk)d
T
k

dTk dk − dTk zk+1

)
Hk
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The dumped Broyden method

Elimination of zk (3/5)

dk+1 = Hk+1fk+1

=

(
I +

(zk+1 + (λk − 1)dk)d
T
k

dTk dk − dTk zk+1

)
Hkfk+1

=

(
I +

(zk+1 + (λk − 1)dk)d
T
k

dTk dk − dTk zk+1

)
zk+1

= zk+1 +
(zk+1 + (λk − 1)dk)d

T
k zk+1

dTk dk − dTk zk+1

=
(dTk dk)zk+1 + (λk − 1)(dTk zk+1)dk

dTk dk − dTk zk+1
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The dumped Broyden method

Elimination of zk (4/5)

Solving for zk+1

zk+1 =
(dTk dk − dTk zk+1)dk+1 − (λk − 1)(dTk zk+1)dk

dTk dk

and substituting in Hk+1 we have

Hk+1 ←
(
I +

(zk+1 + (λk − 1)dk)d
T
k

dTk dk − dTk zk+1

)
Hk

←
(
I +

(dk+1 + (λk − 1)dk)d
T
k

dTk dk

)
Hk
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The dumped Broyden method

Elimination of zk (5/5)

Substituting into the step of the broyden iterative scheme and
assuming dk known

xk+1 ← xk − λkdk

fk+1 ← F(xk+1)

zk+1 ← Hkfk+1

dk+1 ←
(dTk dk)zk+1 + (λk − 1)(dTk zk+1)dk

dTk dk − dTk zk+1

Hk+1 ←
(
I +

(dk+1 + (λk − 1)dk)d
T
k

dTk dk

)
Hk

notice that xk+1, fk+1 and zk+1 are not used in Hk+1 so that
only dk and its length need to be stored.
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The dumped Broyden method

Algorithm (The dumped Broyden method)

k ← 0; x assigned;
f ← F(x); H0 ← ∇F(x)−1; d0 ←H0f ; `0 ← dT0 d0;
while ‖fk‖ > ε do

Approximate argminλ>0 ‖F(x− λdk)‖
2 by line-search;

— perform step
x← x− λkdk; f ← F(x);
—- evaluate Hkf
z ←H0f ;
for j = 0, 1, . . . , k − 1 do
z ← z +

[
(dTj z)/`j

](
dj+1 + (λj − 1)dj

)
;

end for
— update Hk+1

dk+1 ←
[
`kz + (λk − 1)(dTk z)dk

]
/(`k − dTk z);

`k+1 ← dTk+1dk+1;
k ← k + 1;

end while
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Stopping criteria and q-order estimation

Outline

1 The Newton Raphson

2 The Broyden method

3 The dumped Broyden method

4 Stopping criteria and q-order estimation
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Stopping criteria and q-order estimation

Stopping criteria for q-convergent sequences (1/2)

1 Consider an iterative scheme that produce a sequence {xk}
which converge to α with q-order p.

2 This means that there exists a constant C such that

|xk+1 − α| ≤ C |xk − α|p for k ≥ m

3 If limk 7→∞
|xk+1 − α|
|xk − α|p

exists and is say C we have

|xk+1 − α| ≈ C |xk − α|p for large k

4 We can use this last expression to obtain an error estimate for
the error and the values of p if unknown using the only known
values.
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Stopping criteria and q-order estimation

Stopping criteria q-convergent sequences (2/2)

1 If |xk+1 − α| ≤ C |xk − α|p we can write:

|xk − α| ≤ |xk − xk+1|+ |xk+1 − α|

≤ |xk − xk+1|+ C |xk − α|p

⇓

|xk − α| ≤
|xk − xk+1|

1− C |xk − α|p−1

2 If xk is so near the solution such that C |xk − α|p−1 ≤ 1
2 then

|xk − α| ≤ 2 |xk − xk+1|

3 This justify the stopping criteria

|xk+1 − xk| ≤ τ Absolute tolerance

|xk+1 − xk| ≤ τ max{|xk| , |xk+1|} Relative tolerance
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Stopping criteria and q-order estimation

Estimation of the q-order (1/3)

1 Consider an iterative scheme that produce a sequence {xk}
which converge to α with q-order p.

2 If |xk+1 − α| ≈ C |xk − α|p then the ratio:

log
|xk+1 − α|
|xk − α|

≈ log
C |xk − α|p

|xk − α|
= (p− 1) logC

1
p−1 |xk − α|

and analogously

log
|xk+2 − α|
|xk+1 − α|

≈ log
C1+p |xk − α|p

2

C |xk − α|p
= p(p− 1) logC

1
p−1 |xk − α|

3 From this two ratio we can deduce p as

log
|xk+2 − α|
|xk+1 − α|

/
log
|xk+1 − α|
|xk − α|

≈ p
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Stopping criteria and q-order estimation

Estimation of the q-order (2/3)

1 The ratio

log
|xk+2 − α|
|xk+1 − α|

/
log
|xk+1 − α|
|xk − α|

≈ p

uses the error which is not known.

2 If we are near the solution we can use the estimation
|xk − α| ≈ |xk+1 − xk| so that

log
|xk+2 − xk+3|
|xk+1 − xk+2|

/
log
|xk+1 − xk+2|
|xk − xk+1|

≈ p

so that 3 iteration are enough to estimate the q-order of a
sequence.
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Stopping criteria and q-order estimation

Estimation of the q-order (3/3)

1 if the the step length is proportional to the value of f(x) as in
Newton-Raphson scheme, i.e. |xk − α| ≈M |f(xk)| we can
simplify the previous formula as:

log
|f(xk+2)|
|f(xk+1)|

/
log
|f(xk+1)|
|f(xk)|

≈ p

2 Such estimation are useful to check code implementation. In
fact if we expect order p and we see order r 6= p there is
something wrong in the implementation or in the theory!
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