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Linear algebra

We always work with finite dimensional Euclidean vector
spaces Rn, the natural number n denote the dimension of the
space.

Elements v ∈ Rn will be referred to as vectors, and we think
them as composed of n real numbers stacked on top of each
other, i.e.,

v =
(
v1, v2, . . . , vn

)T
=


v1
v2
...
vn


vk being real numbers, and T denotes the transpose operator.
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Linear algebra

Basic operation

Basic operations defined for two vectors a, b ∈ Rn, and an
arbitrary scalar α ∈ R

a =
(
a1, a2, . . . , an

)T
b =

(
b1, b2, . . . , bn

)T
are:

1 addition: a+ b =
(
a1 + b1, . . . , an + bn

)T ∈ Rn;

2 multiplication by a scalar: αa =
(
αa1, . . . , αan

)T ∈ Rn;

3 scalar product between two vectors:
(a, b) = aTb =

∑n
k=1 aibi ∈ R.

4 A linear subspace L ⊂ Rn is a set with the two properties:
1 for every a, b ∈ L it holds that a+ b ∈ L;
2 and for every α ∈ R, a ∈ L it holds that αa ∈ L.

5 An affine subspace A ⊂ Rn is any set that can be represented
as v +L := {v + x|x ∈ L} for some vector v ∈ Rn and some
linear subspace L ⊂ Rn.
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Linear algebra

Norm

We associate a norm, or length, of a vector v ∈ Rn with a
scalar product as:

‖v‖ =
√
(v,v)

The Cauchy–Bunyakowski–Schwarz inequality says that

(a, b) ≤ ‖a‖ ‖b‖ for a, b ∈ Rn

we define the angle θ between two vectors via

cos θ =
(a, b)

‖a‖ ‖b‖
.

We say that a is orthogonal to b if and only if (a, b) = 0.

The only vector orthogonal to itself is 0 = (0, . . . , 0)T ;
moreover, this is the only vector with zero norm.
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Linear algebra

Linear and affine dependence

The scalar product is symmetric and bilinear, i.e., for every a,
b, c, α, β it holds that (a, b) = (b,a), and

(αa+ βb, c) = α(a, c) + β(b, c)

A collection of vectors (v1, . . . ,vk) is said to be linearly
independent if and only if

k∑
i=1

αivi = 0 ⇒ α1 = · · · = αk = 0.

Similarly, a collection of vectors (v1, . . . ,vk) is said to be
affinely independent if and only if the collection
(v2 − v1,v3 − v1, . . . ,vk − v1) is linearly independent.
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Linear algebra

Basis

The largest number of linearly independent vectors in Rn is n;

n linearly independent vectors from R
n is referred to as basis.

The basis (v1, . . . ,vn) is said to be orthogonal if (vi,vj) = 0
for all i 6= j. If, in addition ‖vi‖ = 1 for i = 1, . . . , n, the
basis is called orthonormal.

Given the basis (v1, . . . ,vn) every vector v can be written in
a unique way as v =

∑n
i=1 αivi, and the n-tuple (α1, . . . , αn)

will be referred to as coordinates of v in this basis.

If the basis (v1, . . . ,vn) is orthonormal, the coordinates αi are
computed as αi = (v,vi).

The space Rn will be typically equipped with the standard
basis (e1, . . . , en) where ei = (0, . . . , 0, 1, 0, . . . , 0)T .

For every vector v = (v1, . . . , vn)
T we have (v, ei) = vi which

allows us to identify vectors and their coordinates.
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Linear algebra

Matrices

All linear functions from R
n to Rk may be described using a

linear space of real matrices Rk×n (i.e., with k row and n
columns).

Given a matrix A ∈ Rk×n it will often be convenient to view
it as a row of its columns, which are thus vectors in Rk.

Let A ∈ Rk×n have elements Aij we write A = (a1, . . . ,an),
where ai = (A1i, . . . ,Aki)

T ∈ Rk.

The addition of two matrices and scalar-matrix multiplication
are defined in a straightforward way. For
v = (v1, . . . , vn) ∈ Rn we define

Av =

n∑
i=1

viai ∈ Rk
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Linear algebra

Matrix norm and transpose

We also define a norm of the matrix A by

‖A‖ = max
v∈Rn,‖v‖=1

‖Av‖

For a given matrix A ∈ Rk×n we define AT ∈ Rn×k with
elements (AT )ij = Aji as matrix transpose

A more elegant definition: AT is the unique matrix, satisfying
the equality (Av,u) = (v,ATu) for all v ∈ Rn and u ∈ Rk.

From this definition it should be clear that ‖A‖ =
∥∥AT

∥∥ and
that (AT )T = A
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Linear algebra

Matrix product

Given two matrices A ∈ Rk×n and B ∈ Rn×m, we define the
product matrix product C = AB ∈ Rk×m elementwise by

Cij =

n∑
`=1

Ai`B`j , i = 1, . . . , k j = 1, . . . ,m.

In other words, C = AB iff for all v ∈ Rn, Cv = A(Bv).

The matrix product is:

associative i.e., A(BC) = (AB)C;
not commutative i.e., AB 6= BA in general;

for matrices of compatible sizes.
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Linear algebra

Matrix norm and product

It is easy (and instructive) to check that

‖AB‖ ≤ ‖A‖ ‖B‖

and that (AB)T = BTAT .

Vectors v ∈ Rn can be (and sometimes will be) viewed as
matrices v ∈ Rn×1.

Check that this embedding is norm-preserving, i.e., the norm
of v viewed as a vector equals the norm of v viewed as a
matrix with one column.

The triangle inequality for vectors and matrices is valid

‖a+ b‖ ≤ ‖a‖+ ‖b‖ , ‖A+B‖ ≤ ‖A‖+ ‖B‖

‖a− b‖ ≥ ‖a‖ − ‖b‖ , ‖A−B‖ ≥ ‖A‖ − ‖B‖
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Linear algebra

Matrix inverse

For a square matrix A ∈ Rn×n we can discuss the existence
of the unique matrix A−1, called the inverse of A, verifying
A−1Av = v for all v ∈ Rn.

If the inverse of a given matrix exists, we call the latter
nonsingular. The inverse matrix exists iff

the columns of A are linearly independent;
the columns of AT are linearly independent;
the system Ax = v has a unique solution for every v ∈ Rn;
the system Ax = 0 has x = 0 as its unique solution.

From this definition it follows that A is nonsingular iff AT is
nonsingular, and, furthermore, (A−1)T = (AT )−1 and
therefore will be denoted simply as A−T .

At last, if A and B are two nonsingular matrices of the same
size, then AB is nonsingular and (AB)−1 = B−1A−1.
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Linear algebra

Eigenvalues and eigenvectors (1/2)

If for some vector v ∈ Rn, and some scalar α ∈ R it holds
that Av = αv, we call α an eigenvalue of A and v an
eigenvector, corresponding to eigenvalue α.

Eigenvectors, corresponding to a given eigenvalue, form a
linear subspace of Rn; two nonzero eigenvectors,
corresponding to two distinct eigenvalues are linearly
independent.

In general, every matrix A ∈ Rn×n has n eigenvalues
(counted with multiplicity), maybe complex, which are
furthermore roots of the characteristic equation
det(A− λI) = 0, where I ∈ Rn×n is the identity matrix,
characterized by the fact that for all v ∈ Rn : Iv = v.
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Linear algebra

Eigenvalues and eigenvectors (2/2)

In general we have ‖A‖ ≥ |λn| where λn is the eigenvalue
with largest absolute value.

The matrix A is nonsingular iff none of its eigenvalues are
equal to zero, and in this case the eigenvalues of A−1 are
equal to the reciprocal of the eigenvalues of A.

The eigenvalues of AT are equal to the eigenvalues of A.

We call A symmetric iff AT = A. All eigenvalues of
symmetric matrices are real, and eigenvectors corresponding
to distinct eigenvalues are orthogonal.
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Analysis

Taylor series

A function f(x) has the expansion

f(x+ h) = f(x) + hf ′(x) + · · ·+ hk

k!
f (k)(x) + E

where the error term E take the forms

E =
1

k!

∫ h

0
(h− t)kf (k+1)(x+ t) dt, [Peano]

=
hk+1

(k + 1)!
f (k+1)(x+ η), η ∈ (0, h) [Lagrange]

= O(hk+1)
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Analysis

Multi-index notation

Given a list of (non negative) integer α = (α1, α2, . . . , αn) called
multi-index and a vector z ∈ Rn and a function f : Rn 7→ R we
define

α! = α1!α2! · · · αn!
|α| = α1 + α2 + · · ·+ αn

zα = zα1
1 zα2

2 · · · zαn
n

∂f(z)

∂α
=
∂|α|f(z1, z2, . . . , zn)

∂α1∂α2 · · · ∂αn
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Analysis

Multivariate Taylor series

A function f : Rn 7→ R has the expansion

f(x+ h) =

k∑
|α|=0

hα

α!

∂f(x)

∂α
+ E

where the error term E take the forms

E = (k + 1)
∑

|α|=k+1

hα

α!

∫ 1

0
(1− t)k ∂f(x+ th)

∂α
dt

= O(‖h‖k+1)
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Analysis

Multivariate Taylor series, second order special case

A function f : Rn 7→ R has the expansion

f(x+ h) = f(x) +∇f(x)h+
1

2
h2∇2f(x)h+O(‖h‖3)

where

∇f(x) = (∂x1f, ∂x2f, . . . , ∂xnf),

∇2f(x) =


∂
(2)
x1 f ∂x1∂x2f · · · ∂x1∂xnf

∂x1∂x2f ∂
(2)
x2 f · · · ∂x2∂xnf

...
...

∂x1∂xnf ∂x2∂xnf · · · ∂
(2)
xn f
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The Separation Theorem and Farkas’ Lemma

The Separation Theorem

Theorem (Separation Theorem)

Let be C ⊆ Rn closed and convex, and y 6∈ C.
Then there exist a real α and a vector π 6= 0 such that:

1 πTy > α;

2 πTx ≤ α for all x ∈ C.

C

•y

π T
x
=
α
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The Separation Theorem and Farkas’ Lemma

Proof.

Define the function f : Rn 7→ R by f(x) = 1
2 ‖x− y‖

2. Now by
the Weierstrass Theorem there exists z ∈ C such that:

f(z) ≤ f(x), ∀x ∈ C

due to the convexity of C we have z + t(x− z) ∈ C for all
t ∈ [0, 1] and then

0 ≤ f(z + t(x− z))− f(z)

t
,

taking the limit t→ 0 and noting that ∇f(x) = x− y we have

0 ≤ ∇f(z)(x− z) = (z − y)T (x− z)

Now setting π = y − z and α = πTz gives the result.
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The Separation Theorem and Farkas’ Lemma

The Farkas’s lemma

Lemma (Farkas’s lemma)

Let A ∈ Rn×m, b ∈ Rn and consider the following two problems

(I) Find x ∈ Rm such that: Ax = b and x ≥ 0;

(II) Find π ∈ Rn such that: ATπ ≤ 0 and bTπ > 0;

then exactly only one of them has a solution.

Proof.

⇒ If (I) IS feasible the (II) IS NOT feasible:
Let (I) has a feasible solution, say x ≥ 0, then Ax = b so if there
is a solution to (II), say π, then xTATπ = bTπ > 0. But then
ATπ > 0 (since x ≥ 0), a contradiction. Hence (II) is infeasible.

Linear algebra and analysis recalls 24 / 30



The Separation Theorem and Farkas’ Lemma

Proof. (1/5).

⇒ If (I) IS NOT feasible then (II) IS feasible:
Let C = {z ∈ Rm | z = Ax,x ≥ 0}. If (I) is infeasible then
b 6∈ C. The set C is convex and closed (see next slides) so by the
Separation Theorem there exists a real α and a vector π such that
bTπ > α and zTπ ≤ α for all z ∈ C, that is,

xTATπ ≤ α, ∀x ≥ 0

Since 0 ∈ C it follows that α ≥ 0, so bTπ > 0. If there exists an
z ≥ 0 such that zTATπ > 0 then

lim
λ→∞

(λzT )ATπ =∞

Therefore we must have xTATπ ≤ 0 for all x ≥ 0, and this holds
if and only if ATπ ≤ 0, which means that (II) is feasible.
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The Separation Theorem and Farkas’ Lemma

Proof. (2/5).

The set C is convex:
Let C = {z ∈ Rm | z = Ax,x ≥ 0}. Let z1 and z2 ∈ C then
there exists x1 ≥ 0 and x2 ≥ 0 such that

z1 = Ax1

z2 = Ax2.

Moreover

αz1 + (1− α)z2 = A
(
αx1 + (1− α)x2

)
,

αx1 + (1− α)x2 ≥ 0, ∀α ∈ [0, 1].

so that C is convex.
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The Separation Theorem and Farkas’ Lemma

Proof. (3/5).

The set C is closed:
Let {zk} a convergent sequence in C, i.e. limk→∞ zk = z, for all
k there exists xk such that zk = Axk we choose xk such that

zk = Axk, and xk⊥Ker(A)

if ‖xk‖ is bounded ‖xk‖ lie in a compact and thus there exists a
subsequence such that

lim
j→∞

xkj = x, x ≥ 0.

and thus

z = lim
j→∞

zkj = lim
j→∞

Axkj = A lim
j→∞

xkj = Ax ∈ C

so that C is closed.

Linear algebra and analysis recalls 27 / 30



The Separation Theorem and Farkas’ Lemma

Proof. (4/5).

if ‖xk‖ is unbounded we have

lim
j→∞

zkj∥∥xkj∥∥ =
limj→∞ zkj

limj→∞
∥∥xkj∥∥ =

z

∞
= 0

we define the sequence wj = xkj/
∥∥xkj∥∥ which is bounded and

thus has a converging subsequence:

lim
i→∞

wji = w, ‖w‖ = 1, w ≥ 0.

notice that

Aw = lim
i→∞

Awji = lim
i→∞

Axkj∥∥∥xkji∥∥∥ = lim
i→∞

zkji∥∥∥xkji∥∥∥ = 0

and thus w is in the kernel of A.
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The Separation Theorem and Farkas’ Lemma

Proof. (5/5).

But for all p ∈ Ker(A) we have

0 = lim
i→∞

p ·wji = p · lim
i→∞

wji = p ·w

so that w⊥Ker(A) and w ∈ Ker(A) and thus w = 0, a
contradiction!.
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The Separation Theorem and Farkas’ Lemma
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