Linear algebra and analysis recalls Lectures for PHD course on Numerical optimization

Enrico Bertolazzi

DIMS - Universitá di Trento

November 21 - December 14, 2011

Outline

(1) Linear algebra
(2) Analysis
(3) The Separation Theorem and Farkas' Lemma

Outline

(1) Linear algebra
(2) Analysis
(3) The Separation Theorem and Farkas' Lemma

- We always work with finite dimensional Euclidean vector spaces \mathbb{R}^{n}, the natural number n denote the dimension of the space.
- Elements $\boldsymbol{v} \in \mathbb{R}^{n}$ will be referred to as vectors, and we think them as composed of n real numbers stacked on top of each other, i.e.,

$$
\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{T}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

v_{k} being real numbers, and T denotes the transpose operator.

Basic operation

Basic operations defined for two vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$, and an arbitrary scalar $\alpha \in \mathbb{R}$

$$
\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T} \quad \boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{T}
$$

are:
(1) addition: $\boldsymbol{a}+\boldsymbol{b}=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)^{T} \in \mathbb{R}^{n}$;
(2) multiplication by a scalar: $\alpha \boldsymbol{a}=\left(\alpha a_{1}, \ldots, \alpha a_{n}\right)^{T} \in \mathbb{R}^{n}$;
(3) scalar product between two vectors: $(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{a}^{T} \boldsymbol{b}=\sum_{k=1}^{n} a_{i} b_{i} \in \mathbb{R}$.
(9) A linear subspace $L \subset \mathbb{R}^{n}$ is a set with the two properties:
(1) for every $\boldsymbol{a}, \boldsymbol{b} \in L$ it holds that $\boldsymbol{a}+\boldsymbol{b} \in L$;
(2) and for every $\alpha \in \mathbb{R}, \boldsymbol{a} \in L$ it holds that $\alpha \boldsymbol{a} \in L$.
(3) An affine subspace $A \subset \mathbb{R}^{n}$ is any set that can be represented as $\boldsymbol{v}+L:=\{\boldsymbol{v}+\boldsymbol{x} \mid \boldsymbol{x} \in L\}$ for some vector $\boldsymbol{v} \in \mathbb{R}^{n}$ and some linear subspace $L \subset \mathbb{R}^{n}$.

- We associate a norm, or length, of a vector $\boldsymbol{v} \in \mathbb{R}^{n}$ with a scalar product as:

$$
\|\boldsymbol{v}\|=\sqrt{(\boldsymbol{v}, \boldsymbol{v})}
$$

- The Cauchy-Bunyakowski-Schwarz inequality says that

$$
(\boldsymbol{a}, \boldsymbol{b}) \leq\|\boldsymbol{a}\|\|\boldsymbol{b}\| \quad \text { for } \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}
$$

- we define the angle θ between two vectors via

$$
\cos \theta=\frac{(\boldsymbol{a}, \boldsymbol{b})}{\|\boldsymbol{a}\|\|\boldsymbol{b}\|}
$$

- We say that \boldsymbol{a} is orthogonal to \boldsymbol{b} if and only if $(\boldsymbol{a}, \boldsymbol{b})=0$.
- The only vector orthogonal to itself is $\mathbf{0}=(0, \ldots, 0)^{T}$; moreover, this is the only vector with zero norm.

Linear and affine dependence

- The scalar product is symmetric and bilinear, i.e., for every \boldsymbol{a}, $\boldsymbol{b}, \boldsymbol{c}, \alpha, \beta$ it holds that $(\boldsymbol{a}, \boldsymbol{b})=(\boldsymbol{b}, \boldsymbol{a})$, and

$$
(\alpha \boldsymbol{a}+\beta \boldsymbol{b}, \boldsymbol{c})=\alpha(\boldsymbol{a}, \boldsymbol{c})+\beta(\boldsymbol{b}, \boldsymbol{c})
$$

- A collection of vectors $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)$ is said to be linearly independent if and only if

$$
\sum_{i=1}^{k} \alpha_{i} \boldsymbol{v}_{i}=\mathbf{0} \quad \Rightarrow \quad \alpha_{1}=\cdots=\alpha_{k}=0
$$

- Similarly, a collection of vectors $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)$ is said to be affinely independent if and only if the collection $\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{1}, \boldsymbol{v}_{3}-\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}-\boldsymbol{v}_{1}\right)$ is linearly independent.
- The largest number of linearly independent vectors in \mathbb{R}^{n} is n;
- n linearly independent vectors from \mathbb{R}^{n} is referred to as basis.
- The basis $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)$ is said to be orthogonal if $\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)=0$ for all $i \neq j$. If, in addition $\left\|\boldsymbol{v}_{i}\right\|=1$ for $i=1, \ldots, n$, the basis is called orthonormal.
- Given the basis $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)$ every vector \boldsymbol{v} can be written in a unique way as $\boldsymbol{v}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{v}_{i}$, and the n-tuple $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ will be referred to as coordinates of \boldsymbol{v} in this basis.
- If the basis $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right)$ is orthonormal, the coordinates α_{i} are computed as $\alpha_{i}=\left(\boldsymbol{v}, \boldsymbol{v}_{i}\right)$.
- The space \mathbb{R}^{n} will be typically equipped with the standard basis $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)$ where $\boldsymbol{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{T}$.
- For every vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)^{T}$ we have $\left(\boldsymbol{v}, \boldsymbol{e}_{i}\right)=v_{i}$ which allows us to identify vectors and their coordinates.

Matrices

- All linear functions from \mathbb{R}^{n} to \mathbb{R}^{k} may be described using a linear space of real matrices $\mathbb{R}^{k \times n}$ (i.e., with k row and n columns).
- Given a matrix $\boldsymbol{A} \in \mathbb{R}^{k \times n}$ it will often be convenient to view it as a row of its columns, which are thus vectors in \mathbb{R}^{k}.
- Let $\boldsymbol{A} \in \mathbb{R}^{k \times n}$ have elements $A_{i j}$ we write $\boldsymbol{A}=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)$, where $\boldsymbol{a}_{i}=\left(A_{1 i}, \ldots, A_{k i}\right)^{T} \in \mathbb{R}^{k}$.
- The addition of two matrices and scalar-matrix multiplication are defined in a straightforward way. For $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ we define

$$
\boldsymbol{A} \boldsymbol{v}=\sum_{i=1}^{n} v_{i} \boldsymbol{a}_{i} \in \mathbb{R}^{k}
$$

Matrix norm and transpose

- We also define a norm of the matrix \boldsymbol{A} by

$$
\|\boldsymbol{A}\|=\max _{\boldsymbol{v} \in \mathbb{R}^{n},\|\boldsymbol{v}\|=1}\|\boldsymbol{A} \boldsymbol{v}\|
$$

- For a given matrix $\boldsymbol{A} \in \mathbb{R}^{k \times n}$ we define $\boldsymbol{A}^{T} \in \mathbb{R}^{n \times k}$ with elements $\left(\boldsymbol{A}^{T}\right)_{i j}=A_{j i}$ as matrix transpose
- A more elegant definition: \boldsymbol{A}^{T} is the unique matrix, satisfying the equality $(\boldsymbol{A} \boldsymbol{v}, \boldsymbol{u})=\left(\boldsymbol{v}, \boldsymbol{A}^{T} \boldsymbol{u}\right)$ for all $\boldsymbol{v} \in \mathbb{R}^{n}$ and $\boldsymbol{u} \in \mathbb{R}^{k}$.
- From this definition it should be clear that $\|\boldsymbol{A}\|=\left\|\boldsymbol{A}^{T}\right\|$ and that $\left(\boldsymbol{A}^{T}\right)^{T}=\boldsymbol{A}$

Matrix product

- Given two matrices $\boldsymbol{A} \in \mathbb{R}^{k \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times m}$, we define the product matrix product $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B} \in \mathbb{R}^{k \times m}$ elementwise by

$$
C_{i j}=\sum_{\ell=1}^{n} A_{i \ell} B_{\ell j}, \quad i=1, \ldots, k \quad j=1, \ldots, m
$$

- In other words, $\boldsymbol{C}=\boldsymbol{A B}$ iff for all $\boldsymbol{v} \in \mathbb{R}^{n}, \boldsymbol{C} \boldsymbol{v}=\boldsymbol{A}(\boldsymbol{B} \boldsymbol{v})$.
- The matrix product is:
- associative i.e., $\boldsymbol{A}(\boldsymbol{B C})=(\boldsymbol{A B}) \boldsymbol{C}$;
- not commutative i.e., $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$ in general; for matrices of compatible sizes.

Matrix norm and product

- It is easy (and instructive) to check that

$$
\|\boldsymbol{A} \boldsymbol{B}\| \leq\|\boldsymbol{A}\|\|\boldsymbol{B}\|
$$

and that $(\boldsymbol{A B})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$.

- Vectors $\boldsymbol{v} \in \mathbb{R}^{n}$ can be (and sometimes will be) viewed as matrices $\boldsymbol{v} \in \mathbb{R}^{n \times 1}$.
- Check that this embedding is norm-preserving, i.e., the norm of \boldsymbol{v} viewed as a vector equals the norm of \boldsymbol{v} viewed as a matrix with one column.
- The triangle inequality for vectors and matrices is valid

$$
\begin{aligned}
\|\boldsymbol{a}+\boldsymbol{b}\| \leq\|\boldsymbol{a}\|+\|\boldsymbol{b}\|, & \|\boldsymbol{A}+\boldsymbol{B}\| \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\| \\
\|\boldsymbol{a}-\boldsymbol{b}\| \geq\|\boldsymbol{a}\|-\|\boldsymbol{b}\|, & \|\boldsymbol{A}-\boldsymbol{B}\| \geq\|\boldsymbol{A}\|-\|\boldsymbol{B}\|
\end{aligned}
$$

Matrix inverse

- For a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ we can discuss the existence of the unique matrix \boldsymbol{A}^{-1}, called the inverse of \boldsymbol{A}, verifying $\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{v}=\boldsymbol{v}$ for all $\boldsymbol{v} \in \mathbb{R}^{n}$.
- If the inverse of a given matrix exists, we call the latter nonsingular. The inverse matrix exists iff
- the columns of \boldsymbol{A} are linearly independent;
- the columns of \boldsymbol{A}^{T} are linearly independent;
- the system $\boldsymbol{A x}=\boldsymbol{v}$ has a unique solution for every $\boldsymbol{v} \in \mathbb{R}^{n}$;
- the system $\boldsymbol{A x}=\mathbf{0}$ has $\boldsymbol{x}=\mathbf{0}$ as its unique solution.
- From this definition it follows that \boldsymbol{A} is nonsingular iff \boldsymbol{A}^{T} is nonsingular, and, furthermore, $\left(\boldsymbol{A}^{-1}\right)^{T}=\left(\boldsymbol{A}^{T}\right)^{-1}$ and therefore will be denoted simply as \boldsymbol{A}^{-T}.
- At last, if \boldsymbol{A} and \boldsymbol{B} are two nonsingular matrices of the same size, then $\boldsymbol{A} \boldsymbol{B}$ is nonsingular and $(\boldsymbol{A B})^{-1}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}$.
- If for some vector $\boldsymbol{v} \in \mathbb{R}^{n}$, and some scalar $\alpha \in \mathbb{R}$ it holds that $\boldsymbol{A} \boldsymbol{v}=\alpha \boldsymbol{v}$, we call α an eigenvalue of \boldsymbol{A} and \boldsymbol{v} an eigenvector, corresponding to eigenvalue α.
- Eigenvectors, corresponding to a given eigenvalue, form a linear subspace of \mathbb{R}^{n}; two nonzero eigenvectors, corresponding to two distinct eigenvalues are linearly independent.
- In general, every matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ has n eigenvalues (counted with multiplicity), maybe complex, which are furthermore roots of the characteristic equation $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$, where $\boldsymbol{I} \in \mathbb{R}^{n \times n}$ is the identity matrix, characterized by the fact that for all $\boldsymbol{v} \in \mathbb{R}^{n}: \boldsymbol{I} \boldsymbol{v}=\boldsymbol{v}$.

Eigenvalues and eigenvectors

- In general we have $\|\boldsymbol{A}\| \geq\left|\lambda_{n}\right|$ where λ_{n} is the eigenvalue with largest absolute value.
- The matrix \boldsymbol{A} is nonsingular iff none of its eigenvalues are equal to zero, and in this case the eigenvalues of \boldsymbol{A}^{-1} are equal to the reciprocal of the eigenvalues of \boldsymbol{A}.
- The eigenvalues of \boldsymbol{A}^{T} are equal to the eigenvalues of \boldsymbol{A}.
- We call \boldsymbol{A} symmetric iff $\boldsymbol{A}^{T}=\boldsymbol{A}$. All eigenvalues of symmetric matrices are real, and eigenvectors corresponding to distinct eigenvalues are orthogonal.

Outline

(1) Linear algebra
(2) Analysis
(3) The Separation Theorem and Farkas' Lemma

Taylor series

A function $f(x)$ has the expansion

$$
f(x+h)=f(x)+h f^{\prime}(x)+\cdots+\frac{h^{k}}{k!} f^{(k)}(x)+E
$$

where the error term E take the forms

$$
\begin{array}{rlr}
E & =\frac{1}{k!} \int_{0}^{h}(h-t)^{k} f^{(k+1)}(x+t) \mathrm{d} t, & \text { [Peano] } \\
& =\frac{h^{k+1}}{(k+1)!} f^{(k+1)}(x+\eta), & \eta \in(0, h) \\
& =\mathcal{O}\left(h^{k+1}\right) & \text { [Lagrange] }
\end{array}
$$

Multi-index notation

Given a list of (non negative) integer $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ called multi-index and a vector $\boldsymbol{z} \in \mathbb{R}^{n}$ and a function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ we define

- $\boldsymbol{\alpha}!=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}$!
- $|\boldsymbol{\alpha}|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$
- $\boldsymbol{z}^{\boldsymbol{\alpha}}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}$
- $\frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{\alpha}}=\frac{\partial^{|\boldsymbol{\alpha}|} f\left(z_{1}, z_{2}, \ldots, z_{n}\right)}{\partial \alpha_{1} \partial \alpha_{2} \cdots \partial \alpha_{n}}$

Multivariate Taylor series

A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ has the expansion

$$
f(\boldsymbol{x}+\boldsymbol{h})=\sum_{|\boldsymbol{\alpha}|=0}^{k} \frac{\boldsymbol{h}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{\alpha}}+E
$$

where the error term E take the forms

$$
\begin{aligned}
E & =(k+1) \sum_{|\boldsymbol{\alpha}|=k+1} \frac{\boldsymbol{h}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \int_{0}^{1}(1-t)^{k} \frac{\partial f(\boldsymbol{x}+t \boldsymbol{h})}{\partial \boldsymbol{\alpha}} \mathrm{d} t \\
& =\mathcal{O}\left(\|\boldsymbol{h}\|^{k+1}\right)
\end{aligned}
$$

Multivariate Taylor series, second order special case

A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ has the expansion

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+\nabla f(\boldsymbol{x}) \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{2} \nabla^{2} f(\boldsymbol{x}) \boldsymbol{h}+\mathcal{O}\left(\|\boldsymbol{h}\|^{3}\right)
$$

where

$$
\begin{aligned}
\nabla f(\boldsymbol{x}) & =\left(\partial_{x_{1}} f, \partial_{x_{2}} f, \ldots, \partial_{x_{n}} f\right), \\
\nabla^{2} f(\boldsymbol{x}) & =\left(\begin{array}{cccc}
\partial_{x_{1}}^{(2)} f & \partial_{x_{1}} \partial_{x_{2}} f & \cdots & \partial_{x_{1}} \partial_{x_{n}} f \\
\partial_{x_{1}} \partial_{x_{2}} f & \partial_{x_{2}}^{(2)} f & \cdots & \partial_{x_{2}} \partial_{x_{n}} f \\
\vdots & & & \vdots \\
\partial_{x_{1}} \partial_{x_{n}} f & \partial_{x_{2}} \partial_{x_{n}} f & \cdots & \partial_{x_{n}}^{(2)} f
\end{array}\right)
\end{aligned}
$$

Outline

(1) Linear algebra
(2) Analysis
(3) The Separation Theorem and Farkas' Lemma

The Separation Theorem

Theorem (Separation Theorem)

Let be $C \subseteq \mathbb{R}^{n}$ closed and convex, and $\boldsymbol{y} \notin C$.
Then there exist a real α and a vector $\boldsymbol{\pi} \neq \mathbf{0}$ such that:
(1) $\boldsymbol{\pi}^{T} \boldsymbol{y}>\alpha$;
(2) $\boldsymbol{\pi}^{T} \boldsymbol{x} \leq \alpha$ for all $\boldsymbol{x} \in C$.

Proof.

Define the function $\mathrm{f}: \mathbb{R}^{n} \mapsto \mathbb{R}$ by $\mathrm{f}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}$. Now by the Weierstrass Theorem there exists $z \in C$ such that:

$$
\mathrm{f}(\boldsymbol{z}) \leq \mathrm{f}(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in C
$$

due to the convexity of C we have $\boldsymbol{z}+t(\boldsymbol{x}-\boldsymbol{z}) \in C$ for all $t \in[0,1]$ and then

$$
0 \leq \frac{\mathrm{f}(\boldsymbol{z}+t(\boldsymbol{x}-\boldsymbol{z}))-\mathrm{f}(\boldsymbol{z})}{t},
$$

taking the limit $t \rightarrow 0$ and noting that $\nabla \mathrm{f}(\boldsymbol{x})=\boldsymbol{x}-\boldsymbol{y}$ we have

$$
0 \leq \nabla f(\boldsymbol{z})(\boldsymbol{x}-\boldsymbol{z})=(\boldsymbol{z}-\boldsymbol{y})^{T}(\boldsymbol{x}-\boldsymbol{z})
$$

Now setting $\boldsymbol{\pi}=\boldsymbol{y}-\boldsymbol{z}$ and $\alpha=\boldsymbol{\pi}^{T} \boldsymbol{z}$ gives the result.

The Farkas's lemma

Lemma (Farkas's lemma)

Let $\boldsymbol{A} \in \mathbb{R}^{n \times m}, \boldsymbol{b} \in \mathbb{R}^{n}$ and consider the following two problems
(I) Find $\boldsymbol{x} \in \mathbb{R}^{m}$ such that: $\boldsymbol{A x}=\boldsymbol{b} \quad$ and $\quad \boldsymbol{x} \geq 0$;
(II) Find $\boldsymbol{\pi} \in \mathbb{R}^{n}$ such that: $\boldsymbol{A}^{T} \boldsymbol{\pi} \leq \mathbf{0} \quad$ and $\quad \boldsymbol{b}^{T} \boldsymbol{\pi}>0$;
then exactly only one of them has a solution.

Proof.

\Rightarrow If (I) IS feasible the (II) IS NOT feasible:
Let (I) has a feasible solution, say $\boldsymbol{x} \geq \mathbf{0}$, then $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ so if there is a solution to (II), say $\boldsymbol{\pi}$, then $\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{\pi}=\boldsymbol{b}^{T} \boldsymbol{\pi}>0$. But then $\boldsymbol{A}^{T} \boldsymbol{\pi}>\mathbf{0}$ (since $\boldsymbol{x} \geq \mathbf{0}$), a contradiction. Hence (II) is infeasible.

Proof. (1/5).

\Rightarrow If (I) IS NOT feasible then (II) IS feasible:
Let $C=\left\{\boldsymbol{z} \in \mathbb{R}^{m} \mid \boldsymbol{z}=\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x} \geq \mathbf{0}\right\}$. If (I) is infeasible then
$\boldsymbol{b} \notin C$. The set C is convex and closed (see next slides) so by the Separation Theorem there exists a real α and a vector $\boldsymbol{\pi}$ such that $\boldsymbol{b}^{T} \boldsymbol{\pi}>\alpha$ and $\boldsymbol{z}^{T} \boldsymbol{\pi} \leq \alpha$ for all $\boldsymbol{z} \in C$, that is,

$$
\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{\pi} \leq \alpha, \quad \forall \boldsymbol{x} \geq \mathbf{0}
$$

Since $\mathbf{0} \in C$ it follows that $\alpha \geq 0$, so $\boldsymbol{b}^{T} \boldsymbol{\pi}>0$. If there exists an $\boldsymbol{z} \geq \mathbf{0}$ such that $\boldsymbol{z}^{T} \boldsymbol{A}^{T} \boldsymbol{\pi}>0$ then

$$
\lim _{\lambda \rightarrow \infty}\left(\lambda \boldsymbol{z}^{T}\right) \boldsymbol{A}^{T} \boldsymbol{\pi}=\infty
$$

Therefore we must have $\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{\pi} \leq 0$ for all $\boldsymbol{x} \geq \mathbf{0}$, and this holds if and only if $\boldsymbol{A}^{T} \boldsymbol{\pi} \leq \mathbf{0}$, which means that $(I I)$ is feasible.

Proof. (2/5).

The set C is convex:
Let $C=\left\{\boldsymbol{z} \in \mathbb{R}^{m} \mid \boldsymbol{z}=\boldsymbol{A x}, \boldsymbol{x} \geq \mathbf{0}\right\}$. Let \boldsymbol{z}_{1} and $\boldsymbol{z}_{2} \in C$ then there exists $\boldsymbol{x}_{1} \geq \mathbf{0}$ and $\boldsymbol{x}_{2} \geq \mathbf{0}$ such that

$$
\begin{aligned}
& \boldsymbol{z}_{1}=\boldsymbol{A} \boldsymbol{x}_{1} \\
& \boldsymbol{z}_{2}=\boldsymbol{A} \boldsymbol{x}_{2} .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \alpha \boldsymbol{z}_{1}+(1-\alpha) \boldsymbol{z}_{2}=\boldsymbol{A}\left(\alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2}\right), \\
& \alpha \boldsymbol{x}_{1}+(1-\alpha) \boldsymbol{x}_{2} \geq \mathbf{0}, \quad \forall \alpha \in[0,1] .
\end{aligned}
$$

so that C is convex.

Proof. (3/5).

The set C is closed:
Let $\left\{\boldsymbol{z}_{k}\right\}$ a convergent sequence in C, i.e. $\lim _{k \rightarrow \infty} \boldsymbol{z}_{k}=\boldsymbol{z}$, for all k there exists \boldsymbol{x}_{k} such that $\boldsymbol{z}_{k}=\boldsymbol{A} \boldsymbol{x}_{k}$ we choose \boldsymbol{x}_{k} such that

$$
\boldsymbol{z}_{k}=\boldsymbol{A} \boldsymbol{x}_{k}, \quad \text { and } \quad \boldsymbol{x}_{k} \perp \operatorname{Ker}(\boldsymbol{A})
$$

if $\left\|\boldsymbol{x}_{k}\right\|$ is bounded $\left\|\boldsymbol{x}_{k}\right\|$ lie in a compact and thus there exists a subsequence such that

$$
\lim _{j \rightarrow \infty} \boldsymbol{x}_{k_{j}}=\boldsymbol{x}, \quad \boldsymbol{x} \geq \mathbf{0}
$$

and thus

$$
\boldsymbol{z}=\lim _{j \rightarrow \infty} \boldsymbol{z}_{k_{j}}=\lim _{j \rightarrow \infty} \boldsymbol{A} \boldsymbol{x}_{k_{j}}=\boldsymbol{A} \lim _{j \rightarrow \infty} \boldsymbol{x}_{k_{j}}=\boldsymbol{A} \boldsymbol{x} \in C
$$

so that C is closed.

Proof. (4/5).

if $\left\|\boldsymbol{x}_{k}\right\|$ is unbounded we have

$$
\lim _{j \rightarrow \infty} \frac{\boldsymbol{z}_{k_{j}}}{\left\|\boldsymbol{x}_{k_{j}}\right\|}=\frac{\lim _{j \rightarrow \infty} \boldsymbol{z}_{k_{j}}}{\lim _{j \rightarrow \infty}\left\|\boldsymbol{x}_{k_{j}}\right\|}=\frac{\boldsymbol{z}}{\infty}=\mathbf{0}
$$

we define the sequence $\boldsymbol{w}_{j}=\boldsymbol{x}_{k_{j}} /\left\|\boldsymbol{x}_{k_{j}}\right\|$ which is bounded and thus has a converging subsequence:

$$
\lim _{i \rightarrow \infty} \boldsymbol{w}_{j_{i}}=\boldsymbol{w}, \quad\|\boldsymbol{w}\|=1, \quad \boldsymbol{w} \geq \mathbf{0}
$$

notice that

$$
\boldsymbol{A} \boldsymbol{w}=\lim _{i \rightarrow \infty} \boldsymbol{A} \boldsymbol{w}_{j_{i}}=\lim _{i \rightarrow \infty} \frac{\boldsymbol{A} \boldsymbol{x}_{k_{j}}}{\left\|\boldsymbol{x}_{k_{j_{i}}}\right\|}=\lim _{i \rightarrow \infty} \frac{\boldsymbol{z}_{k_{j_{i}}}}{\left\|\boldsymbol{x}_{k_{j_{i}}}\right\|}=\mathbf{0}
$$

and thus \boldsymbol{w} is in the kernel of \boldsymbol{A}.

Proof. (5/5).

But for all $\boldsymbol{p} \in \operatorname{Ker}(\boldsymbol{A})$ we have

$$
0=\lim _{i \rightarrow \infty} \boldsymbol{p} \cdot \boldsymbol{w}_{j_{i}}=\boldsymbol{p} \cdot \lim _{i \rightarrow \infty} \boldsymbol{w}_{j_{i}}=\boldsymbol{p} \cdot \boldsymbol{w}
$$

so that $\boldsymbol{w} \perp \operatorname{Ker}(\boldsymbol{A})$ and $\boldsymbol{w} \in \operatorname{Ker}(\boldsymbol{A})$ and thus $\boldsymbol{w}=\mathbf{0}$, a contradiction!.

References

R. R. Tyrrell Rockafellar

Convex Analysis
Princeton University Press, 1996.
圊 J. Farkas
Theorie der einfachen Ungleichungen Journal für die reine und angewandte Mathematik, pp.1-27, 124, 1902.
http://en.wikipedia.org/wiki/Multi-index_notation

