Linear algebra and analysis recalls Lectures for PHD course on Numerical optimization

Enrico Bertolazzi

DIMS - Universitá di Trento

November 21 - December 14, 2011

1 / 30

3 The Separation Theorem and Farkas' Lemma

Linear algebra and analysis recalls

The Separation Theorem and Farkas' Lemma

- We always work with finite dimensional Euclidean vector spaces \mathbb{R}^n , the natural number n denote the dimension of the space.
- Elements $v \in \mathbb{R}^n$ will be referred to as vectors, and we think them as composed of n real numbers stacked on top of each other, i.e.,

$$oldsymbol{v} = egin{pmatrix} v_1, v_2, \dots, v_n \end{pmatrix}^T = egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix}$$

 v_k being real numbers, and T denotes the transpose operator.

Basic operation

Basic operations defined for two vectors ${m a}, {m b} \in \mathbb{R}^n$, and an arbitrary scalar $lpha \in \mathbb{R}$

$$oldsymbol{a} = ig(a_1, a_2, \dots, a_nig)^T \qquad oldsymbol{b} = ig(b_1, b_2, \dots, b_nig)^T$$

are:

- **③** addition: $oldsymbol{a}+oldsymbol{b}=ig(a_1+b_1,\ldots,a_n+b_nig)^T\in\mathbb{R}^n$;
- ② multiplication by a scalar: $\alpha \boldsymbol{a} = (\alpha a_1, \dots, \alpha a_n)^T \in \mathbb{R}^n$;
- Scalar product between two vectors: $(a, b) = a^T b = \sum_{k=1}^n a_i b_i \in \mathbb{R}.$
- A linear subspace $L \subset \mathbb{R}^n$ is a set with the two properties:
 - for every $a, b \in L$ it holds that $a + b \in L$;
 - 2) and for every $\alpha \in \mathbb{R}$, $a \in L$ it holds that $\alpha a \in L$.
- An affine subspace $A \subset \mathbb{R}^n$ is any set that can be represented as $v + L := \{v + x | x \in L\}$ for some vector $v \in \mathbb{R}^n$ and some linear subspace $L \subset \mathbb{R}^n$.

イロト イヨト イヨト イヨト

Norm

• We associate a norm, or length, of a vector $oldsymbol{v} \in \mathbb{R}^n$ with a scalar product as:

$$\|oldsymbol{v}\|=\sqrt{(oldsymbol{v},oldsymbol{v})}$$

• The Cauchy–Bunyakowski–Schwarz inequality says that

$$(\boldsymbol{a}, \boldsymbol{b}) \leq \|\boldsymbol{a}\| \|\boldsymbol{b}\| \qquad ext{for } \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^n$$

 $\bullet\,$ we define the angle $\theta\,$ between two vectors via

$$\cos \theta = \frac{(\boldsymbol{a}, \boldsymbol{b})}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}.$$

- We say that \boldsymbol{a} is orthogonal to \boldsymbol{b} if and only if $(\boldsymbol{a}, \boldsymbol{b}) = 0$.
- The only vector orthogonal to itself is $\mathbf{0} = (0, \dots, 0)^T$; moreover, this is the only vector with zero norm.

Linear algebra

Linear and affine dependence

• The scalar product is symmetric and bilinear, i.e., for every a, b, c, α , β it holds that (a, b) = (b, a), and

$$(\alpha \boldsymbol{a} + \beta \boldsymbol{b}, \boldsymbol{c}) = \alpha(\boldsymbol{a}, \boldsymbol{c}) + \beta(\boldsymbol{b}, \boldsymbol{c})$$

• A collection of vectors (v_1, \ldots, v_k) is said to be linearly independent if and only if

$$\sum_{i=1}^k \alpha_i \boldsymbol{v}_i = \boldsymbol{0} \qquad \Rightarrow \qquad \alpha_1 = \dots = \alpha_k = 0.$$

• Similarly, a collection of vectors (v_1, \ldots, v_k) is said to be affinely independent if and only if the collection $(v_2 - v_1, v_3 - v_1, \ldots, v_k - v_1)$ is linearly independent.

Basis

- The largest number of linearly independent vectors in \mathbb{R}^n is n;
- n linearly independent vectors from \mathbb{R}^n is referred to as basis.
- The basis (v_1, \ldots, v_n) is said to be orthogonal if $(v_i, v_j) = 0$ for all $i \neq j$. If, in addition $||v_i|| = 1$ for $i = 1, \ldots, n$, the basis is called orthonormal.
- Given the basis (v_1, \ldots, v_n) every vector v can be written in a unique way as $v = \sum_{i=1}^n \alpha_i v_i$, and the *n*-tuple $(\alpha_1, \ldots, \alpha_n)$ will be referred to as coordinates of v in this basis.
- If the basis (v_1, \ldots, v_n) is orthonormal, the coordinates α_i are computed as $\alpha_i = (v, v_i)$.
- The space \mathbb{R}^n will be typically equipped with the standard basis (e_1, \ldots, e_n) where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)^T$.
- For every vector $\boldsymbol{v} = (v_1, \dots, v_n)^T$ we have $(\boldsymbol{v}, \boldsymbol{e}_i) = v_i$ which allows us to identify vectors and their coordinates.

イロト イヨト イヨト イヨト

Matrices

- All linear functions from \mathbb{R}^n to \mathbb{R}^k may be described using a linear space of real matrices $\mathbb{R}^{k \times n}$ (i.e., with k row and n columns).
- Given a matrix $A \in \mathbb{R}^{k \times n}$ it will often be convenient to view it as a row of its columns, which are thus vectors in \mathbb{R}^k .
- Let $A \in \mathbb{R}^{k \times n}$ have elements A_{ij} we write $A = (a_1, \dots, a_n)$, where $a_i = (A_{1i}, \dots, A_{ki})^T \in \mathbb{R}^k$.
- The addition of two matrices and scalar-matrix multiplication are defined in a straightforward way. For $\boldsymbol{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$ we define

$$oldsymbol{A}oldsymbol{v} = \sum_{i=1}^n v_ioldsymbol{a}_i \in \mathbb{R}^k$$

イロト イヨト イヨト イヨト

Matrix norm and transpose

ullet We also define a norm of the matrix $oldsymbol{A}$ by

$$\|oldsymbol{A}\| = \max_{oldsymbol{v} \in \mathbb{R}^n, \|oldsymbol{v}\| = 1} \|oldsymbol{A}oldsymbol{v}\|$$

- For a given matrix $A \in \mathbb{R}^{k \times n}$ we define $A^T \in \mathbb{R}^{n \times k}$ with elements $(A^T)_{ij} = A_{ji}$ as matrix transpose
- A more elegant definition: A^T is the unique matrix, satisfying the equality $(Av, u) = (v, A^T u)$ for all $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^k$.
- From this definition it should be clear that $\|A\| = \|A^T\|$ and that $(A^T)^T = A$

Matrix product

• Given two matrices $A \in \mathbb{R}^{k \times n}$ and $B \in \mathbb{R}^{n \times m}$, we define the product matrix product $C = AB \in \mathbb{R}^{k \times m}$ elementwise by

$$C_{ij} = \sum_{\ell=1}^{n} A_{i\ell} B_{\ell j}, \qquad i = 1, \dots, k \quad j = 1, \dots, m.$$

11 / 30

- In other words, $oldsymbol{C}=oldsymbol{A}oldsymbol{B}$ iff for all $oldsymbol{v}\in\mathbb{R}^n$, $oldsymbol{C}oldsymbol{v}=oldsymbol{A}(oldsymbol{B}oldsymbol{v}).$
- The matrix product is:
 - associative i.e., A(BC) = (AB)C;
 - not commutative i.e., $AB \neq BA$ in general;

for matrices of compatible sizes.

Matrix norm and product

• It is easy (and instructive) to check that

 $\left\| AB \right\| \leq \left\| A \right\| \left\| B \right\|$

and that $(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$.

- Vectors $\boldsymbol{v} \in \mathbb{R}^n$ can be (and sometimes will be) viewed as matrices $\boldsymbol{v} \in \mathbb{R}^{n imes 1}$.
- Check that this embedding is norm-preserving, i.e., the norm of v viewed as a vector equals the norm of v viewed as a matrix with one column.
- The triangle inequality for vectors and matrices is valid

$$\|a+b\| \le \|a\| + \|b\|,$$
 $\|A+B\| \le \|A\| + \|B\|$
 $\|a-b\| \ge \|a\| - \|b\|,$ $\|A-B\| \ge \|A\| - \|B\|$

Matrix inverse

- For a square matrix $A \in \mathbb{R}^{n \times n}$ we can discuss the existence of the unique matrix A^{-1} , called the inverse of A, verifying $A^{-1}Av = v$ for all $v \in \mathbb{R}^n$.
- If the inverse of a given matrix exists, we call the latter nonsingular. The inverse matrix exists iff
 - the columns of A are linearly independent;
 - the columns of A^T are linearly independent;
 - ullet the system Ax=v has a unique solution for every $v\in \mathbb{R}^n$;
 - the system Ax = 0 has x = 0 as its unique solution.
- From this definition it follows that A is nonsingular iff A^T is nonsingular, and, furthermore, $(A^{-1})^T = (A^T)^{-1}$ and therefore will be denoted simply as A^{-T} .
- At last, if A and B are two nonsingular matrices of the same size, then AB is nonsingular and $(AB)^{-1} = B^{-1}A^{-1}$.

- If for some vector $v \in \mathbb{R}^n$, and some scalar $\alpha \in \mathbb{R}$ it holds that $Av = \alpha v$, we call α an eigenvalue of A and v an eigenvector, corresponding to eigenvalue α .
- Eigenvectors, corresponding to a given eigenvalue, form a linear subspace of \mathbb{R}^n ; two nonzero eigenvectors, corresponding to two distinct eigenvalues are linearly independent.
- In general, every matrix $A \in \mathbb{R}^{n \times n}$ has n eigenvalues (counted with multiplicity), maybe complex, which are furthermore roots of the characteristic equation $\det(A - \lambda I) = 0$, where $I \in \mathbb{R}^{n \times n}$ is the identity matrix, characterized by the fact that for all $v \in \mathbb{R}^n$: Iv = v.

(1/2)

- In general we have $\|A\| \ge |\lambda_n|$ where λ_n is the eigenvalue with largest absolute value.
- The matrix A is nonsingular iff none of its eigenvalues are equal to zero, and in this case the eigenvalues of A⁻¹ are equal to the reciprocal of the eigenvalues of A.
- The eigenvalues of A^T are equal to the eigenvalues of A.
- We call A symmetric iff A^T = A. All eigenvalues of symmetric matrices are real, and eigenvectors corresponding to distinct eigenvalues are orthogonal.

3) The Separation Theorem and Farkas' Lemma

Linear algebra and analysis recalls

Taylor series

A function f(x) has the expansion

$$f(x+h) = f(x) + hf'(x) + \dots + \frac{h^k}{k!}f^{(k)}(x) + E$$

where the error term ${\boldsymbol E}$ take the forms

$$E = \frac{1}{k!} \int_0^h (h-t)^k f^{(k+1)}(x+t) \, dt, \qquad [Peano]$$

= $\frac{h^{k+1}}{(k+1)!} f^{(k+1)}(x+\eta), \qquad \eta \in (0,h) \qquad [Lagrange]$
= $\mathcal{O}(h^{k+1})$

- ∢ ∃ ▶

Given a *list* of (non negative) integer $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$ called multi-index and a vector $\boldsymbol{z} \in \mathbb{R}^n$ and a function $f : \mathbb{R}^n \mapsto \mathbb{R}$ we define

《曰》 《圖》 《臣》 《臣》

18 / 30

•
$$\boldsymbol{\alpha}! = \alpha_1! \, \alpha_2! \cdots \alpha_n!$$

• $|\boldsymbol{\alpha}| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$
• $\boldsymbol{z}^{\boldsymbol{\alpha}} = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$
• $\frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{\alpha}} = \frac{\partial^{|\boldsymbol{\alpha}|} f(z_1, z_2, \dots, z_n)}{\partial \alpha_1 \partial \alpha_2 \cdots \partial \alpha_n}$

Multivariate Taylor series

A function $f: \mathbb{R}^n \mapsto \mathbb{R}$ has the expansion

$$f(\boldsymbol{x} + \boldsymbol{h}) = \sum_{|\boldsymbol{\alpha}|=0}^{k} \frac{\boldsymbol{h}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{\alpha}} + E$$

where the error term E take the forms

$$E = (k+1) \sum_{|\boldsymbol{\alpha}|=k+1} \frac{\boldsymbol{h}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \int_{0}^{1} (1-t)^{k} \frac{\partial f(\boldsymbol{x}+t\boldsymbol{h})}{\partial \boldsymbol{\alpha}} dt$$
$$= \mathcal{O}(\|\boldsymbol{h}\|^{k+1})$$

Linear algebra and analysis recalls

Multivariate Taylor series, second order special case

A function $f:\mathbb{R}^n\mapsto\mathbb{R}$ has the expansion

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})\boldsymbol{h} + \frac{1}{2}\boldsymbol{h}^2 \nabla^2 f(\boldsymbol{x})\boldsymbol{h} + \mathcal{O}(\|\boldsymbol{h}\|^3)$$

where

$$\nabla f(\boldsymbol{x}) = (\partial_{x_1} f, \partial_{x_2} f, \dots, \partial_{x_n} f),$$
$$\nabla^2 f(\boldsymbol{x}) = \begin{pmatrix} \partial_{x_1}^{(2)} f & \partial_{x_1} \partial_{x_2} f & \cdots & \partial_{x_1} \partial_{x_n} f \\ \partial_{x_1} \partial_{x_2} f & \partial_{x_2}^{(2)} f & \cdots & \partial_{x_2} \partial_{x_n} f \\ \vdots & & \vdots \\ \partial_{x_1} \partial_{x_n} f & \partial_{x_2} \partial_{x_n} f & \cdots & \partial_{x_n}^{(2)} f \end{pmatrix}$$

Outline

3 The Separation Theorem and Farkas' Lemma

Linear algebra and analysis recalls

The Separation Theorem

Theorem (Separation Theorem)

Let be $C \subseteq \mathbb{R}^n$ closed and convex, and $y \notin C$. Then there exist a real α and a vector $\pi \neq 0$ such that:

$$\mathbf{0} \ \boldsymbol{\pi}^T \boldsymbol{y} > \alpha;$$

②
$$\boldsymbol{\pi}^T \boldsymbol{x} \leq lpha$$
 for all $\boldsymbol{x} \in C$.

Proof.

Define the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ by $f(x) = \frac{1}{2} ||x - y||^2$. Now by the Weierstrass Theorem there exists $z \in C$ such that:

$$f(\boldsymbol{z}) \leq f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in C$$

due to the convexity of C we have ${\bm z}+t({\bm x}-{\bm z})\in C$ for all $t\in[0,1]$ and then

$$0 \leq \frac{\mathsf{f}(\boldsymbol{z} + t(\boldsymbol{x} - \boldsymbol{z})) - \mathsf{f}(\boldsymbol{z})}{t},$$

taking the limit t
ightarrow 0 and noting that $abla {\sf f}({m x}) = {m x} - {m y}$ we have

$$0 \leq
abla \mathsf{f}(\boldsymbol{z})(\boldsymbol{x} - \boldsymbol{z}) = (\boldsymbol{z} - \boldsymbol{y})^T (\boldsymbol{x} - \boldsymbol{z})$$

Now setting $\boldsymbol{\pi} = \boldsymbol{y} - \boldsymbol{z}$ and $\boldsymbol{\alpha} = \boldsymbol{\pi}^T \boldsymbol{z}$ gives the result.

The Farkas's lemma

Lemma (Farkas's lemma)

Let $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$ and consider the following two problems (I) Find $x \in \mathbb{R}^m$ such that: Ax = b and $x \ge 0$; (II) Find $\pi \in \mathbb{R}^n$ such that: $A^T \pi \le 0$ and $b^T \pi > 0$; then exactly only one of them has a solution.

Proof.

 \Rightarrow If (I) IS feasible the (II) IS NOT feasible:

Let (I) has a feasible solution, say $x \ge 0$, then Ax = b so if there is a solution to (II), say π , then $x^T A^T \pi = b^T \pi > 0$. But then $A^T \pi > 0$ (since $x \ge 0$), a contradiction. Hence (II) is infeasible.

Proof. (1/5).

 $\Rightarrow \text{ If (I) IS NOT feasible then (II) IS feasible:}$ Let $C = \{ z \in \mathbb{R}^m \mid z = Ax, x \ge 0 \}$. If (I) is infeasible then $b \notin C$. The set C is convex and closed (see next slides) so by the Separation Theorem there exists a real α and a vector π such that $b^T \pi > \alpha$ and $z^T \pi \le \alpha$ for all $z \in C$, that is,

$$\boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{\pi} \leq \alpha, \qquad \forall \boldsymbol{x} \geq \boldsymbol{0}$$

Since $0 \in C$ it follows that $\alpha \ge 0$, so $b^T \pi > 0$. If there exists an $z \ge 0$ such that $z^T A^T \pi > 0$ then

$$\lim_{\lambda \to \infty} (\lambda \boldsymbol{z}^T) \boldsymbol{A}^T \boldsymbol{\pi} = \infty$$

Therefore we must have $x^T A^T \pi \leq 0$ for all $x \geq 0$, and this holds if and only if $A^T \pi \leq 0$, which means that (II) is feasible.

Proof. (2/5).

The set *C* is convex: Let $C = \{ z \in \mathbb{R}^m \mid z = Ax, x \ge 0 \}$. Let z_1 and $z_2 \in C$ then there exists $x_1 \ge 0$ and $x_2 \ge 0$ such that

$$oldsymbol{z}_1 = oldsymbol{A} oldsymbol{x}_1$$
 $oldsymbol{z}_2 = oldsymbol{A} oldsymbol{x}_2.$

Moreover

$$\alpha \boldsymbol{z}_1 + (1-\alpha)\boldsymbol{z}_2 = \boldsymbol{A} \big(\alpha \boldsymbol{x}_1 + (1-\alpha)\boldsymbol{x}_2 \big),$$

$$\alpha \boldsymbol{x}_1 + (1-\alpha)\boldsymbol{x}_2 \ge \boldsymbol{0}, \qquad \forall \alpha \in [0,1].$$

so that C is convex.

Proof. (3/5).

The set C is closed:

Let $\{z_k\}$ a convergent sequence in C, i.e. $\lim_{k\to\infty} z_k = z$, for all k there exists x_k such that $z_k = Ax_k$ we choose x_k such that

$$\boldsymbol{z}_k = \boldsymbol{A} \boldsymbol{x}_k, \quad \text{and} \quad \boldsymbol{x}_k \perp \operatorname{Ker}(\boldsymbol{A})$$

if $\|x_k\|$ is bounded $\|x_k\|$ lie in a compact and thus there exists a subsequence such that

$$\lim_{j o\infty}oldsymbol{x}_{k_j}=oldsymbol{x}, \qquad oldsymbol{x}\geqoldsymbol{0}.$$

and thus

$$oldsymbol{z} = \lim_{j o \infty} oldsymbol{z}_{k_j} = \lim_{j o \infty} oldsymbol{A} oldsymbol{x}_{k_j} = oldsymbol{A} oldsymbol{x}_{k_j} = oldsymbol{A} oldsymbol{x} \in C$$

so that C is closed.

27 / 30

イロト イポト イヨト イヨト

Proof. (4/5).

if $\|\boldsymbol{x}_k\|$ is unbounded we have

$$\lim_{j \to \infty} \frac{\boldsymbol{z}_{k_j}}{\|\boldsymbol{x}_{k_j}\|} = \frac{\lim_{j \to \infty} \boldsymbol{z}_{k_j}}{\lim_{j \to \infty} \|\boldsymbol{x}_{k_j}\|} = \frac{\boldsymbol{z}}{\infty} = \boldsymbol{0}$$

we define the sequence $w_j = x_{k_j} / ||x_{k_j}||$ which is bounded and thus has a converging subsequence:

$$\lim_{i o\infty}oldsymbol{w}_{j_i}=oldsymbol{w},\qquad \|oldsymbol{w}\|=1,\quad oldsymbol{w}\geqoldsymbol{0}.$$

notice that

$$oldsymbol{A}oldsymbol{w} = \lim_{i o \infty} oldsymbol{A}oldsymbol{w}_{j_i} = \lim_{i o \infty} rac{oldsymbol{A}oldsymbol{x}_{k_{j_i}}}{\left\|oldsymbol{x}_{k_{j_i}}
ight\|} = \lim_{i o \infty} rac{oldsymbol{z}_{k_{j_i}}}{\left\|oldsymbol{x}_{k_{j_i}}
ight\|} = oldsymbol{0}$$

and thus w is in the kernel of A.

э

<ロ> (日) (日) (日) (日) (日)

Proof. (5/5).

But for all $oldsymbol{p} \in \operatorname{Ker}(oldsymbol{A})$ we have

$$0 = \lim_{i o \infty} oldsymbol{p} \cdot oldsymbol{w}_{j_i} = oldsymbol{p} \cdot \lim_{i o \infty} oldsymbol{w}_{j_i} = oldsymbol{p} \cdot oldsymbol{w}$$

so that $w \perp \operatorname{Ker}(A)$ and $w \in \operatorname{Ker}(A)$ and thus w = 0, a contradiction!.

E

→ ∢ ∃ →

References

R. Tyrrell Rockafellar Convex Analysis Princeton University Press, 1996.

J. Farkas

Theorie der einfachen Ungleichungen Journal für die reine und angewandte Mathematik, pp.1–27, **124**, 1902.

http://en.wikipedia.org/wiki/Multi-index_notation