Unconstrained minimization

Lectures for PHD course on Numerical optimization

Enrico Bertolazzi

DIMS - Universitá di Trento

November 21 – December 14, 2011

Outline

- General iterative scheme
- 2 Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \mathsf{f}(\boldsymbol{x})$$

the following regularity about f(x) is assumed in the following:

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma > 0$ such that

$$\|\nabla f(\boldsymbol{x})^T - \nabla f(\boldsymbol{y})^T\| \le \gamma \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

Definition (Global minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a global minimum if

$$f(x_{\star}) \leq f(x), \quad \forall x \in \mathbb{R}^n.$$

Definition (Local minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a local minimum if

$$f(x_*) \le f(x), \quad \forall x \in B(x_*; \delta).$$

Obviously a global minimum is a local minimum. Find a global minimum in general is not an easy task. The algorithms presented in the sequel will approximate local minima's.

Definition (Strict global minimum)

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$ a point $x_\star \in \mathbb{R}^n$ is a strict global minimum if

$$f(\boldsymbol{x}_{\star}) < f(\boldsymbol{x}), \qquad \forall \boldsymbol{x} \in \mathbb{R}^n \setminus \{\boldsymbol{x}_{\star}\}.$$

Definition (Strict local minimum)

Given $\mathsf{f}:\mathbb{R}^n\mapsto\mathbb{R}$ a point $x_\star\in\mathbb{R}^n$ is a strict local minimum if

$$f(x_{\star}) < f(x), \quad \forall x \in B(x_{\star}; \delta) \setminus \{x_{\star}\}.$$

Obviously a strict global minimum is a strict local minimum.

First order Necessary condition

Lemma (First order Necessary condition for local minimum)

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$ satisfying the regularity assumption. If a point $x_\star \in \mathbb{R}^n$ is a local minimum then

$$\nabla f(\boldsymbol{x}_{\star})^T = \mathbf{0}.$$

Proof.

Consider a generic direction d, then for δ small enough we have

$$\lambda^{-1}(f(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - f(\boldsymbol{x}_{\star})) \ge 0, \qquad 0 < \lambda < \delta$$

so that

$$\lim_{\lambda \to 0} \lambda^{-1} (f(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - f(\boldsymbol{x}_{\star})) = \nabla f(\boldsymbol{x}_{\star}) \boldsymbol{d} \ge 0,$$

because d is a generic direction we have $\nabla f(x_{\star})^T = 0$.

- The first order necessary condition do not discriminate maximum, minimum, or saddle points.
- 2 To discriminate maximum and minimum we need more information, e.g. second order derivative of f(x).
- With second order derivative we can build necessary and sufficient condition for a minima.
- **1** In general using only first and second order derivative at the point x_{\star} it is not possible to deduce a necessary and sufficient condition for a minima.

Second order Necessary condition

Lemma (Second order Necessary condition for local minimum)

Given $f \in C^2(\mathbb{R}^n)$ if a point $x_\star \in \mathbb{R}^n$ is a local minimum then $\nabla f(x_\star)^T = \mathbf{0}$ and $\nabla^2 f(x_\star)$ is semi-definite positive, i.e.

$$\mathbf{d}^T \nabla^2 \mathbf{f}(\mathbf{x}_{\star}) \mathbf{d} \ge 0, \qquad \forall \mathbf{d} \in \mathbb{R}^n$$

Example

This condition is only, necessary, in fact consider $f(x)=x_1^2-x_2^3$,

$$\nabla f(\boldsymbol{x}) = (2x_1, -3x_2^2), \quad \nabla^2 f(\boldsymbol{x}) = \begin{pmatrix} 2 & 0 \\ 0 & -6x_2 \end{pmatrix}$$

for the point $x_{\star} = 0$ we have $\nabla f(0) = 0$ and $\nabla^2 f(0)$ semi-definite positive, but 0 is a saddle point not a minimum.

Proof.

The condition $\nabla f(x_*)^T = 0$ comes from first order necessary conditions. Consider now a generic direction d, and the finite difference:

$$\frac{\mathsf{f}(\boldsymbol{x}_{\star} + \lambda \boldsymbol{d}) - 2\mathsf{f}(\boldsymbol{x}_{\star}) + \mathsf{f}(\boldsymbol{x}_{\star} - \lambda \boldsymbol{d})}{\lambda^{2}} \geq 0$$

by using Taylor expansion for f(x)

$$\mathsf{f}(\boldsymbol{x}_{\star} \pm \lambda \boldsymbol{d}) = \mathsf{f}(\boldsymbol{x}_{\star}) \pm \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \lambda \boldsymbol{d} + \frac{\lambda^{2}}{2} \boldsymbol{d}^{T} \nabla^{2} \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} + o(\lambda^{2})$$

and from the previous inequality

$$\boldsymbol{d}^T \nabla^2 f(\boldsymbol{x}_{\star}) \boldsymbol{d} + 2o(\lambda^2)/\lambda^2 \ge 0$$

taking the limit $\lambda \to 0$ and form the arbitrariness of d we have that $\nabla^2 \mathbf{f}(\boldsymbol{x}_\star)$ must be semi-definite positive.

Second order sufficient condition

Lemma (Second order sufficient condition for local minimum)

Given $f \in C^2(\mathbb{R}^n)$ if a point $x_{\star} \in \mathbb{R}^n$ satisfy:

$$\mathbf{d}^T \nabla^2 f(\mathbf{x}_{\star}) \mathbf{d} > 0, \qquad \forall \mathbf{d} \in \mathbb{R}^n \setminus \{\mathbf{x}_{\star}\}$$

then $x_{\star} \in \mathbb{R}^n$ is a strict local minimum.

Remark

Because $abla^2 \mathsf{f}(x_\star)$ is symmetric we can write

$$\lambda_{\min} \boldsymbol{d}^T \boldsymbol{d} \leq \boldsymbol{d}^T \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{d} \leq \lambda_{\max} \boldsymbol{d}^T \boldsymbol{d}$$

If $\nabla^2 f(x_*)$ is positive definite we have $\lambda_{\min} > 0$.

Proof.

Consider now a generic direction $oldsymbol{d}$, and the Taylor expansion for $f(oldsymbol{x})$

$$egin{aligned} \mathsf{f}(oldsymbol{x}_{\star}+oldsymbol{d}) &= \mathsf{f}(oldsymbol{x}_{\star}) +
abla \mathsf{f}(oldsymbol{x}_{\star}) + rac{1}{2} \lambda_{min} \, \|oldsymbol{d}\|^2 + o(\|oldsymbol{d}\|^2) \ &\geq \mathsf{f}(oldsymbol{x}_{\star}) + rac{1}{2} \lambda_{min} \, \|oldsymbol{d}\|^2 \, \Big(1 + o(\|oldsymbol{d}\|^2) / \, \|oldsymbol{d}\|^2 \Big) \end{aligned}$$

choosing d small enough we can write

$$\mathsf{f}(oldsymbol{x}_{\star}+oldsymbol{d}) \geq \mathsf{f}(oldsymbol{x}_{\star}) + rac{1}{4}\lambda_{min}\left\|oldsymbol{d}
ight\|^{2} > \mathsf{f}(oldsymbol{x}_{\star}), \qquad oldsymbol{d}
eq oldsymbol{0}, \; \left\|oldsymbol{d}
ight\| \leq \delta.$$

i.e. x_{\star} is a strict minimum.

<ロト <回り < 直り < 直り

Outline

- General iterative scheme
- Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

How to find a minimum

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$: minimize_{$x \in \mathbb{R}^n$} f(x).

• We can solve the problem by solving the necessary condition. i.e by solving the nonlinear systems

$$\nabla \mathsf{f}(\boldsymbol{x})^T = \mathbf{0}.$$

- ② Using such an approach we looses the information about f(x).
- Moreover such an approach can find solution corresponding to a maximum or saddle points.
- **3** A better approach is to use all the information and try to build minimizing procedure, i.e. procedures that, starting from a point x_0 build a sequence $\{x_k\}$ such that $f(x_{k+1}) \leq f(x_k)$. In this way, at least, we avoid to converge to a strict maximum.

Iterative Methods

- in practice very rare to be able to provide explicit minimizer.
- iterative method: given starting guess x_0 , generate the sequence,

$$\{\boldsymbol{x}_k\}, \qquad k=1,2,\ldots$$

- AIM: ensure that (a subsequence) has some favorable limiting properties:
 - satisfies first-order necessary conditions
 - satisfies second-order necessary conditions

Line-search Methods

A generic iterative minimization procedure can be sketched as follows:

- ullet calculate a search direction $oldsymbol{p}_k$ from $oldsymbol{x}_k$
- ensure that this direction is a descent direction, i.e.

$$\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k < 0,$$
 whenever $\nabla f(\boldsymbol{x}_k)^T \neq \mathbf{0}$

so that, at least for small steps along p_k , the objective function f(x) will be reduced

• use line-search to calculate a suitable step-length $\alpha_k>0$ so that

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) < f(\boldsymbol{x}_k).$$

• Update the point:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$$

Generic minimization algorithm

Written with a pseudo-code the minimization procedure is the following algorithm:

Generic minimization algorithm

```
Given an initial guess \boldsymbol{x}_0, let k=0; while not converged do

Find a descent direction \boldsymbol{p}_k at \boldsymbol{x}_k;

Compute a step size \alpha_k using a line-search along \boldsymbol{p}_k.

Set \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k and increase k by 1.

end while
```

The crucial points which differentiate the algorithms are:

- **1** The computation of the direction p_k ;
- 2 The computation of the step size α_k .

Practical Line-search methods

• The first developed minimization algorithms try to solve

$$\alpha_k = \arg\min_{\alpha>0} f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$$

- performing exact line-search by univariate minimization;
- rather expensive and certainly not cost effective.
- Modern methods implements inexact line-search:
 - ensure steps are neither too long nor too short
 - try to pick useful initial step size for fast convergence
 - best methods are based on:
 - backtracking–Armijo search;
 - Armijo–Goldstein search;
 - Franke–Wolfe search;

backtracking line-search

To obtain a monotone decreasing sequence we can use the following algorithm:

Backtracking line-search

```
Given \alpha_{\text{init}} (e.g., \alpha_{\text{init}}=1);

Given \tau \in (0,1) typically \tau = 0.5;

Let \alpha^{(0)} = \alpha_{\text{init}};

while not f(\boldsymbol{x}_k + \alpha^{(\ell)}\boldsymbol{p}_k) < f(\boldsymbol{x}_k) do set \alpha^{(\ell+1)} = \tau \alpha^{(\ell)};

increase \ell by 1;

end while Set \alpha_k = \alpha^{(\ell)}.
```

To be effective the previous algorithm should terminate in a finite number of steps. The next lemma assure that if p_k is a descent direction then the algorithm terminate.

Outline

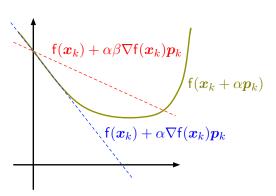
- General iterative scheme
- 2 Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

Armijo condition

To prevent large steps relative to the decreasing of $f(\boldsymbol{x})$ we require that

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

for some $\beta \in (0,1)$. Typical values of β ranges form 10^{-4} to 0.1.



Backtracking Armijo line-search

```
Given \alpha_{\text{init}} (e.g., \alpha_{\text{init}} = 1);

Given \tau \in (0,1) typically \tau = 0.5;

Let \alpha^{(0)} = \alpha_{\text{init}};

while not f(\boldsymbol{x}_k + \alpha^{(\ell)}\boldsymbol{p}_k) \leq f(\boldsymbol{x}_k) + \alpha^{(\ell)}\beta\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k do set \alpha^{(\ell+1)} = \tau\alpha^{(\ell)};

increase \ell by 1;

end while

Set \alpha_k = \alpha^{(\ell)}.
```

- Backtracking Armijo line-search prevents the step from getting too large.
- Now the question is: will the backtracking Armijo line-search terminate in a finite number of steps ?

Finite termination of Armijo line-search

Theorem (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and $\beta \in (0,1)$ and that p_k is a descent direction at x_k . Then the Armijo condition

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

is satisfied for all
$$\alpha_k \in [0, \omega_k]$$
 where $\omega_k = \frac{2(\beta-1)\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k}{\gamma \left\|\boldsymbol{p}_k\right\|^2}$

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma>0$ such that

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\| \le \gamma \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

Unconstrained minimization

Finite termination of Armijo line-search

To prove finite termination we need the following Taylor expansion due to the regularity assumption:

$$\mathsf{f}(\boldsymbol{x} + \alpha \boldsymbol{p}) = \mathsf{f}(\boldsymbol{x}) + \alpha \nabla \mathsf{f}(\boldsymbol{x}) \boldsymbol{p} + E \quad \text{where} \quad |E| \leq \frac{\gamma}{2} \alpha^2 \left\| \boldsymbol{p} \right\|^2$$

Proof.

If $\alpha \le \omega_k$ we have $\alpha \gamma \| \boldsymbol{p}_k \|^2 \le 2(\beta-1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$ and by using Taylor expansion

$$f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k) \leq f(\boldsymbol{x}_k) + \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \frac{\gamma}{2} \alpha^2 \|\boldsymbol{p}_k\|^2$$

$$\leq f(\boldsymbol{x}_k) + \alpha \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k + \alpha(\beta - 1) \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

$$\leq f(\boldsymbol{x}_k) + \alpha \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

Finite termination of Armijo line-search

Corollary (Finite termination of Armijo linesearch)

Suppose that f(x) satisfy the standard assumptions and $\beta \in (0,1)$ and that p_k is a descent direction at x_k . Then the step-size generated by then backtracking-Armijo line-search terminates with

$$\alpha_k \ge \min \left\{ \alpha_{\textit{init}}, \tau \omega_k \right\}, \qquad \omega_k = 2(\beta - 1) \nabla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k / (\gamma \|\boldsymbol{p}_k\|^2)$$

Proof.

Line-search will terminate as soon as $\alpha^{(\ell)} \leq \omega_k$:

- **1** May be that α_{init} satisfies the Armijo condition $\Rightarrow \alpha_k = \alpha_{\text{init}}$.
- 2 Otherwise in the last line-search iteration we have

$$\alpha^{(\ell-1)} > \omega_k, \qquad \alpha_k = \alpha^{(\ell)} = \tau \alpha^{(\ell-1)} > \tau \omega_k.$$

Combining these 2 cases gives the required result.

Backtracking-Armijo line-search

- The previous analysis permit to say that Backtracking-Armijo line-search ends in a finite number of steps.
- The line-search produce a step length not too long due to the condition

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

- The line-search produce a step length not too short due to the finite termination theorem.
- Armijo line-search can be improved by adding some further requirements on the step length acceptance criteria.

Global convergence

Theorem (Global convergence)

Suppose that f(x) satisfy the standard assumptions, then, for the iterates generated by the Generic minimization algorithm with backtracking Armijo line-search either:

- \circ or $\lim_{k\to\infty} \mathsf{f}(\boldsymbol{x}_k) = -\infty$;
- \bullet or $\lim_{k\to\infty} |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| \min\left\{1, \|\boldsymbol{p}_k\|^{-1}\right\} = 0.$

Remark

If the theorem, point 1 means that we found a stationary point in a finite number of steps. Point 2 means that function f(x) is unbounded below, so that a minimum does not exists. Point 3 alone do not imply convergence, but if $\nabla f(x_k)$ and p_k do not become orthogonal and $\|p_k\| \not\to 0$ then $\|\nabla f(x_k)\| \to 0$.

Proof. (1/3).

Assume points 1 and 2 are not satisfied, then we prove point 3. Consider

$$f(\boldsymbol{x}_{k+1}) \le f(\boldsymbol{x}_k) + \alpha_k \beta \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k \le f(\boldsymbol{x}_0) + \sum_{j=0}^k \alpha_j \beta \nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j$$

by the fact that p_k is a descent direction we have that the series:

$$\sum_{j=0}^{\infty} \alpha_j |\nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j| \le \beta^{-1} \lim_{k \to \infty} [f(\boldsymbol{x}_0) - f(\boldsymbol{x}_{k+1})] < \infty$$

and then

$$\lim_{j \to \infty} \alpha_j \left| \nabla f(\boldsymbol{x}_j) \boldsymbol{p}_j \right| = 0$$

Proof. (2/3).

Recall that

$$\alpha_k \ge \min \{ \alpha_{\mathsf{init}}, \tau \omega_k \}, \qquad \omega_k = 2(\beta - 1) \nabla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k / (\gamma \|\boldsymbol{p}_k\|^2)$$

and consider the two index set:

$$\mathcal{K}_1 = \{k \mid \alpha_k = \alpha_{\mathsf{init}}\}, \qquad \mathcal{K}_2 = \{k \mid \alpha_k < \alpha_{\mathsf{init}}\},$$

Obviously $\mathbb{N} = \mathcal{K}_1 \cup \mathcal{K}_2$ and from $\lim_{k \to \infty} \alpha_k |\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k| = 0$ we have

$$\lim_{k \in \mathcal{K}_1 \to \infty} \alpha_k |\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k| = 0, \tag{A}$$

$$\lim_{k \in \mathcal{K}_2 \to \infty} \alpha_k \left| \nabla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k \right| = 0, \tag{B}$$

Proof. (3/3).

For $k \in \mathcal{K}_1$ we have $\alpha_k = \alpha_{\text{init}}$ and $\alpha_k |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| = \alpha_{\text{init}} |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k|$ and from (A) we have

$$\lim_{k \in \mathcal{K}_1 \to \infty} |\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k| = 0 \tag{*}$$

For $k \in \mathcal{K}_2$ we have $\tau \omega_k \leq \alpha_k \leq \omega_k$ so

$$|\alpha_k|\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| \ge \tau \omega_k |\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k| \ge 2\tau (1-\beta) \frac{|\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k|^2}{\gamma \|\boldsymbol{p}_k\|^2}$$

and from (B) we have

$$\lim_{k \in \mathcal{K}_1 \to \infty} \frac{|\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k|}{\|\boldsymbol{p}_k\|} = 0 \tag{**}$$

Combining (\star) and $(\star\star)$ gives the required result.

Steepest descent algorithm

Steepest descent algorithm

Given an initial guess x_0 , let k = 0;

while not converged do

Compute a step-size α_k using a line-search along $-\nabla f(x_k)^T$. Set $x_{k+1} = x_k - \alpha_k \nabla f(x_k)^T$ and increase k by 1.

end while

- The steepest descent algorithm is simply the generic minimization algorithm with search direction the opposite of the gradient in x_k .
- The search direction $-\nabla f(x_k)^T$ is always a descent direction unless the point x_k is a stationary point.

Global convergence of steepest descent

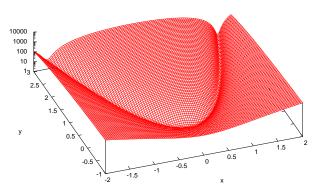
Corollary (Global convergence of steepest descent)

Suppose that f(x) satisfy the standard assumptions, then, for the iterates generated by the steepest descent algorithm with backtracking Armijo line-search either:

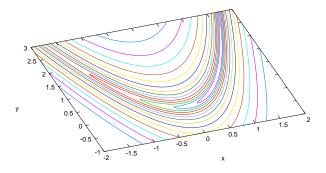
- \circ or $\lim_{k\to\infty} f(\boldsymbol{x}_k) = -\infty$;
- $\mathbf{or} \lim_{k\to\infty} \nabla \mathsf{f}(\boldsymbol{x}_k)^T = \mathbf{0}.$

- Although the steepest descent scheme is globally convergent it can be very slow!
- A classical example is the Rosenbrock function:

$$f(x,y) = 100 (y - x^2)^2 + (x - 1)^2$$



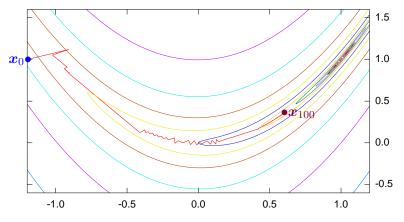
• This function has a unique minimum at $(1,1)^T$ inside a banana shaped valley.



(3/3)

The Rosenbrock example

• After 100 iteration starting from $(-1.2, 1)^T$ the approximate minimum is far from the solution.



- The steepest descent is a slow method, not only on a difficult test case like the Rosenbrock example.
- Given the function $\mathbf{f}(x,y)=\frac{1}{2}x^2+\frac{9}{2}y^2$ starting from $\boldsymbol{x}_0=(9,1)^T$ we have the zig-zag pattern toward $(0,0)^T$.



Outline

- General iterative scheme
- Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

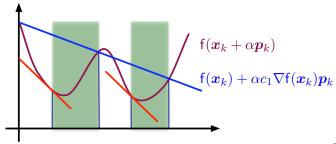
The Wolfe and Armijo Goldstein conditions

- The simple condition of descent step is in general not enough for the convergence of a iterative minimization scheme.
- The condition of sufficient decrease of backtracking Armijo line-search may be insufficient on general inexact line-search algorithm.
- Adding another condition to the sufficient decrease condition such that we avoid too short step length we obtain globally convergent numerical procedure.
- Oepending on which additional condition is added we obtain the:
 - Wolfe conditions:
 - Armijo Goldstein conditions.

The Wolfe conditions

Let c_1 and c_2 two constant such that $0 < c_1 < c_2 < 1$. We say that the step length α_k satisfy the Wolfe conditions if α_k satisfy:

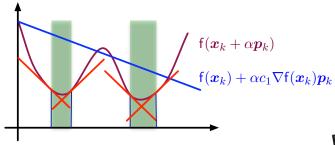
- sufficient decrease: $f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f(x_k) p_k$;
- **2** curvature condition: $\nabla f(x_k + \alpha_k p_k) p_k \ge c_2 \nabla f(x_k) p_k$.



The strong Wolfe conditions

Let c_1 and c_2 two constant such that $0 < c_1 < c_2 < 1$. We say that the step length α_k satisfy the strong Wolfe conditions if α_k satisfy:

- sufficient decrease: $f(x_k + \alpha_k p_k) \le f(x_k) + c_1 \alpha_k \nabla f(x_k) p_k$;
- **2** curvature condition: $|\nabla f(x_k + \alpha_k p_k)p_k| \leq c_2 |\nabla f(x_k)p_k|$.



Existence of "Wolfe" step length

- The Wolfe condition seems quite restrictive.
- The next lemma answer to the question if a step length satisfying Wolfe conditions does exists.

Lemma (strong Wolfe step length)

Let $f: \mathbb{R}^n \to \mathbb{R}$ satisfying the regularity assumption. If the following condition are satisfied:

- **1** p_k is a descent direction for the point x_k , i.e. $\nabla f(x_k)p_k < 0$;
- ② $f(x_k + \alpha p_k)$ is bounded from below, i.e. $\lim_{\alpha \to \infty} f(x_k + \alpha p_k) > -\infty$.

then for any $0 < c_1 < c_2 < 1$ there exists an interval [a,b] such that all $\alpha_k \in [a,b]$ satisfy the strong Wolfe conditions.

Proof.

Define $\ell(\alpha) = \mathsf{f}(\boldsymbol{x}_k) + \alpha c_1 \nabla \mathsf{f}(\boldsymbol{x}_k) \boldsymbol{p}_k$ and $g(\alpha) = \mathsf{f}(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$. From $\lim_{\alpha \to \infty} \ell(\alpha) = -\infty$ and from condition 1 it follows that there exists $\alpha_{\star} > 0$ such that

$$\ell(\alpha_{\star}) = g(\alpha_{\star})$$
 and $\ell(\alpha) > g(\alpha), \quad \forall \alpha \in (0, \alpha_{\star})$

so that all step length $\alpha \in (0, \alpha_\star)$ satisfy strong Wolfe condition 1. Because $\ell(0) = g(0)$ form Cauchy-Rolle theorem there exists $\alpha_{\star\star} \in (0, \alpha_\star)$ such that

$$g'(\alpha_{\star\star}) = \ell'(\alpha_{\star\star}) \Rightarrow$$

$$\nabla f(\boldsymbol{x}_k + \alpha_{\star\star} \boldsymbol{p}_k) \boldsymbol{p}_k = c_1 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k > c_2 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

by continuity we find an interval around $\alpha_{\star\star}$ with step lengths satisfying strong Wolfe conditions.

The Zoutendijk condition

Theorem (Zoutendijk)

Let $f : \mathbb{R}^n \to \mathbb{R}$ satisfying the regularity assumption and bounded from below, i.e.

$$\inf_{oldsymbol{x}\in\mathbb{R}^n}\mathsf{f}(oldsymbol{x})>-\infty$$

Let $\{x_k\}$, $k=0,1,\ldots,\infty$ generated by a generic minimization algorithm where line-search satisfy Wolfe conditions, then

$$\sum_{k=1}^{\infty} (\cos \theta_k)^2 \left\| \nabla \mathsf{f}(\boldsymbol{x}_k)^T \right\|^2 < +\infty$$

where

$$\cos \theta_k = \frac{-\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k}{\|\nabla f(\boldsymbol{x}_k)^T\| \|\boldsymbol{p}_k\|}$$

Proof. (1/3).

Using the second condition of Wolfe

$$\nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \boldsymbol{p}_k \ge c_2 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

$$(\nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) - \nabla f(\boldsymbol{x}_k))\boldsymbol{p}_k \ge (c_2 - 1)\nabla f(\boldsymbol{x}_k)\boldsymbol{p}_k$$

by using Lipschitz regularity

$$\begin{aligned} \left| \left(\nabla \mathsf{f}(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) - \nabla \mathsf{f}(\boldsymbol{x}_k) \right) \boldsymbol{p}_k \right| &\leq \gamma \left\| \boldsymbol{x}_{k+1} - \boldsymbol{x}_k \right\| \left\| \boldsymbol{p}_k \right\| \\ &= \alpha_k \gamma \left\| \boldsymbol{p}_k \right\|^2 \end{aligned}$$

and using both inequality we obtain the estimate for α_k :

$$lpha_k \geq rac{c_2 - 1}{\gamma \left\| oldsymbol{p}_k
ight\|^2}
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k$$

Proof. (2/3).

Using the first condition of Wolfe and estimate of α_k

$$f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) + \alpha_k c_1 \nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k$$

$$\le f(\boldsymbol{x}_k) - \frac{c_1 (1 - c_2)}{\gamma \|\boldsymbol{p}_k\|^2} (\nabla f(\boldsymbol{x}_k) \boldsymbol{p}_k)^2$$

setting $A=c_1(1-c_2)/\gamma$ and using the definition of $\cos\theta_k$

$$f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k) \le f(\boldsymbol{x}_k) - A(\cos \theta_k)^2 \|\nabla f(\boldsymbol{x}_k)^T\|^2$$

and by induction

$$f(\boldsymbol{x}_{k+1}) \le f(\boldsymbol{x}_1) - A \sum_{j=1}^{k} (\cos \theta_j)^2 \left\| \nabla f(\boldsymbol{x}_j)^T \right\|^2$$

Proof. (3/3).

The function f(x) is bounded from below, i.e.

$$\inf_{\boldsymbol{x}\in\mathbb{R}^n}\mathsf{f}(\boldsymbol{x})>-\infty$$

so that

$$A\sum_{j=1}^{k}(\cos\theta_{j})^{2}\left\|\nabla\mathsf{f}(\boldsymbol{x}_{j})^{T}\right\|^{2} \leq \mathsf{f}(\boldsymbol{x}_{1}) - \mathsf{f}(\boldsymbol{x}_{k+1})$$

and

$$A\sum_{j=1}^{\infty}(\cos\theta_j)^2\left\|\nabla\mathsf{f}(\boldsymbol{x}_j)^T\right\|^2\leq\mathsf{f}(\boldsymbol{x}_1)-\lim_{k\to\infty}\mathsf{f}(\boldsymbol{x}_{k+1})<+\infty$$

Corollary (Zoutendijk condition)

Let $f: \mathbb{R}^n \to \mathbb{R}$ satisfying the regularity assumption and bounded from below. Let $\{x_k\}$, $k=0,1,\ldots,\infty$ generated by a generic minimization algorithm where line-search satisfy Wolfe conditions, then

$$\cos \theta_k \left\|
abla \mathsf{f}(oldsymbol{x}_k)^T
ight\| o 0 \qquad \textit{where} \qquad \cos \theta_k = rac{-
abla \mathsf{f}(oldsymbol{x}_k) oldsymbol{p}_k}{\left\|
abla \mathsf{f}(oldsymbol{x}_k)^T
ight\| \left\| oldsymbol{p}_k
ight\|}$$

Remark

If $\cos \theta_k \ge \delta > 0$ for all k from the Zoutendijk condition we have:

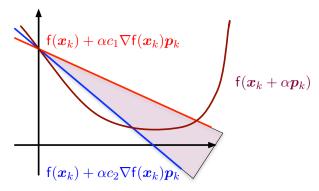
$$\|\nabla \mathsf{f}(\boldsymbol{x}_k)^T\| \to 0$$

i.e. the generic minimization algorithm where line-search satisfy Wolfe conditions converge to a stationary point.

The Armijo-Goldstein conditions

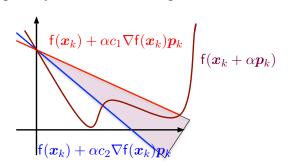
Let c_1 and c_2 two constant such that $0 < c_1 < c_2 < 1$. We say that the step length α_k satisfy the Wolfe conditions if α_k satisfy:

- $(x_k + \alpha_k p_k) \ge f(x_k) + c_2 \alpha_k \nabla f(x_k) p_k;$



The Armijo-Goldstein conditions

- Armijo-Goldstein conditions has very similar theoretical properties like the Wolfe conditions.
- ② Global convergence theorems can be established.
- The weakness of Armijo-Goldstein conditions respect to Wolfe conditions is that the former can exclude local minima's from the step length as you can see in the figure below.



Outline

- General iterative scheme
- Backtracking Armijo line-search
 - Global convergence of backtracking Armijo line-search
 - Global convergence of steepest descent
- Wolfe-Zoutendijk global convergence
 - The Wolfe conditions
 - The Armijo-Goldstein conditions
- 4 Algorithms for line-search
 - Armijo Parabolic-Cubic search
 - Wolfe linesearch

Armijo Parabolic-Cubic search

- Backtracking-Armijo line-search can be slow if a large number of reduction must be performed to satisfy Armijo condition.
- A better performance is obtained if instead of reducing by a fixed factor we use polynomial interpolation to estimate the location of the minimum.
- **3** Assuming that that $f(x_k)$ and $\nabla f(x_k)p_k$ are known at the first step we know also $f(x_k + \lambda p_k)$ if λ is the first trial step.
- In this case a parabolic interpolation can be used to estimate the minimum.
- **1** If we store the last trial step length, in the successive iteration we can use cubic interpolation to estimate the minima's.
- The resulting algorithm is in the following slides.

Algorithm (Armijo Parabolic-Cubic search

(1/3)

```
armijo\_linesearch(f, x, p, c_1)
f_0 \leftarrow f(x): \nabla f_0 \leftarrow \nabla f(x)p: \lambda \leftarrow 1:
while \lambda > \lambda_{\min} do
    f_{\lambda} \leftarrow f(\boldsymbol{x} + \lambda \boldsymbol{p}):
    if f_{\lambda} < f_0 + \lambda c_1 \nabla f_0 then
         return \lambda : successful search
    else
         if \lambda = 1 then
             \lambda_{tmp} \leftarrow \nabla f_0 / [2(f_0 + \nabla f_0 - f_\lambda)];
         else
             \lambda_{tmp} \leftarrow cubic(f_0, \nabla f_0, f_{\lambda}, \lambda, f_p, \lambda_p):
         end if
         \lambda_n \leftarrow \lambda; f_n \leftarrow f_{\lambda}; \lambda \leftarrow range(\lambda_{tmn}, \lambda/10, \lambda/2);
    end if
end while
return \lambda_{\min}; failed search
```


Algorithm (Armijo Parabolic-Cubic search (2/3))

```
\begin{array}{l} \mathit{range}(\lambda,a,b) \\ \text{if } \lambda < a \text{ then} \\ \text{return } a; \\ \text{else if } \lambda > b \text{ then} \\ \text{return } b; \\ \text{else} \\ \text{return } \lambda \ ; \\ \text{end if} \end{array}
```


Algorithm (Armijo Parabolic-Cubic search

(3/3)

cubic(f_0 , ∇f_0 , f_λ , λ , f_p , λ_p) *Evaluate:*

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\lambda^2 \lambda_p^2 (\lambda - \lambda_p)} \begin{pmatrix} \lambda_p^2 & -\lambda^2 \\ -\lambda_p^3 & \lambda^3 \end{pmatrix} \begin{pmatrix} \mathsf{f}_\lambda - \mathsf{f}_0 - \lambda \nabla \mathsf{f}_0 \\ \mathsf{f}_p - \mathsf{f}_0 - \lambda_p \nabla \mathsf{f}_0 \end{pmatrix}$$

if
$$a = 0$$
 then

return
$$-\nabla f_0/(2b)$$
;

cubic is a quadratic

else

$$d \leftarrow b^2 - 3 a \nabla f_0;$$

return $(-b + \sqrt{d})/(3a);$

discriminant legitimate cubic

end if

Wolfe linesearch

- Wolfe linesearch is identical to the Armijo Parabolic-Cubic search, until a point satisfying the first condition is found.
- ② At this point the Armijo algorithm stop while Wolfe search try to refine the search until the second condition is satisfied.
- If the step estimated is too short then is is enlarged until it contains a minimum.
- If the step estimated is too long it is reduced until the second condition is satisfied.

Algorithm (Wolfe linesearch

(1/3)

```
wolfe_linesearch(f, \boldsymbol{x}, \boldsymbol{p}, c_1, c_2)
f_0 \leftarrow f(x): \nabla f_0 \leftarrow \nabla f(x)p: \lambda \leftarrow 1:
while \lambda > \lambda_{\min} do
    f_{\lambda} \leftarrow f(\boldsymbol{x} + \lambda \boldsymbol{p}):
    if f_{\lambda} \leq f_0 + \lambda c_1 \nabla f_0 then
         go to ZOOM; found a \lambda satisfying condition 1
    else
         if \lambda = 1 then
              \lambda_{tmp} \leftarrow \nabla f_0 / [2(f_0 + \nabla f_0 - f_\lambda)];
         else
              \lambda_{tmp} \leftarrow cubic(f_0, \nabla f_0, f_{\lambda}, \lambda, f_p, \lambda_p):
         end if
         \lambda_n \leftarrow \lambda; f_n \leftarrow f_{\lambda}; \lambda \leftarrow range(\lambda_{tmp}, \lambda/10, \lambda/2);
    end if
end while
return \lambda_{\min}; failed search
```


Algorithm (Wolfe linesearch

(2/3)

```
700M:
\nabla f_{\lambda} \leftarrow \nabla f(\boldsymbol{x} + \lambda \boldsymbol{p}) \boldsymbol{p};
if \nabla f_{\lambda} > c_2 \nabla f_0 then return \lambda;
                                                                                        found Wolfe point!
if \lambda = 1 then
     forward search of an interval bracketing a minimum
    while \lambda < \lambda_{\rm max} do
        \{\lambda_n, \mathsf{f}_n\} \leftarrow \{\lambda, \mathsf{f}_{\lambda}\};
                                                                                                       save values
         \lambda \leftarrow 2\lambda: f_{\lambda} \leftarrow f(x + \lambda p):
         if not f_{\lambda} < f_0 + \lambda c_1 \nabla f_0 then
             \{\lambda_n, f_n\} \rightleftharpoons \{\lambda, f_\lambda\}; go to REFINE;
                                                                                                      swap values
         end if
         \nabla f_{\lambda} \leftarrow \nabla f(\boldsymbol{x} + \lambda \boldsymbol{p}) \boldsymbol{p};
         if \nabla f_{\lambda} > c_2 \nabla f_0 then return \lambda;
                                                                                        found Wolfe point!
    end while
    return \lambda_{\rm max}: failed search
end if
```

Algorithm (Wolfe linesearch

(3/3)

REFINE:

```
\{\lambda_{lo}, \mathsf{f}_{lo}, \nabla \mathsf{f}_{lo}\} \leftarrow \{\lambda, \mathsf{f}_{\lambda}, \nabla \mathsf{f}_{\lambda}\}; \ \Delta \leftarrow \lambda_{n} - \lambda_{lo};
while \Delta > \epsilon do
     \delta \lambda \leftarrow \Delta^2 \nabla f_{lo} / [2(f_{lo} + \nabla f_{lo} \Delta - f_p)];
      \delta \lambda \leftarrow range(\delta \lambda, 0.2\Delta, 0.8\Delta);
      \lambda \leftarrow \lambda_{lo} + \delta \lambda: f_{\lambda} \leftarrow f(x + \lambda p):
      if f_{\lambda} \leq f_0 + \lambda c_1 \nabla f_0 then
            \nabla f_{\lambda} \leftarrow \nabla f(\boldsymbol{x} + \lambda \boldsymbol{p}) \boldsymbol{p};
            if \nabla f_{\lambda} > c_2 \nabla f_0 then
            return \lambda:
                                                                                                                     found Wolfe point!
            \{\lambda_{lo}, f_{lo}, \nabla f_{lo}\} \leftarrow \{\lambda, f_{\lambda}, \nabla f_{\lambda}\}; \ \Delta \leftarrow \Delta - \delta \lambda;
      else
            \{\lambda_n, f_n\} \leftarrow \{\lambda, f_\lambda\}; \ \Delta \leftarrow \delta \lambda;
      end if
end while
return \lambda; failed search
```


References

J. E. Dennis, Jr. and Robert B. Schnabel
Numerical Methods for Unconstrained Optimization and
Nonlinear Equations
SIAM, Classics in Applied Mathematics, 16, 1996.

