ISTITUTO
D)

ANALISI NUMERICA
del

CONSIGLIO NAZIONALE DELLE RICERCHE
via Abbiategrasso 209 — 27100 PAVIA (Italy)

PAVIA
1999

PUBBLICAZIONI

N.1164

Enrico Bertolazzi, Gianmarco Manzini

P2MESH: Programmer’s Manual

P2MESH: Programmer’s Manual

Enrico BertolazZi & Gianmarco Manzirfi

!Department of Mechanics and Structures Engineering
University of Trento
via Mesiano 77, | — 38050 Trento, Italy
Enrico.Bertolazzi@ing.unitn.it

2Institute of Numerical Analysis — CNR
via Ferrata 1, | — 27100 Pavia, Italy
Gianmarco.Manzini@ian.pv.cnr.it

Abstract

P2MESHwvas developed for the solution of partial differential equation in two dimen-
sions on unstructured meshes. The library is a collectidd+ef classes and iterators
which allows to design and implement the data structures involved in Finite Element
and Finite Volume methods. This report documents the methods in the public interface

for all the library classes.

(NO) Installation

The P2MESHsoftware library consists in the header fi2mesh.hh to be included

at the beginning of each program source file ust@iESHacilities. No installation

or pre-compilation of library files is required. No library object or archive files must
be linked.

Conditions for Using p2mesh

TheP2MESHsoftware library is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

Acknowledgements

We have a long list of people to thank for the interest they manifested 82MIESH

and the encouragement they gave us. In alphabetical order we mention Dr. Mario
Arioli, Dr. Antonio Cazzani, Dr. Loula Fezoui, Prof. Bruno Firmani, Dr. Luca
Formaggia, Dr. Alessandro Russo, Prof. Gianni Sacchi, Prof. Filippo Trivellato, and
Dr. Gianluigi Zanetti. Finally, we would like to address special thanks to Prof. Bruce
Simpson, Dr. J.-Daniel Boissonat and all the team of the project Prisme at INRIA,
Sophia-Antipolis, France, for the opportunity of the first official presentation of the
work.

CONTENTS 5

Contents
1 Preface 7
2 p2_commonpublic interface 9
3 p2_vertex publicinterface 13
4 p2_edge public interface 16
5 p2_poly publicinterface 21
5.1 Reference frame supporting functions 27
6 p2_mesh public interface 31
6.1 Meshbuilders 33
6.1.1 tensamesh 37
6.1.2 stdtensormesh. oL 37
6.1.3 mapmesh. 38
6.1.4 readmapmesh 38
6.1.5 buildmesh 44
6.16 readmesh. 46
6.2 Statisticsand diagnostics 0 0000 48
7 STL lterators 51
7.1 Mertexiterators 51
7.2 Edgeiterators 52
7.3 Polylterators 53

8 lIterators public interface 55

6 CONTENTS

A —Files included byP2MESH 60
B — Errorindicators and warnings 61
B.1 Diagnostics Messages of the cla&vertex 61
B.2 Diagnostics Messages of thecla®sedge 62
B.3 Diagnostics Messages of thecla&poly 63
B.4 Diagnostics messages of theclp@8mesh 65
B.5 Build mesh errorindicators 65
B.6 Diagnostics messages fad _.map.mesh 67
B.7 Diagnostics messagestomild _mesh 67

B.8 Diagnostics Messagesfarad -mesh 68

Preface 7

1 Preface

TheP2MESHsoftware package comprises five base classes acting as templates for the
definition of data types in any user application. The package also encompasses a set
of suitable iterators.

The design of a software application basedP@MESHbasically consists in the spec-
ification of a suitable set of derived classes, that would embody both the physical and
numerical details in the corresponding partially pre-defined “geometric” types provi-
ded by the library.

As aresult, itis generally not useful to instantiate mesh-based objects directly from the
library types, because these instances would show nothing more than their geometrical
nature.

Throughout the manual, the base classeB2MESHwill also be referred aBbrary
classes and the derived classes pmject classesbeingthe projecta generic user
application based oR2MESH

The presentation of B2ZMESHdata type is given in four parts which introduce the
reader to the public interface. All the features and functionalities of the library classes
are discussed, which may be inherited by public derivation. The four parts appear un-
der the headerGlass Name, Description, Usage, andMember Functions. Some-

times there are sontemarks to focus the reader attention on a particular issue.

The following table indicates the names of tR@MESHibrary classes, the conven-
tional names adopted in the manual for the project classes, and the nature (geometrical
or not) of the type.

Base Class Name Derived Class Name Container Type

p2_common Common shared information
p2_vertex Vertex vertex instance
p2_edge Edge edge instance
p2_poly Poly polygon instance
p2_mesh Mesh mesh instance

The prefixp2_ in the base class names has been adopted in the library implementation
in order to avoid name conflicts with other project names, that, for instance, might be
defined by the user or which might be already defined in other software packages.

8 Programmer’s Manual

From the base clag® _poly two different types of polygons can be derived, trian-
gles and quadrilaterald. The keywdpdly thus refers to a generic polygon type and
any information concerning an instance of such a type will hold for both triangle and
quadrilateral objects.

The instance of the project clasaéstex, Edge, Poly andMesh will be simply called
vertices edgespolygonsandmesh

The attributeconst is usually omitted in the public method declarations for the
sake of compactness. Moreover the default values for the template arginnent
unsigned , double are used throughout the manual in the method declarations.
However, the complete form of the declarations can be easily found in the kernel de-
scription [1] or in the source code.

Note that in theUsage section, the presentation emphasizes the viewpoint of the
project classes by discussing some simple source code fragments which are proposed
as examples of typical and practical applications. The usage section can thus be used
as a reference guide for the programmer u$t@y|\ESH

Class Name

Description

Internal
Prototype

p2 _commonpublic interface 9

2 p2_commonpublic interface

p2_common
The clasgp2 _commonis a base container class for the public derivation of the class
Common, which is, as suggested by its name, the user defioatmorclass of the
project. The clas€ommon should only be a container for the static data and the
typedef s alias definitions which are shared by the instances of the other project
classes. No instances of the library cla8&scommonand of the project clasSom-
mon should normally be instantiated in the code.
The template header declaration of the clg8scommonis

1| template <typename P2V_type,

2 typename P2E_type,

3 typename P2P_type,

4 typename P2M_type,

5 unsigned SIZE_value = 3,

6 bool LIST value = false,

7 typename REAL_type = double,

8 typename INTEGER_type = int,

9 typename UNSIGNED_type = unsigned,

10 typename VMARK type = unsigned,

11 typename EMARK_type = unsigned,

12 typename PMARK_type = unsigned>

13| class p2_common ;

Lines 14 introduce the names of the project classes. Srgpecifies the number of

the vertices of each polygon (the default value assumes a triangular mesh)6 Line
introduces a boolean flag which allows the user to set the internal implementation of
the vertex class. Lineg-9 introduce the project numerical types for integer and real
numbers, which may be either stand&ré+ built-in ones or other user-defined ones.
This last alternative handles the case where a higher precision arithmetic is devised for
the user application by means of numerical types from some specific software package.
Lines 10-12 define the project type for markers. The default valuarisigned

however it can be any built-in or user-defined type. In the case of the user defined

10 Programmer’s Manual

type the usemust provide the operators> and<< in order to use markers with the
read_mesh andread_map_mesh methods.

The followingtypedef
rived classes:

are defined inside the class and are accessible in all the de-

1| typedef P2V_type P2v

2| typedef P2E_type P2E ;

3| typedef P2P_type P2P ;

4| typedef P2M_type P2M

5| typedef VMARK_type Vmark ;

6| typedef EMARK _type Emark ;

7| typedef PMARK_type Pmark ;

8| typedef REAL_type Real ;

9| typedef INTEGER_type Integer ;
10| typedef UNSIGNED_type Unsigned ;

Usage The library classep2 _vertex ,p2_edge,p2_poly andp2_meshare parametrized
by the project clas€ommon. Each project class is then publicly derived from the cor-
responding library class whose template header contains the projecColasson.

A triangular mesh is specified by the following code fragment where only project class
names are given as class template parameters and all other choices are given by default.

class Common : public p2_common<Vertex, Edge, Poly, Mesh> {
/I private definitions

public:

/I public definitions

s

A quadrilateral mesh, instead, is specified by explicitly introduchgE=4 in the
template header declaration.

class Common : public p2_common<Vertex, Edge, Poly, Mesh, 4> {
/I private definitions

public:

/I public definitions

b

p2 _commonpublic interface 11

Two different internal implementations of the vertex base gigssertex are sup-
ported byP2MESHThese implementations mainly differ in the explicit availability of

the vertex connectivity, which may be present as lists of first neighbor vertices, incident
edges and polygons and a set of public methods which return the related information.
Since vertex connectivity lists are expensive to produce and demand a large amount
of computer memonRP2MESHillows the user to decide by means of the boolean flag
List whether the connectivity lists must be built during the initialization phase of the
mesh-manager and stored in memory. The default vallistsfalse and no ver-

tex connectivity list is available, while the choitést=true selects the other case,
where all lists are built and stored. Hence, if the vertex connectivity of a triangular
mesh is needed, the following code fragment must be used.

class Common : public p2_common<Vertex, Edge, Poly, Mesh, 3, true> {
/I private definitions

public:

/I public definitions

b

The standard built-in arithmetic type®uble , int , unsigned are parameterized

by using the alias namd®eal , Integer andUnsigned . The alias names are ac-
cessible within the project classes; for the sake of clarity, throughout the manual we
use their default valuedouble , int andunsigned . The following code frag-
ment shows how different numerical types can parametrize the internal implementa-
tion of the library. Floating-point real numbers are defined by the high-precision type
doubledouble 1, andlong andunsignedlong are used instead of respectively

int andunsigned

class Common : public p2_common<Vertex, Edge, Poly, Mesh,
4, false,
doubledouble, long, unsigned long> {
/I private definitions
public:
/I public definitions

b

The marker types are also parameterized by ugimgrk for vertex markersEmark
for edge markers anBmark for polygon markers. If no user type is specified, the

*http://www-epidem.plantsci.cam.ac.uk/~kbriggs/doubledouble.html

12 Programmer’s Manual

default type isunsigned . For example, the following code fragment shows how
double markers can be used insteadunisigned

class Common : public p2_common<Vertex, Edge, Poly, Mesh,
3, false,
double, int, unsigned,
double, double, double> {

/I private definitions

public:

/I public definitions

b

Notice that in this case you must specify all the template arguments.

Member No member functions.
Functions

Class Name

Description

Usage

p2_vertex public interface 13

3 p2_vertex public interface

Figure 1: Vertex-Vertex, Vertex-Edge and Vertex-Polygon connections in the definition
of ap2_vertex instance (pointers are optionally stored in memory)

p2_vertex

The clasp2 vertex is the base class for the public derivation of the cegex,
which is the user definedertextype of the project. The private attributes are two
floating point numbers for the coordinates of the vertex. Optionally, pointer lists of
connected vertices, edges and polygons may be stored.

The vertex class of the user application is denoted/bstex, and is constructed by
public derivation from the vertex clag® vertex of the library. p2_vertex is
parametrized by classommon, which is the common class defined by the user. The
type Common must appear as argument in the template argument list of the library
classp2 _vertex

14 Programmer’s Manual

class Vertex : public p2_vertexxCommon> {
/I private definitions

public:

/I public definitions

b

Member The table shows the public methods which are available for any instance ofeype
Functions tex.
[n. | Method | Description
1 unsigned n_vertex(void) number of connected vertices
2 unsigned n_edge (void) number of incident edges
3 unsigned n_poly (void) number of incident polygons
4 Vertex & vertex(unsigned i) reference to the-th connected vertex
5 Edge & edge (unsigned i) reference to thé-th incident edge
6 Poly & poly (unsigned i) reference to thé -th incident polygon
7 unsigned local_number(Vertex & v) local id of vertexv
8 unsigned local_number(Edge & e) local id of edgee
9 unsigned local_number(Poly & p) local id of polygonp

These member functions are available only if the user explicitly sets the option
by selectingList=true in line 6 of the template header definition of the class
p2_commonon page 9. The member functions (1-3) return the number of the con-
nected vertices, edges and polygons to the current vertex instance. The member func-
tions (4-6) return references to the connected mesh entities. The member functions
(7-9) return the position of the connected mesh entities inside the vertex lists. When
the template parameteist=false in p2_common methods (1-3) return the value

0 while methods (4-9) produce a run-time error.

There is no particular order in the elements returned by functions (4-6) the only con-
straint is that ifV is a reference to a vertex, either the couple of vertices

(V, V. vertex(i)) or(V . vertex(i), V)

defines the edge

p2_vertex public interface 15

V . edge(i)
[n. | Method | Description
10 double & x() vertex first coordinate
11 double & y() vertex second coordinate

The member functions (10-11) return the values of the coordinates of the current
p2 _vertex instance.

Class Name

Description

Remark

16 Programmer’s Manual

4 p2_edge public interface

Figure 2: Edge-Vertex and Edge-Polygon connections for an edge in a triangle-based
mesh.

p2 _edge

The clas$2 _edge is the base class for the public derivation of the cladge, which
is the user defineddgetype of the project. The private attributes are:

the pointers to the twiertex instances in the geometrical definition of the current
edge;

the pointers to the two adjaceRbly instances in the geometrical definition of the
current edge; the second pointer is setltdLL if the edge is on the boundary.

Each edge is oriented from the first vertex to the second one. The orientation uniquely
defines a normal direction to the edge, conventionally oriented from the left to the
right side of the edge. The pointers to the adjacent polygons are such that the first
one always refers to the polygon on teé edge side. On boundary edges, the normal
vector is always defined in the outward direction, that is the unique adjacent polygon is
always located on the left side and the pointer to the right side polygon is automatically
set toNULL

p2_edge public interface 17

Usage The edge class of the user application is denoteddge, and is constructed by public
derivation from the edge clag® _edge of the library. p2_edge is parametrized
by Common, which is the common class defined by the user. The §pmon
must appear as the argument in the template header specification of the library class
p2_edge

class Edge : public p2_edge<Common> {
/I private definitions

public:

/I public definitions

h

Member The following methods return the topological information stored as private attributes
Functions in the currenp2_edge instance

[n. [Method | Description
12 unsigned n_vertex(void) return2
13 unsigned n_edge (void) return the number of adjacent edges
14 unsigned n_poly (void) return the number of adjacent polygons
15 Vertex & vertex(unsigned i) reference to vertek
16 Edge & edge (unsigned i) reference to edge
17 Poly & poly (unsigned i) reference to polygon
18 unsigned local_number(Vertex & v) local id of vertexv
19 unsigned local_number(Edge & e) local id of edgee
20 unsigned local_number(Poly & p) local id of polygonp
21 bool ok_poly(unsigned i) true if polygoni exists

Method (12) returns2, that is the number of vertices which define the edge.
Method (13) returns the number of adjacent edges. For a triangle-based mesh this
number is4 when the current edge is internal ahahen it is located on the boundary.
These numbers become respectiviegnd3 for a mesh of quadrilaterals. Method (14)
returns the number of adjacent polygons. This numb@nigen the current edge is
internal andl when it is located on the boundary. Method (15) returns the reference
to the first (second) vertex of the current edge wiwh (i=1). Method (16) returns

the references to the edges on the left and right side for respectively

18 Programmer’s Manual

e Triangle-based mesh: l1ef0,1 , righti=2,3

e Quadrilateral-based mesh: |&f0,1,2 |, righti=3,4,5

Figure 3 depicts the local references to the adjacent edges. Method (17) returns the ref-
erence to the left (right) adjacent polygon whe@ (i=1). Methods (18-20) and (21)

Figure 3: Surrounding edge numbering for triangles and quadrilaterals

are self explanatory. The following public methods return the geometrical information
which are stored as private attributes in the current edge.

[n. [Method | Description |
22 double & x(unsigned i) vertexi : first coordinate
23 double & y(unsigned i) vertexi : second coordinate
24 double xm() midpoint first coordinate
25 double ym() midpoint second coordinate
26 double xt(double & t) interpolated first coordinate
27 double yt(double & t) interpolated second coordinate
28 double nx() first component of normal vector
29 double ny() second component of normal vector
30 double tx() first component of tangent vector
31 double ty() second component of tangent vector
32 double length() edge length

Methods (22—23) are similar to the statements

vertex(i).x() and vertex(i).y()

Remark

A W N P

o u

p2_edge public interface 19

Notice that the value of the coordinates cannot be changed by the user application by
means of the former methods.

Methods (24—-25) return the coordinates of the edge midpoint, i.e.

T+ T
xm() = 5
|

ym() = Yo . Y1

Methods (26-27) return the coordinates of the linearly interpolated poin}, y(t))
on the edge at the locatiare [0, 1]. The interpolation is given by the affine mapping

xz(t) = z0+t (21 — 20)
y(t) = yo+t (31 — wo)

Note, also, thakt(0.5) andyt(0.5) return the same values returned ()
andym() .

Methods (28-29) return the components of the vector

n =(y(1)-y(0),x(0)-x(1)) , which is orthogonal to the edge, oriented
counterclockwise (as specified in the previous remark). Methods (30-31) return the
components of the vectar=(x(1)-x(0),y(1)-y(0)) , Which is parallel to the

edge, oriented counterclockwise. These vectors are not normalized, and their lengths
are equal to the length of the edge which is returned by method (32).

The information returned by methods (24—-32) are not stored as part of the edge def-
inition, but it is evaluated on the current edge instance each time the corresponding
method is invoked. When the same information must be used several times, it is con-
venient to introduce those quantities in the definition of the project edge class. This
strategy allows some CPU time saving at the price of a greater storage requirement.
The following code fragment illustrates the issue.

class Edge : public p2_edge<Common> {
Real stored_xm, stored_ym, stored_nx, stored_ny, stored_lenght;
/I additional private definitions

public:

void SetUp(void) {
stored_xm = p2_edge<Common>::xm() ;

10
11

12
13
14
15
16
17

18
19

20 Programmer’s Manual

stored_ym = p2_edge<Common>:ym() ;
stored_nx = p2_edge<Common>::nx() ;

stored_ny p2_edge<Common>::ny() ;
stored_length = p2_edge<Common>::length() ;
}
/I overload library function
Real const & xm (void) const { return stored_xm ; }
Real const & ym (void) const { return stored_ym ; }
Real const & nx (void) const { return stored_nx ; }
Real const & ny (void) const { return stored_ny ; }

Real const & length(void) const { return stored_length ; }

/I additional public definitions

The methodSetUp assigns some computed geometrical quantities to the correspond-
ing attributes defined in the project cldsdge. The member functions in linds3-17
override the ones inherited from the base cfaizsdge . The methodetUp must be
called by the application fatnyinstance of typddge at the initialization step. Note

that in the metho&etUp , the aliasReal which internally parametrizes the library is
used instead of the built-in arithmetic tydeuble .

Class Name

Description

p2_poly public interface 21

5 p2_poly public interface

Figure 4. On the left Polygon-Edge and Polygon-Vertex connections for a triangular
p2_poly instance (the pointers are stored in memory). On the right Polygon-Polygon
connections (the pointers are determined at run-time)

p2 _poly

p2 _poly is the base class for the public derivation of the project dRadg which is
the user defined polygon type of the project. The private attributes are

the pointers to the vertices in the definition of the current polygon

The number of vertices or edges in the polygon definition is by defalt3, which
corresponds to a triangle-based mesh, and can besettdfor a quadrilateral-based
mesh.

Remark

Usage

22 Programmer’s Manual

(the edge orientation)

The set of vertices listed in a polygon forms a closed path which is always oriented

counterclockwise in the case of an external boundary and clockwise on an internal
one. This fact requires that any edge in the definition of a polygon be oriented in a

very precise way. Nevertheless, the orientation of an edge in the mesh is determined
by the order in which its two vertices are stored in the edge data structure, which is

independent of the way edges are memorized in polygons. Moreover, the two polygons
sharing an internal edge would always “see” it with opposite orientation!

To solve this consistency problem, it is crucial to recognize the orientation of the edge.
To this purpose, the public interface of the clgg&poly implements the method
ok_oriented() , which returns the boolearue/false depending the orienta-

tion of an edge in the current polygasiis notthe same in edge definition.

We emphasize that the orientation of an edge specifies also the orientation of the nor-
mal vector to that edge. When an edge has the same orientation in the mesh data set
and in the actual definition of a polygon instance, its normal vector is oriented outward
that polygon. Remember also that a boundary edge is always built in such a way that
its normal vector is oriented outward the computational domain. Therefore, bound-
ary edges always form a counterclockwise closed path of an external boundary and a
clockwise closed path of an internal one. A boundary edge must also show the same
orientation in the mesh data set and in the definition of the unique polygon instance it
belongs to.

The polygon class of the user application is denotedPbiy, and is constructed

by public derivation from the polygon clag® poly of the library. p2_poly is
parametrized bz ommon, which is the common class defined by the user. The type
Common must appear as the argument in the template header list of the library class

p2 _poly

class Poly : public p2_poly<Common> {
/I private definitions

public:

/I public definitions

b

p2_poly public interface 23

Member Topological methods
Functions The following methods return the topological information stored as private attributes
inap2_poly -type object
[n. | Method | Description
33 unsigned n_vertex() number of vertices
34 unsigned n_edge () number of edges
35 unsigned n_poly () number of adjacent sides
36 Vertex & vertex(unsigned i) reference to vertek
37 Edge & edge (unsigned i) reference to edge
38 Poly & poly (unsigned i) reference to polygon
39 unsigned local_number(Vertex & v) local id of vertexv
40 unsigned local_number(Edge & e) local id of edgee
41 unsigned local_number(Poly & p) local id of polygonp
42 bool ok_poly (unsigned i) check the existence of theth polygon
43 bool ok_oriented(unsigned i) check the edge orientation

Methods (33-35) return the number of vertices, edges and adjacent sides of a given

polygon. The three methods always return the same value, since the number of ver-

tices, edges and adjacent sides necessarily coincide. However, it is clearer and safer to
distinguish them when writing loops on vertices, edges, or adjacent polygons.

Methods (36—37) return the reference to théh vertex or edge in the polygon defi-
nition. Method (38) returns the reference to the polygon adjacent to-theedge. If

this edge is located on the domain boundary, a run-time error is produced, because that
polygon does not exist. This case is also checked by method (42).

Method (39) accepts an input reference to a vertex and returns the local id in the vertex
list of the polygon. Method (40) accepts an input reference to a edge and returns the
local id in the edge list of the polygon. Method (41) accepts an input reference to

an adjacent polygon and returns the its local id. Whenever the input reference is not
correct a run-time error is produced. Typical mistakes consist in referencing to a vertex
or an edge not belonging to the current polygon, or to a polygon which is not adjacent.

Method (43) verifies whether the edge orientation in the polygon (which is always
counterclockwise) is the same as the orientation of the edge instance in the mesh
data set. Method (42) accepts in input the local identifier of the edge and returns
true/false whether the edgis not/is located on the boundary.

24 Programmer’s Manual

Geometrical methods
The following public methods return some geometrical information.

[n. [Method | Description

44 double & x(unsigned i) vertexi : first coordinate

45 double & y(unsigned i) vertexi : second coordinate

46 double xm(unsigned i) edgei : midpoint first coordinate

a7 double ym(unsigned i) edgei : midpoint second coordinate

48 double xt(unsigned i, double & t) edgei : interpolated first coordinate

49 double yt(unsigned i, double & t) edgei : interpolated second coordinate

50 double nx(unsigned i) edgei : normal vector first component

51 double ny(unsigned i) edgei : normal vector second component

52 double tx(unsigned i) edgei : tangent vector first component

53 double ty(unsigned i) edgei : tangent vector second component

54 double length(unsigned i) edgei : length

55 double xc() centroid first coordinate

56 double yc() centroid second coordinate

57 double area() polygon area
Methods (44-45) are equivalentuertex(i).x() andvertex(i).y() but the
coordinate values cannot be changed.

Remark (Midpoint and linearly interpolated points on a polygon edge)

Methods (46—47) return the coordinates y) of the midpoint of thei -th edge in

the current polygon. The midpoint is, to some extent, a special one, because it is
equidistant from both the edge vertices and its location is independent of the edge
orientation. Thus, iP is a reference to a polygon, the statement

double x = P . xm(i) ;
is equivalent to the statement
double x = P . edge(i) . xm()

Methods (46—47) are equivalentedge(i).xm() andedge(i).ym()

p2_poly public interface 25

Instead, methods (48-49) return the coordinéateg) of the linearly interpolated point
att € [0,1] on thei -th edge. The point location is determined by the choice of the
origin on the edge, i.e. by the edge orientation. ThuB,ig a reference to a polygon,
the statement

double xt = P . xt(i, 0.3) ;
is not equivalent to the statement
double xt = P . edge(i) . xt(0.3) ;

because the edge maypt be oriented in the same way as in the current polygon in-
stance. For the correct equivalence, refer to the following statement

double xt ;
if (P . ok oriented(i))

xt = P . edge(i) . xt(0.333) ;
else

xt = P . edge(i) . xt(1 - 0.333) ;

which takes into account the edge orientation.
Remark The multiple accessing syntax is allowed. For examplggHbly is a pointer to

a polygon object, the coordinates of the centroid of the adjacent poliygmn be
accessed by

double xc
double yc

pPoly -> poly(i) . xc() ;
pPoly -> poly(i) . yc() ;

The simultaneous usage of both the deferentiation operatersgthd “. " may appear
rather cumbersome. Notice that it is just a matter of choosing in the library design
whether methods (36-38) should return a reference or a pointer. In the authors’ opin-
ion, the second alternative is safer, since it forces the final user to work with references.
Inelegant multiple accessing can be avoided by adopting expressions like

Poly & P = pPoly -> poly(i) ;
double xc P . xc() ;
double yc P . yc(;

Remark

26 Programmer’s Manual

which generally require one more statement but are still elegant and perhaps clearer.

Methods (50-51) areot equivalent toedge(i).nx() and edge(i).ny() be-
cause orientation depend on edge orientation. For example

double nx = P . nx(1) ;
is equivalent to

double nx ;
if (P . ok_oriented(1))

nx = P . edge(i) . nx() ;
else

nx = - P . edge() . nx() ;

Analogously methods (52-53) areot equivalent to edge(i).tx() and
edge(i).ty() . For example

double tx = P . tx(1) ;
is equivalent to

double nx ;
if (P . ok_oriented(1))

tx = P . edge(i) . tx() ;
else

tx = - P . edge(i) . tx() ;

Methods (38) and (46-57) return values which are not stored as private attributes in
the actual instance, but are evaluated each time the corresponding method is invoked.
This implementation choice, as in the analogous caggXoedge , is motivated by the
intention of limiting the memory required by the library classes. A project application
which makes intensive and repeated usage of this kind of information may however
result too expensive and therefore computationally inefficient. However, CPU costs
can be reduced and computational efficiency can be improved by estimating these
geometrical quantities only once and then storing them as attributes of the project
classes. The following source fragment code illustrates the case.

The triangle
case

© 0 N O g B~ W N P

11
12
13
14

p2_poly public interface 27

class Poly : public p2_poly<Common> {
Real stored_xc, stored_yc, stored_area ;
/I additional private definitions
public:
void SetUp(void) {
stored_xc = p2_poly<Common>::xc()
stored_yc = p2_poly<Common>::yc()
stored_area = p2_poly<Common>::area() ;

/I override library member functions

Real const & xc (void) const { return stored_xc ; }
Real const & yc (void) const { return stored_yc 0}
Real const & area(void) const { return stored_area ; }

The member functions in linekl—13 override the homonymous ones inherited from
the clasg2 _poly . The methodsetUp must be called for any polygon instance dur-
ing the initialization phase. Notice that the alReal , whose definition is contained

in the project common class (see page 10), is used instead of the numerical built-in
typedouble .

5.1 Reference frame supporting functions

TheP2MESHibrary provides the user application with a minimal set of suitable meth-
ods to map each polygon (either triangle or quadrilateral) to a reference polygon.

The reference triangl€, . ; is the simplex defined in th, t) coordinate system by
Trep={(5,)|5>0,t>0,s+t<1}.

Let T denote a generic triangle defined by the ordered list of ver(ipgspi, p2),
whose coordinates are indicated by

T
P = .
Yi

The
guadrilateral
case

28 Programmer’s Manual

By introducing the two displacement vectargandv

Uy Ug
u=p1—Ppo=) V=p2 —Po= >
Uy Uy

the non-singular affine mapping from..; to T takes the form

x(s,t) = suy + tv, + a9
1)
y(s,t) = suy +tvy + 0
and the inverse mapping is
s(z.y) = ve (@ — a0) — vy (y — yo)’
Uy Uy — Uy Uy
(z — 70) — ue(y — w0) @

uyvx - ux'Uy
The reference quadrilater@l.. ¢ is the polygon defined in th, t) coordinate system
by
Qres={(s;)| —1<s<1,-1<t <1}

Let Q denote a generic quadrilateral defined by the ordered list of verfices
(po, P1, P2, P3), Whose coordinates are indicated by

T
pP: = .
Yi

By introducing the following displacement vectors

C:P0+p1+pz+p3 u:—p0+p1+p2—p3
4 ’ 4 ’

_ —Po—P1+P2+DP3 _ Po—P1+DP2—DP3
V= 4 W 4 ’

the non-singular affine mapping fro@..; to Q takes the form:

x(s,t) = suy + tv, + stwy + ¢y,
3)

y(s,t) = suy + tvy + stwy + cy.

p2_poly public interface

The inverse mapping is

+ dg(z,y) if bsds > 0

— ds(z,y) otherwise ’
1 [bz, y) + de(z,y) if bpde >0
@ { (z,y) — de(z,y) otherwise

)

where

co(x,y) = po+p1 — 2(z,y)7, do(z,y) = po +ps — 2(z,y)7,

ci(z,y) = p2 + ps — 2(z,9)7, di(z,y) = p1 + P2 — 2(x,y
c2 = p1 — Po, d> = p3 — po,
c3 = p2 — P3, ds = p2 — p1,

and
as = Co A C3,
bs(xay) =cCc2 A Cl(xvy) + C(](Z',y) A C3,
cs(z,y) = co(w,y) Aei(z,y),
ds(;v,y) = \/bg(%?/) _4‘1808(5579)7
ag = d2 /\d37
bt(xvy) = d2 A dl(xay) + d[](l’,y) A d37
c(r,y) = do(z,y) Adi(z,y),
dt(wvy) = \/bt2($7y) - 40¢Ct(x,y),
with

PAA = DPzQy — DyQz-

)T

bl

29

(4)

30 Programmer’s Manual

[n. | Method | Description
58 void st_to_xy(double & s, double & t affine mapping from reference to actual element
double & x, double & y)
59 void xy_to_st(double & x, double & vy, affine mapping from actual to reference element
double & s, double & t)
60 void jacobian(double & s, double & t, Jacobian of the mapping
double J[2][2])
61 void inverse_jacobian inverse Jacobian of the mapping
(double & s, double & t,
double InvJ[2][2])

Methods (57-60) will refer to equations (1)—(2) for a triangle-based mesh or to equa-
tions (3)—(4) for a quadrilateral-based mesh.

Class Name

Description

Usage

p2 _mesh public interface 31

6 p2_mesh public interface

p2 _mesh

p2 _mesh is the library class for the public derivation of the project clikesh. It is
the most complex data structure provided by the library. The private attributes include
the lists of

vertices:

(vo,vl, 7Vm—l) :
edges:

(eo, el ,e"efl) ;
polygons:

wheren,,, n. andn, are respectively the total number of vertices, edges and polygons
contained in the mesh.

As is the case of the other data structure hitherto examined, the projecMdahkss
publicly derived from the library clags2 _mesh and parametrized with the common
project classCommon, which appears explicitly in the template argument list of the
base clasp2 _mesh.

class Mesh : public p2_mesh<Common> {
/I private definitions

public:
/I public definitions

}

32

Programmer’s Manual

Member The main geometrical and topological information are accessible by the following
Functions methods:
[n. | Method | Description
62 unsigned n_vertex () number of vertices
63 unsigned n_bvertex() number of boundary vertices
64 unsigned n_ivertex() number of internal vertices
65 unsigned n_edge () number of edges
66 unsigned n_bedge() number of boundary edges
67 unsigned n_iedge() number of internal edges
68 unsigned n_poly () number of polygonal elements
69 unsigned n_bpoly() number of boundary polygons
70 unsigned n_ipoly() number of internal polygons
71 Vertex & vertex(unsigned i) reference to vertek
72 Edge & edge (unsigned i) reference to edge
73 Poly & poly (unsigned i) reference to polygon
74 unsigned local_number(Vertex & v) local id of vertexv
75 unsigned local_number(Edge & e) local id of edgee
76 unsigned local_number(Poly & p) local id of polygonp
77 void bbox(double & xmin, bounding box of the mesh
double & ymin,
double & xmax,
double & ymax)

Methods (62-64), (65-67) and (68—70) return the total number of vertices, edges and
polygons in the mesh and the number of internal and boundary objects.

Methods (71-73) return the reference toithth vertex/edge/polygon in the mesh data
set. Methods (74—76) accept a reference to an instance of a given type and return its
internal location, that is the location in the corresponding mesh data set container. The
internal location may be used as the integer identifier (global number) of that instance.
As usual inC andC++ all numberings start frorfd.

Method (77) returns the coordinates of the bottom-left and the top-right points defining

the bounding box of the mesh.

p2 _mesh public interface 33

6.1 Mesh builders

The mesh data set is automatically initialized by invoking a mesh builder method. In
the present implementation several different mesh builders are available, which per-
form quite different actions. The mesh builders can be logically grouped whether they
start from astructureddescription of the computational mesh or they acceptimn
structuredlist of coordinates and connectivities.

The former ones are

(78) tensor_mesh
(79) std_tensor_mesh
(80) map_mesh,

(81) read_map_mesh ;

while the latter ones are

(82) build_mesh

(83) read_mesh .

The methods (78-81) build a regular mesh of triangles — three different orientations
are possible — or quadrilaterals. They start frostractureddescription of the domain
triangulation, which is internally generated for the first three methods, and given as
an input data file for the fourth one. The methodp_mesh allows a re-mapping of

the computational domain onto a generic shaped four-side domain by a user provided
coordinate transformation function.

The method (82) initializes the mesh data set starting froomatructureddescription

of the initial triangulation, provided by the user application as lists of coordinates and
connectivities while the method (83) performs the mesh data set initialization starting
from a input data files in the output format of the mesh genertiangle . For

both methods, the list of vertex coordinates and the list of connections “pokygon

Remark

34 Programmer’s Manual

vertices” are mandatory; a list of edges can be optionally given in input.Etige-
type data structures are initialized by using such a list when available, otherwise they
are internally built.

The nature of the polygons to be generated by the mesh builders, that is triangles or
quadrilaterals, is not explicitly indicated as an entry argument of the mesh builder
methods. This information is already specified as an argument in the template header
declaration of the project cla€ommon.

(Markers)

It is a common practice in programming numerical algorithms that a marker, usually
an integer identifier, be assigned to mesh geometrical entities, such as vertices, edges
or polygons. The marker is generally used to drive a specific process during the calcu-
lation, such as the treatment of the boundary conditions. For this reason, every mesh
builder inP2MESHakes input pointers to user defined functions capable of processing
markers. Pointer names are indicated by

mark_vertex
mark_edge

mark_poly

When the mesh is internally generated, a set of markers following an internal conven-
tion — described in a later remark — is automatically created. The markers indicate the
location of the internally generated vertices, edges and polygons of the mesh to the
external marker processing functions. Two examples will illustrate how markers work
in P2MESH

The simplest action a program can do with a marker — apart from ignoring it —is to save
its value somewhere. In the source fragment which follows, markers are read from an
external file by the mesh buildeead_mesh , but if they were internally generated,

the case would be the same.

/ldefine class Vertex

class Vertex : public p2_vertexxCommon> {
unsigned v_marker ;

public:

Analysis

p2 _mesh public interface 35

static void Set_BC(Vertex & v, unsigned const & marker)
{ v . v_marker = marker ; }

}

/ldefine class Edge
class Edge : public p2_edge<Common> {
unsigned e_marker ;
public:
static void Set BC(Edge & e, unsigned const & marker)
{ e . e_marker = marker ; }

}s

/ldefine class Triangle
class Triangle : public p2_poly<Common> {
unsigned t_marker ;
public:
static void Set BC(Triangle & t, unsigned const & marker)
{t . t_marker = marker ; }

}s

class Mesh : public p2_mesh<Common> {
public:
Mesh(char const file[])
{ read_mesh(file,
Vertex::Set_BC,
Edge::set_BC,
Triangle::set_BC) ; }

The project classe¥ertex, Edge, and Triangle are defined in order to contain

a public integer attribute to be used for storing the value of the external mar-
ker. This action is specified in the definition of the corresponding marker process-
ing function, which takes as input argument the reference to the current instance
and the marker value. The function action consists in assigning the input marker
value to the public marker attribute of the current geometric entity. The construc-
tor Mesh(char const file[]) invokes the mesh buildeead_mesh which

takes in input the pointers to the three marker processing function.

When the mesh is instantiated, the mesh buildad_mesh performs an internal

loop over all the vertices, edges and triangles of the mesh data set, and for any entity
the appropriate marker processing function is called. No action would occur if the
entryNULL s given in input.

36 Programmer’s Manual

Markers may also be defined by the user as data with an internal structure. The fol-
lowing source fragment illustrate the situation:

include "p2mesh.hh"

/I declare the name of the user defined classes
class Vertex ;

class Edge ;

class Triangle ;

class Mesh ;

/I define the marker type Marker
struct Marker {

string name ;

double value ;

b

/I define the output operator <<

ostream &

operator << (ostream & s, Marker const & m)
{s<<"("<<m.name << " =" << m . value << ")" ; return s ; }

/I define the input operator >>

istream &

operator >> (istream & s, Marker & m)

{s > m . name >> m . value ; return s ; }

/I define the class Common with the user defined type Marker
class Common : public p2_common<Vertex,Edge,Quad,Mesh,
3,false,
double, int, unsigned,
Marker, Marker, Marker> {
/I .. user stuff

Analysis The marker typeMarker is defined by astruct statement. It contains the string
variablename and the double precision variablalue . The user is also asked to
implement the I/O operators> and<<, whose definitions overload the built-in ones.
The complex marker data type is then introduced irRBMESHbased application by
specifying it in the argument list gf2_commonwhen the project clasS8ommon is
publicly derived.

p2 _mesh public interface 37

6.1.1 tensomesh

The methodensor_mesh generates a regular mesh within the rectangle specified
by the coordinates of the bottom-left vertganin, ymin) and the top-right vertex
(xmax, ymax)

void
tensor_mesh(
double const & xmin, // bounding box of the mesh
double const & xmax,
double const & ymin,
double const & ymax,
unsigned const nx, // x-subdivision
unsigned const ny, // y-subdivision
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker
void (*mark_edge) (Edge &, unsigned const &),/ edge marker
void (*mark_poly) (Poly &, unsigned const &),/ polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

6.1.2 stdtensormesh

The methodstd_tensor_mesh generates a regular mesh within the unit square
box[0,1] x [0, 1]:

void

std_tensor_mesh(
unsigned const nx, // x-subdivision
unsigned const ny, // y-subdivision
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker
void (*mark_edge) (Edge &, unsigned const &),/ edge marker
void (*mark_poly) (Poly &, unsigned const &),// polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

e The integer valuesx andny are the number of partitions in theandy cartesian
directions.

e The pointer functionsnark_vertex , mark_edge andmark_poly allow to spec-
ify some actions on the geometrical entities at the mesh data set initialization phase,

38 Programmer’s Manual

for example assigning boundary condition identifiers and so on. If one of this input
entry is set taNULL, no action is performed on the corresponding set of entities. See
also the following remarks on the internal marker convention and marker usage.

The entrykind is specific to triangular meshes and is ignored on quadrilateral meshes.
It allows to change the orientation of triangles in the mesh, see Figure 5.

6.1.3 mapmesh

The methodnmap_meshgenerates a regular mesh within a four-side domain which is
the image of the unit square box by the user defined mapping furstiape :

void
map_mesh(
void (*shape) (double const & s, double const & t,
double & x, double & vy) ,
/I shape function
unsigned const ns, // s-subdivision
unsigned const nt, // t-subdivision
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker
void (*mark_edge) (Edge &, unsigned const &),/ edge marker
void (*mark_poly) (Poly &, unsigned const &),// polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

The integer valuess andnt specify the number of partitions in tlseandt cartesian
directions.

6.1.4 readmap.mesh

The methodead_map_mesh generates a regular mesh from the input triangulation
in the ASCII filefile_name

void
read_map_mesh(
char const * const file_name, // base name for file grid
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker

Example

Example

Example

p2 _mesh public interface 39

void (*mark_edge) (Edge &, unsigned const &),/ edge marker
void (*mark_poly) (Poly &, unsigned const &),/ polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

Figure 5 shows the grids that can be generated by different values of the parameter
kind by the statement

tensor_mesh(0.0, 1.0, 0.0, 1.0, 4, 4, NULL, NULL, NULL, kind) ;

that is also equivalent to

’std_tensor_mesh(4, 4, NULL, NULL, NULL, kind) ; ‘

since in this casemin , xmax, ymin , ymax are set to the standard square fax | x
[0, 1].

The mapping function

void shape(double const & s, double const & t,
double & x, double & vy {
static double const PI2 = 2 * atan(1.0) ; // pi/2
X = (1+t) * sin(s * PI2) ;
y = (1+t) * cos(s * PI2) ;
}

maps the unit square onto the four-side domain shown in figure 6, that can then be
triangulated by changing quadrilaterals or triangles — and different orientations for
these latter ones — by choosing the appropriate valléndf .

A four-side domain of generic shape can also be triangulated starting from an input
data file, containing an header line and the vertex coordinates of a basic grid. The
header line requires two integer fields andnt , that stands for the number of ver-
tices in thes andt directions. The total number of vertices mustrisexnt , and for

40 Programmer’s Manual

KIND =2 QUADRILATERAL

KIND =0 KIND=1

Figure 5: Grids built usingensor _mesh

any vertex an entry line in the file gives its first and second coordinates. The fastest
running index is the one for the directien

For easy of use, comments may be introduced in the file by inserting any of the fol-
lowing symbols

u! u’ “ #n, u; u’ @ 0/01, “ $n’

as the first character of the line; the rest of the line is then ignored.

p2 _mesh public interface 41

Figure 6:

Suppose the filmesh.grd contains, according to the previous specifications, the ver-
tex coordinates of the grid produced by applying the mesh builder funciggn mesh
with the mapping functioshape andns=4 andnt=4 .

Then, the two statements

’map_mesh(shape, 4, 4, NULL, NULL ,NULL, kind) : ‘

and

’read_map_mesh("mesh.grd”, NULL, NULL, NULL, kind) ; ‘

generates the grids in Figure 7:

Remark (The internal convention for markers)
When one of the previous mesh builders is executed, internal markers are automati-
cally generated. The markers indicate the logical location onto the regular four-side
regular grid of any instance of the project classes. Thus, they can be processed at
the initialization phase of the mesh data set by invoking suitable user defined marker
functions, whose action has to be coherently specified in the application program.

Internal markers are generated using the following convention.

42 Programmer’s Manual

KIND =2 QUADRILATERAL

| file: mesh.grd |
#ns+1 nt+1
33

#ns+l nt+1
#X Yy
0.00 1.00
0.71 0.71
100 OOO KIND =0 KIND =1
#

0.00 1.50
1.06 1.06
1.50 0.00
#

0.00 2.00
141 141
2.00 0.00

Figure 7: grid built usingnap.mesh andred _-map_mesh

internal vertex;

bottom sidéboundary vertex;
right sideboundary vertex;
top sideboundary vertex;
left sideboundary vertex;
bottom leftcorner vertex;
bottom rightcorner vertex;
top right corner vertex;

top leftcorner vertex.

Vertex
convention

oOo~NO O~ WNPEO

Edge
convention

Element
convention

p2 _mesh public interface 43

0 internal edge;

1 bottom sidéboundary edge;
2 right sideboundary edge;
3 top sideboundary edge;

4 left sideboundary edge;

0 internal element;

1 bottom sidéboundary element;
2 right sideboundary element;
3 top sideboundary element;

4 left sideboundary element;

5 bottom leftcorner element;

6 bottom rightcorner element;

7 top right corner element;

8 top leftcorner element.

Figure 8 illustrates the internal convention in the case of a regutas triangle based
mesh. It is worth noting that for all these mesh builders, the entity numbering proceeds

Figure 8: Marker internal convention

in a very rigid way. The numbering always starts from the most left-bottom located
geometric entity; then, the boundary entities are first numbered following the external
boundaries in a counterclockwise way and then the internal perimeters in a clockwise
way; finally, all internal entities are humbered from left to right and bottom to up.

44 Programmer’s Manual

Hence, the location of every geometric entity on the mesh can also be determined
by simply knowing itslocal_number , but this approach should demand for more
expensive run-timé-testcomparisons scattered in the code. Internal markers allow an
easier manipulation of this information, at the cost of a very small redundancy, which
can also be avoided by simply ignoring them whenever useless.

6.1.5 buildmesh

The methoduild_mesh generates a mesh from a topology description in memory.
The prototype is:

void
build_mesh(
unsigned const nv,
double const *XY,
Vmark const *mv,
void mark_vertex(Vertex &, Vmark const &),

unsigned const ne,

unsigned const *E,

Emark const *me,

void mark_edge(Edge &, Emark const &),

unsigned const np,

unsigned const *P,

Pmark const *mp,

void mark_poly(Poly &, Pmark const &),

unsigned const base = 0) ;

where

e nv total number of vertices;

e XYreal array storing the vertex coordinateandy in a sequential way, i.e.:

XY = (5U0,y0a331,y17 cee 7$nvaynv)

p2 _mesh public interface 45

mvinteger array storing the vertex marker values; when markers are not to be specified,
the entryNULL must be set;

mark_vertex pointer to a user-defined marker routine; when markers are not to be
specified, the entrilULL must be set;

ne total number of edges;

E integer array storing the edge connectivities, given sequentially by the pairs of point-
ers(e?, e?) to the position of the verticas' ande? within the arrayXY, i.e.

17

a b _a b a b .
E=(ef,eq, €067, €mesCre);

meinteger array storing the edge marker values; when markers are not to be specified,
the entryNULL must be set;

mark_edge pointer to a user-defined marker routine; when markers are not to be
specified, the entrilULL must be set;

np total number of polygons;

P integer array storing the vertex indices forming the polydgdfof a triangular mesh,
4 for a quadrilateral mesh); for example, in the former das#ores information as

a 4b 4c ya ;b 4c a b c
P:(to,to,to, 1,t17 1,...,tnp7tnp,tnp)

where(t¢, %, t¢) are the indices within the arragy of the vertexi.
mpinteger array storing the triangle marker values; when markers are not to be speci-
fied, the entryNULL must be set;

mark_poly pointer to a user-defined marker routine; when markers are not to be
specified, the entridULL must be set;

base is the offset of the connectivity array indexing. It must be explicitly set ib
the arrays are indexed frofnin accord with theFORTRAN convention. Otherwise,
the offset i0 in accord with theC convention.

file *.node

file *.ele

46 Programmer’s Manual

6.1.6 readmesh

The public methodead_mesh generates a mesh data set from an input ASCII file.
The prototype of the method is

void

read_mesh(
char const file_name]],
void (*mark_vertex) (Vertex &, Vmark const &),
void (*mark_edge) (Edge &, Emark const &),
void (*mark_poly) (Poly &, Pmark const &),
unsigned const base = 0)

The methodread_mesh can read three ASCII files with nanfde_name and
extensiong.node , *.ele , and*.edge |, inthe output format of the freeware mesh
generatolTRIANGLE? . This format is briefly described in the following. Unless
otherwise indicated in the format description the entry fields are mandatory.

Mandatory .

The file lists the vertex coordinates and, optionally, a vertex marker. The first line
is a header with the number of vertices, which indicates also the total number of the
remaining lines in the file. Each other line contains the following entries

1. the vertex identifier (one integer field);
2. the vertex coordinates (two floating point fields);
3. the vertex marker (on€mark field, optional).

Mandatory .

The file contains the node—element connectivity, and optionally, an element marker.
The first line is a header with the number of elements, which indicates also the total
number of the remaining lines in the file. Each other line contains the following entries

1. the element identifier (one integer field);

2. the identifiers of the vertices in the current element (as many integer fields as
vertices in the polygon);

3. the element marker (orfémark field, optional).

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/quake/public/iwvwwitriangle.html

file *.edge

Example

p2 _mesh public interface a7

Optional

If the file is present, it contains the edge—vertex connectivity, and optionally an edge
marker. If absent, the edge—vertex connections are internally detected and no edge
marker is assigned. The first line is a header with the number of edges, which indicates
also the total number of the remaining lines in the file. Each other line contains the
following entries

1. the edge identifier (one integer field);
2. the identifiers of the vertices connected by the current edge (two integer fields);
3. the edge marker (ortemark field, optional).

If the first character of the lines in the files is one of the following:
H! ”

, “ #u, “ ; n, “ 0/101’ @« $11,

the rest of the line is ignored as a comment. Notice that this format is slightly more
general than the one used by triangle, because instead of an integer number the marker
can be an object of a different type defined in the project.

The following two filesbox.node andbox.ele are given by

] file: box.node I file: box.ele \
vertices (no marker) # triangles (no marker)
9 8
nv X y #nt v0O vl v2

1 0.0 0.0 1 1 2 7
2 05 00 2 6 7 8
3 05 05 3 8 5 9
4 1.0 05 4 2 3 7
5 1.0 1.0 5 3 4 8
6 00 10 6 8 9 6
7 0.25 0.5 7 5 8 4
8 05 0.75 8 3 8 7
9 0.5 1.0

Table 1: Example of file mesh definition

The use of the filebbox " in input of read_mesh

48 Programmer’s Manual

Figure 9: Generated mesh

read_mesh("box", NULL, NULL, NULL, 1) ;

produces the mesh in figure 9.

6.2 Statistics and diagnostics

The two following methods respectively print some simple information about the mesh
data set generated by one of the previous mesh builders and check the consistency of
the data set.

[n. | Method | Description |
84 void report(ostream& s) generate mesh statistics
85 bool test_mesh() check the mesh consistency.

The output of method (84) is sent to the output stresarkor example, the statement
report(cout) produces on the standard output stream the following info about the
mesh defined in Table 1 on page 47:

p2 _mesh public interface 49

p2_mesh statistics

Polygon Type = Triangle

| Total | Internal | Boundary |
+ + + + +
| Vertices | 14 | 5| 9 |
| Edges | 30 | 21 | 9 |
+ + + + +
| Polygons | 17 | 8 | 9 |
+ + + + +

When a mesh is generated from an external file, the consistency of the mesh should
be ensured by the final user of the application program. However, when the files
containing connectivities are corrupted, results are unpredictable and errors may be
difficult to detect.

A number of errors are signaled during the reordering procedure, but many other may
be hidden. Method (85) checks the internal consistency of the mesh data set generated
during the initialization phase. When invoked, the mettesd mesh() performs

a test on the connectivities of polygons, edges, and vertices in the data set;

a test on the orientation of the vertices in any polygon list, which must be ran in a
counterclockwise manner; an error in orientation is responsible of negative polygon
areas;

a test on the connectivity of the vertex lists, when active;

a test to detect eventual not referenced instances in the data set.

This method, although not too much expensive in terms of CPU time should not be
used in normal situations.

The following methods prints information contained in the mesh objects.

50 Programmer’s Manual
[n. | Method | Description |
86 void print(ostream & s, Unsigned base) print the mesh in a human readable form. The numl
ing starts from the offsddase .

87 void print(ostream & s, print the contents of verteXin a human readable form.
Vertex & V,
unsigned base)

88 void print(ostream & s, print the contents of eddgein a human readable form.
Edge & E,
unsigned base)

89 void print(ostream & s, print the contents of polygof® in a human readable
Poly & P, form.
unsigned base)

D

STL Iterators 51

7 STL lterators

Description An iterator is an object that iterates over the mesh lists of vertices, edges, and polygons
in a very effective and transparent way. Its use is highly recommended, since it hides
all the details of how the sequence of items on which we wish to iterate is actually
stored and accessed. Hence, the user application is implemented to be truly indepen-
dent of both the platform and of the language version. Compatibility is also ensured
with any future library developments.

The P2MESHsoftware library has been designed using as much as possilthe
technology. The mesh iterators REMESHare thus inherited from the ones given in
STL.

7.1 Vertex iterators

There ardwo iterator types derived fror8TL.:

e vertex_iterator iterates orVertex -type objects;

e vertex_const_iterator iterates on constaMertex -type objects;

The iterator types are defined as public ones but in the scope of thevidsss To
access them, the scope operator must be used, e.g.

Mesh::vertex_iterator

The following methods may be used to build loops on the vertices of the current mesh
data set. They return an iterator object, which, as indicated, points either to the first or
to the past-to-last instance in the internal mesh representation of the vertex data set.

52

Programmer’s Manual

[n. | Method | Description

90 vertex_iterator vertex_begin() smart pointer to the first vertex
vertex_const_iterator vertex_begin()

91 vertex_iterator vertex_end() smart pointer to the past-to-last vertex
vertex_const_iterator vertex_end()

92 vertex_iterator ivertex_begin() smart pointer to the first internal vertex
vertex_const_iterator ivertex_begin()

93 vertex_iterator ivertex_end() smart pointer to the past-to-last internal vertex
vertex_const_iterator ivertex_end()

94 vertex_iterator bvertex_begin() smart pointer to the first boundary vertex
vertex_const_iterator bvertex_begin()

95 vertex_iterator bvertex_end() smart pointer to the past-to-last boundary vertex
vertex_const_iterator bvertex_end()

Usage The following example illustrates how these iterators may be used.

/l do something...

++iv) {
Vertex & V
/*

*/

Mesh::vertex_iterator iv ;

Mesh my_mesh ; // create a mesh object

= *iv

/I define an iterator on vertex data

for (iv = mesh.ivertex_begin() ;// points to the first internal edge
iv 1= mesh.ivertex_end() ; // is it the last vertex ?

/I advance to the next vertex

/I the current vertex reference
Vertex * pV = &*iv ; // pointer to the current vertex

. do something on the vertex referenced by V or pointed by pV

7.2 Edge iterators

There ardwo iterator types derived fror8TL:

e edge_iterator

e edge_const_iterator

iterates orEdge-type objects;

iterates on constattdge-type objects;

STL Iterators 53

The iterator types are defined as public ones but in the scope of thévi#abs In or-
der to access them, the scope operator must be usetljes..edge_iterator

The following methods may be used to build loops on the edges of the current mesh
data set. They return an iterator object, which, as indicated, points either to the first or
to the past-to-last instance in the internal mesh representation of the edge data set.

[n. | Method | Description

96 edge_iterator edge_begin() smart pointer to the first edge
edge_const_iterator edge_begin()

97 edge_iterator edge_end() smart pointer to the past-to-last edge
edge_const_iterator edge_end()

98 edge_iterator iedge_begin() smart pointer to the first internal edge
edge_const_iterator iedge_begin()

929 edge_iterator iedge_end() smart pointer to the past-to-last internal edge
edge_const_iterator iedge_end()

100 | edge_iterator bedge_begin() smart pointer to the first boundary edge
edge_const_iterator bedge_begin()

101 | edge_iterator bedge_end() smart pointer to the past-to-last boundary edge
edge_const_iterator bedge_end()

Usage The following example illustrates how these iterators may be used.

Mesh my_mesh ; // create a mesh object
/I do something...
Mesh::edge_iterator ie ; /I define an iterator on edge data
for (ie = mesh.edge_begin() ; // points to the first edge
ie != mesh.edge_end() ; // is it the last edge ?

++ie) { /I advance to the next edge
Edge E = *ie ; [/l the current edge reference
Edge * pE = &*ie ; // pointer to the current edge

/*
... do something on the edge referenced by E or pointed by pE
*/

7.3 Poly Iterators

There ardwo iterator types derived fror8TL.:

54

e poly iterator

e poly_const_iterator

Programmer’s Manual

iterates orPoly -type objects;

iterates on constamoly -type objects;

The iterator types are defined as public ones but in the scope of thévi#ass In or-
der to access them, the scope operator must be usetjesf::poly_iterator

[n. | Method | Description

102 | poly_iterator poly_begin() smart pointer to the first polygon
poly_const_iterator poly_begin()

103 | poly_iterator poly_end() smart pointer to the past-to-last polygon
poly_const_iterator poly_end()

104 | poly_iterator ipoly_begin() smart pointer to the first internal polygon
poly_const_iterator ipoly_begin()

105 | poly_iterator ipoly_end() smart pointer to the past-to-last internal polygon
poly _const_iterator ipoly_end()

106 | poly_iterator bpoly_begin() smart pointer to the first boundary polygon
poly_const_iterator bpoly_begin()

107 | poly_iterator bpoly_end() smart pointer to the past-to-last internal polygon
poly_const_iterator bpoly_end()

Usage The usage of this iterators is quite standard

Mesh my_mesh ; // create a mesh object

/I do something...

Mesh::poly_iterator ip ; /I define an iterator on polygons

for (ip = mesh.bpoly_begin() ;// points to the first boundary item
ip != mesh.bpoly_end() ; // is it the last polygon ?

++ip) { /Il advance to the next polygon
Poly & P = *ip ; /I the current poly reference
Poly * pP = &*ip ; // pointer to the current poly

... do something on the poly referenced by P or pointed by pP
*

Class Name

Description

Usage

Member
Functions

Iterators public interface 55

8 lIterators public interface

Iterator<T> ,

Clterator<T>

Throughout the section the keywordwill generically indicates one of the three user
defined classegertex, Edge, Poly, (not necessarily the same at any occurrence).

The iterators previously introduced and directly derived fromS3f& are sufficient

to implement any kind of loops in numerical algorithms. However, a different set
of iterators is available ilP2MESHthat allows, without any loss of efficiency, the
implementation of more readable source codes. Iterator objects are instantiated by a
template definition, which requires the type of the data set to be iterated on. The current
mesh to whom the data set belongs and the iteration range may be specified either
as arguments of the iterator constructor methods or set in a subsequent moment by
invoking the methodet_loop . The classelerator<T> andClterator<T>

have the same functionality, the only difference is that the dBigsrator<T>

iterates oveconstantobjects.

The following piece of code illustrates how iterators can be instantiated in the code.

Iterator<Vertex> v_iter; // instantiate an iterator on mesh vertices
Iterator<Edge> e_iter; // instantiate an iterator on mesh edges
Iterator<Poly> p_iter; // instantiate an iterator on mesh polygons

Several iterator constructors are supporte@ BMESHThe following table reports the
different casesMindicates the current mesh data set, &M2,3 is a flag which
specifies the iteration range.

[n.

| Constructor | Description |

108

Iterator<T> (Mesh & M) iterator for the mesi

109

Iterator<T> (Mesh & M, unsigned f) iterator for the mesMon the rangé

110

Iterator<T> (void) iterator, no mesh and range specified

The mesh data set and the iteration range can be set up after the iterator was instantiated
by the public methods in the table.

56 Programmer’s Manual

[n. | Method | Description
111 | void set_loop(Mesh & M) select the mesh data Jdt
112 | void set_loop(Mesh & M, unsigned f) select the mesh data 9dand the rangé
113 | void begin() set iterator to the first item
114 | bool end_of_loop() return true if all items were iterated
115 | Iterator<T> const & operator ++ () advance the iterator to the next item
116 | T const * operator () () const return the current item of the iterator

T * operator () ()

The methods (108-109) accept in input as a first entry the reference to the given in-
stance of the clagglesh, indicated byM The methodset_loop in the forms (112)
has an optional flag indicating the iteration range

o f=0 : iterates over all the items in the mesh data set;
e f=1 : iterates on the boundary items in the mesh data set;

e f=2 : iterates on the internal items in the mesh data set;

Constructor (108) assumes tha0 as the default state for the iteration range. Con-
structor (110), instead, does not assume any default state; hence, the iteration range
is undefined until directly specified by the user application, for example by a later us-
age of the methodet_loop() . An iteration loop can be finally built by using the
public methods (113-116). The following piece of code illustrates an example of how
iterators can be instantiated and used in an application program.

Mesh my_mesh ; // create a mesh object
/I do something...

Iterator<Edge> edge_iterator ; /I an iterator on edge data

edge_iterator . set_loop(my_mesh,2) ; // loops on internal edges

for (edge_iterator.begin() ; /I points to the internal edge
! edge_iterator.end_of_loop() ; // it is not the last edge
++edge_iterator) { /I advance to the next edge
Edge & E = *edge_iterator ; // the current edge reference

Edge * pE =
/*
... do something on the edge referenced by E

&*edge_iterator ; // pointer to the current edge

The macro
foreach

Iterators public interface 57

*/

A special macro, namefbreach , is available. It is defined by the preprocessor
statement

define foreach(X) for (X . begin() ; ! X . end_of_loop() ; ++X)

and makes possible a very short and effective definition of loops, as shown by the
following example.

/I user stuff...
include "p2mesh.hh"
Il user stuff...

void main() {
Mesh my_mesh ; // create a mesh object
/*
do something...
*/
/I define an iterator and set it to loop on internal edges
Iterator<Edge> internal_edge(my_mesh, 2) ;

foreach(internal_edge) { // loops on internal edges
Edge & E = *internal_edge ; // the current edge reference
Edge * pE = &*internal_edge ; // pointer to the current edge
/*
... do something on the edge referenced by E
*/

}

/I other stuff ...

In order to avoid conflicts with other libraries, which may define macros with the
same name for similar purposes, it is possible to turn off the maceach by the
following preprocessor directive

define P2MESH_NO_FOREACH

58

Programmer’s Manual

Iterators public interface 59

Three preprocessaiefine statements can be usedR2@MESHoeforethe inclusion
of the header file of the library. They are:

P2MESH_DEBUG

P2MESH_VERBOSE

P2MESH_NO_FOREACH

The following piece of code

define P2MESH_DEBUG
include "p2mesh.hh"

forces the library code to check if subscripts are within their bounds during execution
of internal loops.

The verbose mode is switched by

define P2MESH_VERBOSE
include "p2mesh.hh"

and produces run-time info messages on standard output BABMESHnternal op-
erations.

Finally, the macrdoreach can be switched off by the following source fragment

define P2ZMESH_NO_FOREACH
include "p2mesh.hh"

60 Programmer’s Manual

A — Files included by P2MESH

P2MESHNcludes theSTL header files:

algo

vector

the C++ header files:

fstream
iomanip
iostream

string

and the standar@ header file:

stdlib.h

— Error indicators and warnings 61

B — Error indicators and warnings

This section documents the run-time diagnostics messages which are output by
P2MESH The symbol ¢” indicates that an internal control is always performed by
the library code. Otherwise, the symbelindicates that the control is detected and
printed only when the preprocessor directivedefine P2ZMESH_DEBUG is given
explicitly.

B.1 Diagnostics Messages of the class p2 _vertex

P2MESH in method “p2_vertex::operator ="
Fatal error: attempt to use copy constructor.

This error message is given on return when the user application program attempts to
invoke the default copy constructor provided by @+ programming language. The
failure is motivated in order to force the user to perform a (safer) bitwise copy.

P2MESH in method “p2_vertex::vertex(#1)"
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangd0...p2_vertex::n_vertex()-1]

P2MESH in method “p2_vertex::vertex(#1)”
Fatal error: vertex list not defined.

This error message is output whenever the user tries to access the list of adjacent
vertices but the argumehist in the template header definition of the project class
Common is set tofalse (default).

P2MESH in method “p2_vertex::edge(#1)”

Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer in the
rangel0...p2_vertex::n_edge()-1]

P2MESH in method “p2_vertex::edge(#1)”
Fatal error: edge list not defined.

62 Programmer’s Manual

This error message is output whenever the user tries to access the list of adjacent edges
but the argumeritist in the template header definition of the project classnmon
is set tofalse (default).

P2MESH in method “p2_vertex:.poly(#1)”
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer in the
range[0...p2_vertex::n_poly()-1]

P2MESH in method “p2_vertex:poly(#1)”
Fatal error: polygon list not defined.

This error message is output whenever the user tries to access the list of adjacent
polygons but the argumehtst in the template header definition of the project class
Common is set tofalse (default).

B.2 Diagnostics Messages of the class p2_edge

P2MESH in method “p2_edge::operator ="
Fatal error: attempt to use copy constructor.

This error message is produced when the user application program attempts to invoke
the default copy constructor provided by e+ programming language. The failure
is motivated to force the user to perform a (safer) bitwise copy.

P2MESH in method “p2_edge:.vertex(#1)”
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangd0...p2_edge::n_vertex()-1]

P2MESH in method “p2_edge::edge(#1)”

Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangd0...p2_edge::n_edge()-1]

P2MESH in method “p2_edge::poly(#1)”
Fatal error: local index out of range.

— Error indicators and warnings 63

An invalid index was detected on entry. The correct value must be an integer within
the rangg0...p2_edge::n_poly()-1]

P2MESH in method “p2_edge:x(#1)”
Fatal error: local index out of range.
An invalid index was detected on entry. The correct value muét el .

P2MESH in method “p2_edge:y(#1)”
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value mugt el .

B.3 Diagnostics Messages of the class p2_poly

P2MESH in method “p2_poly:.operator ="
Fatal error: attempt to use copy constructor.

This error message is given on return when the user application program attempts to
invoke the default copy constructor provided by @&+ programming language. The
failure is motivated in order to force the user to perform a (safer) bitwise copy.

P2MESH in method “p2_poly::ok_oriented(#1)”
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value muétdel. An invalid
index was detected on entry. The correct value must bel.

P2MESH in method “p2_poly:.vertex(#1)”
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the ranggO0...p2_poly::n_vertex()-1]

P2MESH in method “p2_poly::edge(#1)”

Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangdO0...p2_poly::n_edge()-1]

P2MESH in method “p2_poly::poly(#1)"

64 Programmer’s Manual

Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangd0...p2_poly::n_poly()-1]

P2MESH in method “p2_poly::poly(#1)"
Fatal error: invalid polygon access.

The user application attempts to access to an adjacent polygon which does not exist.
The polygorpoly(i) does not exist wheadge(i) is a boundary edge.

P2MESH in method “p2_poly::ok_poly(#1)"
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangd0...p2_poly::n_poly()-1]

P2MESH in method “p2_poly::local_number(vertex &)”
Fatal error: bad reference.

The vertex reference given to the methodal_number as input argument does
not correspond to a vertex objects in the list of vertices defining the current polygon
instance.

P2MESH in method “p2_poly::local_number(edge &)”
Fatal error: bad reference

The edge reference given to the metthachl_number as input argument does not
correspond to an edge objects in the list of edges defining the current polygon instance.

P2MESH in method “p2_poly::local_number(poly &)”
Fatal error: bad reference.

The poly reference given to the methiodal_number as input argument does not
correspond to a poly objects in the list of polygons adjacent to the current polygon
instance.

P2MESH in method “p2_poly:x(#1)"
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value muét el.

P2MESH in method “p2_poly:y(#1)"
Fatal error: local index out of range.

— Error indicators and warnings 65

An invalid index was detected on entry. The correct value must el .

P2MESH in method “p2_poly:xm(#1)”
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value muét el
P2MESH in method “p2_poly::ym(#1)"

Fatal error: local index out of range.

An invalid index was detected on entry. The correct value muét el .

P2MESH in method “p2_poly:length(#1)”
Fatal error: local index out of range.

B.4 Diagnostics messages of the class p2_mesh

P2MESH in method “p2_mesh:.vertex(#1)”
Fatal error: global index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangg0...p2_mesh::n_vertex()-1]

P2MESH in method “p2_mesh::edge(#1)”
Fatal error: global index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangd0...p2_mesh::n_edge()-1]

P2MESH in method “p2_mesh::poly(#1)”

Fatal error: global index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the rangd0...p2_mesh::n_poly()-1]

B.5 Build mesh error indicators

The internal methodBuildEdges() ,JointEdges() = andReorder() are used
by P2ZMESHo0 construct edges from a list of polygon connectivities and to reorder

66 Programmer’s Manual

them by the algorithm depicted in the kernel description [1]. When a problem is de-
tected in run-time initialization, a diagnostics message is produced. If such a situation
occurs, the input mesh is more likely corrupted.

P2MESH in method “p2_mesh::BuildEdges()”
Fatal error:
an edge is referenced twice from the same side.

An edge is shared by two different polygons which are located at the same side. In a
correct mesh definition, an edge may be shared by no more than two polygons, which
must be located at the two opposite sides of the edge.

P2MESH in method “p2_mesh::JointEdges()”
Fatal error: incomplete polygon found.

In the list of vertices of the current polygon one or more vertex referencedldice,
i.e. they are not assigned to a valid vertex objects.

P2MESH in method “p2_mesh::JointEdges()”
Fatal error; try to build a polygon with a not existing edge.

The mesh data set misses the edge specified by two consecutive vertices in the vertex
list of the current polygon.

P2MESH in method “p2_mesh::JointEdges()”
Fatal error: try to assign a polygon to an already assigned edge side.

JointEdges() attempts to assign more than one polygon to the same side of an
edge.

P2MESH in method “p2_mesh::Reorder()”

Fatal error: isolated edge found.

An edge is found that does not belong to any polygon in the mesh data set.

P2MESH in method “p2_mesh::Reorder()”
Fatal error: incomplete edge found.

An edge is found with one or bothULL vertices.

P2MESH in method “p2_mesh::Reorder()”
Fatal error: corrupted boundary.

— Error indicators and warnings 67

The mesh is corrupted, because a boundary edge seems to be shared by two different
boundaries.

P2MESH in method “p2_mesh::Reorder()”
Fatal error: open boudary.

The mesh is corrupted, because a chain of boundary edges cannot be closed.

B.6 Diagnostics messages for read _-map.mesh
P2MESH in method “p2_mesh::read_map_mesh(...)”
Fatal error: cannot open input file.

An error occurred in opening the data file.

P2MESH in method “p2_mesh::read_map_mesh(...)"
Fatal error: bad grid dimension.

An error occurred in reading the data file of a tensor map mesh; notice that the grid
must ben x m with n, m > 1.

B.7 Diagnostics messages for build _mesh
P2MESH in method “p2_mesh::build_mesh(...)"
Fatal error: bad edge definition in edge list.

The method attempts to build an edge composed by two vertices, one or both of whose
do not exist in the vertex list.

P2MESH in method “p2_mesh::build_mesh(...)"
Fatal error: bad polygon definition in polygon list.

The method attempts to assign an invalid vertex to a polygon.

68 Programmer’s Manual

B.8 Diagnostics Messages for read _mesh

P2MESH in method “p2_mesh::read_mesh(...)”
Fatal error: cannot open nodes file.

An error occurred in opening the node file.

P2MESH in method “p2_mesh::read_mesh(...)”
Fatal error: cannot open polygons file.

An error occurred in opening the polygon file.

P2MESH in method “p2_mesh::read_mesh(...)”
Fatal error: error in reading vertex coordinates.

An invalid vertex coordinate is found or premature end-of-file is reached.

P2MESH in method “p2_mesh::read_mesh(...)”
Fatal error: error in reading polygon definitions.

An invalid polygon number is found or premature end-of-file is reached.

P2MESH in method “p2_mesh::read_mesh(...)”
Fatal error: error in reading vertex numbers for the polygon.

Invalid vertex numbers for the definition of a polygon are found or premature end-of-
file is reached.

P2MESH in method “p2_mesh::read_mesh(...)”
Fatal error; error in reading edge definition.

An invalid edge number is found or premature end-of-file is reached.

P2MESH in method “p2_mesh::read_mesh(...)”
Fatal error: error in reading vertex numbers for the edge.

Invalid vertex numbers for the definition of an edge are found.

REFERENCES 69

References

[1] BERTOLAZZI, E.,AND MANZINI, G. The kernel of P2ZMESH. Tech. Rep. IAN—
1166, IAN — CNR, 1999.

70

REFERENCES

