
ISTITUTO
DI

ANALISI NUMERICA
del

CONSIGLIO NAZIONALE DELLE RICERCHE
via Abbiategrasso 209 – 27100 PAVIA (Italy)

PAVIA
1999

PUBBLICAZIONI

N. 1164

Enrico Bertolazzi, Gianmarco Manzini

P2MESH: Programmer’s Manual

P2MESH: Programmer’s Manual

Enrico Bertolazzi1 & Gianmarco Manzini2

1Department of Mechanics and Structures Engineering
University of Trento

via Mesiano 77, I – 38050 Trento, Italy
Enrico.Bertolazzi@ing.unitn.it

2Institute of Numerical Analysis – CNR
via Ferrata 1, I – 27100 Pavia, Italy
Gianmarco.Manzini@ian.pv.cnr.it

Abstract

P2MESHwas developed for the solution of partial differential equation in two dimen-
sions on unstructured meshes. The library is a collection ofC++ classes and iterators
which allows to design and implement the data structures involved in Finite Element
and Finite Volume methods. This report documents the methods in the public interface
for all the library classes.

(NO) Installation

TheP2MESHsoftware library consists in the header filep2mesh.hh to be included
at the beginning of each program source file usingP2MESHfacilities. No installation
or pre-compilation of library files is required. No library object or archive files must
be linked.

Conditions for Using p2mesh

TheP2MESHsoftware library is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

Acknowledgements

We have a long list of people to thank for the interest they manifested aboutP2MESH
and the encouragement they gave us. In alphabetical order we mention Dr. Mario
Arioli, Dr. Antonio Cazzani, Dr. Loula Fezoui, Prof. Bruno Firmani, Dr. Luca
Formaggia, Dr. Alessandro Russo, Prof. Gianni Sacchi, Prof. Filippo Trivellato, and
Dr. Gianluigi Zanetti. Finally, we would like to address special thanks to Prof. Bruce
Simpson, Dr. J.-Daniel Boissonat and all the team of the project Prisme at INRIA,
Sophia-Antipolis, France, for the opportunity of the first official presentation of the
work.

CONTENTS 5

Contents

1 Preface 7

2 p2 commonpublic interface 9

3 p2 vertex public interface 13

4 p2 edge public interface 16

5 p2 poly public interface 21

5.1 Reference frame supporting functions27

6 p2 mesh public interface 31

6.1 Mesh builders .33

6.1.1 tensormesh . 37

6.1.2 stdtensormesh . 37

6.1.3 mapmesh . 38

6.1.4 readmapmesh . 38

6.1.5 buildmesh . 44

6.1.6 readmesh . 46

6.2 Statistics and diagnostics .48

7 STL Iterators 51

7.1 Vertex iterators .51

7.2 Edge iterators .52

7.3 Poly Iterators .53

8 Iterators public interface 55

6 CONTENTS

A – Files included byP2MESH 60

B – Error indicators and warnings 61

B.1 Diagnostics Messages of the classp2 vertex 61

B.2 Diagnostics Messages of the classp2 edge 62

B.3 Diagnostics Messages of the classp2 poly 63

B.4 Diagnostics messages of the classp2 mesh 65

B.5 Build mesh error indicators .65

B.6 Diagnostics messages forread map mesh 67

B.7 Diagnostics messages forbuild mesh 67

B.8 Diagnostics Messages forread mesh 68

Preface 7

1 Preface

TheP2MESHsoftware package comprises five base classes acting as templates for the
definition of data types in any user application. The package also encompasses a set
of suitable iterators.

The design of a software application based onP2MESHbasically consists in the spec-
ification of a suitable set of derived classes, that would embody both the physical and
numerical details in the corresponding partially pre-defined “geometric” types provi-
ded by the library.

As a result, it is generally not useful to instantiate mesh-based objects directly from the
library types, because these instances would show nothing more than their geometrical
nature.

Throughout the manual, the base classes inP2MESHwill also be referred aslibrary
classes, and the derived classes asproject classes, being the projecta generic user
application based onP2MESH.

The presentation of aP2MESHdata type is given in four parts which introduce the
reader to the public interface. All the features and functionalities of the library classes
are discussed, which may be inherited by public derivation. The four parts appear un-
der the headersClass Name, Description, Usage, andMember Functions. Some-
times there are someremarks, to focus the reader attention on a particular issue.

The following table indicates the names of theP2MESHlibrary classes, the conven-
tional names adopted in the manual for the project classes, and the nature (geometrical
or not) of the type.

Base Class Name Derived Class Name Container Type
p2_common Common shared information
p2_vertex Vertex vertex instance
p2_edge Edge edge instance
p2_poly Poly polygon instance
p2_mesh Mesh mesh instance

The prefixp2_ in the base class names has been adopted in the library implementation
in order to avoid name conflicts with other project names, that, for instance, might be
defined by the user or which might be already defined in other software packages.

8 Programmer’s Manual

From the base classp2 poly two different types of polygons can be derived, trian-
gles and quadrilaterald. The keywordPoly thus refers to a generic polygon type and
any information concerning an instance of such a type will hold for both triangle and
quadrilateral objects.

The instance of the project classesVertex, Edge, Poly andMesh will be simply called
vertices, edges, polygonsandmesh.

The attributeconst is usually omitted in the public method declarations for the
sake of compactness. Moreover the default values for the template argumentint ,
unsigned , double are used throughout the manual in the method declarations.
However, the complete form of the declarations can be easily found in the kernel de-
scription [1] or in the source code.

Note that in theUsage section, the presentation emphasizes the viewpoint of the
project classes by discussing some simple source code fragments which are proposed
as examples of typical and practical applications. The usage section can thus be used
as a reference guide for the programmer usingP2MESH.

p2 commonpublic interface 9

2 p2 commonpublic interface

Class Name p2 common

Description The classp2 commonis a base container class for the public derivation of the class
Common, which is, as suggested by its name, the user definedcommonclass of the
project. The classCommon should only be a container for the static data and the
typedef s alias definitions which are shared by the instances of the other project
classes. No instances of the library classp2 commonand of the project classCom-
mon should normally be instantiated in the code.

Internal
Prototype

The template header declaration of the classp2 commonis

1 template <typename P2V_type,
2 typename P2E_type,
3 typename P2P_type,
4 typename P2M_type,
5 unsigned SIZE_value = 3,
6 bool LIST_value = false,
7 typename REAL_type = double,
8 typename INTEGER_type = int,
9 typename UNSIGNED_type = unsigned,

10 typename VMARK_type = unsigned,
11 typename EMARK_type = unsigned,
12 typename PMARK_type = unsigned>
13 class p2_common ;

Lines1–4 introduce the names of the project classes. Line5 specifies the number of
the vertices of each polygon (the default value assumes a triangular mesh). Line6
introduces a boolean flag which allows the user to set the internal implementation of
the vertex class. Lines7–9 introduce the project numerical types for integer and real
numbers, which may be either standardC++ built-in ones or other user-defined ones.
This last alternative handles the case where a higher precision arithmetic is devised for
the user application by means of numerical types from some specific software package.
Lines 10–12 define the project type for markers. The default value isunsigned
however it can be any built-in or user-defined type. In the case of the user defined

10 Programmer’s Manual

type the usermust provide the operators>> and<< in order to use markers with the
read_mesh andread_map_mesh methods.

The following typedef are defined inside the class and are accessible in all the de-
rived classes:

1 typedef P2V_type P2V ;
2 typedef P2E_type P2E ;
3 typedef P2P_type P2P ;
4 typedef P2M_type P2M ;

5 typedef VMARK_type Vmark ;
6 typedef EMARK_type Emark ;
7 typedef PMARK_type Pmark ;

8 typedef REAL_type Real ;
9 typedef INTEGER_type Integer ;

10 typedef UNSIGNED_type Unsigned ;

Usage The library classesp2 vertex , p2 edge , p2 poly andp2 mesh are parametrized
by the project classCommon. Each project class is then publicly derived from the cor-
responding library class whose template header contains the project classCommon.

A triangular mesh is specified by the following code fragment where only project class
names are given as class template parameters and all other choices are given by default.

class Common : public p2_common<Vertex, Edge, Poly, Mesh> {
// private definitions
public:
// public definitions
} ;

A quadrilateral mesh, instead, is specified by explicitly introducingSIZE=4 in the
template header declaration.

class Common : public p2_common<Vertex, Edge, Poly, Mesh, 4> {
// private definitions
public:
// public definitions
} ;

p2 commonpublic interface 11

Two different internal implementations of the vertex base classp2 vertex are sup-
ported byP2MESH. These implementations mainly differ in the explicit availability of
the vertex connectivity, which may be present as lists of first neighbor vertices, incident
edges and polygons and a set of public methods which return the related information.
Since vertex connectivity lists are expensive to produce and demand a large amount
of computer memory,P2MESHallows the user to decide by means of the boolean flag
List whether the connectivity lists must be built during the initialization phase of the
mesh-manager and stored in memory. The default value isList=false and no ver-
tex connectivity list is available, while the choiceList=true selects the other case,
where all lists are built and stored. Hence, if the vertex connectivity of a triangular
mesh is needed, the following code fragment must be used.

class Common : public p2_common<Vertex, Edge, Poly, Mesh, 3, true> {
// private definitions
public:
// public definitions
} ;

The standard built-in arithmetic typesdouble , int , unsigned are parameterized
by using the alias namesReal , Integer andUnsigned . The alias names are ac-
cessible within the project classes; for the sake of clarity, throughout the manual we
use their default valuesdouble , int and unsigned . The following code frag-
ment shows how different numerical types can parametrize the internal implementa-
tion of the library. Floating-point real numbers are defined by the high-precision type
doubledouble 1, andlong andunsigned long are used instead of respectively
int andunsigned .

class Common : public p2_common<Vertex, Edge, Poly, Mesh,
4, false,
doubledouble, long, unsigned long> {

// private definitions
public:
// public definitions
} ;

The marker types are also parameterized by usingVmark for vertex markers,Emark
for edge markers andPmark for polygon markers. If no user type is specified, the

1http://www-epidem.plantsci.cam.ac.uk/∼kbriggs/doubledouble.html

12 Programmer’s Manual

default type isunsigned . For example, the following code fragment shows how
double markers can be used instead ofunsigned .

class Common : public p2_common<Vertex, Edge, Poly, Mesh,
3, false,
double, int, unsigned,
double, double, double> {

// private definitions
public:
// public definitions
} ;

Notice that in this case you must specify all the template arguments.

Member
Functions

No member functions.

p2 vertex public interface 13

3 p2 vertex public interface

Figure 1: Vertex-Vertex, Vertex-Edge and Vertex-Polygon connections in the definition
of ap2 vertex instance (pointers are optionally stored in memory)

Class Name p2 vertex

Description The classp2 vertex is the base class for the public derivation of the classVertex,
which is the user definedvertex type of the project. The private attributes are two
floating point numbers for the coordinates of the vertex. Optionally, pointer lists of
connected vertices, edges and polygons may be stored.

Usage The vertex class of the user application is denoted byVertex, and is constructed by
public derivation from the vertex classp2 vertex of the library. p2 vertex is
parametrized by classCommon, which is the common class defined by the user. The
type Common must appear as argument in the template argument list of the library
classp2 vertex

14 Programmer’s Manual

class Vertex : public p2_vertex<Common> {
// private definitions
public:
// public definitions
} ;

Member
Functions

The table shows the public methods which are available for any instance of typeVer-
tex.

n. Method Description

1 unsigned n_vertex(void) number of connected vertices

2 unsigned n_edge (void) number of incident edges

3 unsigned n_poly (void) number of incident polygons

4 Vertex & vertex(unsigned i) reference to thei -th connected vertex

5 Edge & edge (unsigned i) reference to thei -th incident edge

6 Poly & poly (unsigned i) reference to thei -th incident polygon

7 unsigned local_number(Vertex & v) local id of vertexv

8 unsigned local_number(Edge & e) local id of edgee

9 unsigned local_number(Poly & p) local id of polygonp

These member functions are available only if the user explicitly sets the option
by selectingList=true in line 6 of the template header definition of the class
p2 commonon page 9. The member functions (1–3) return the number of the con-
nected vertices, edges and polygons to the current vertex instance. The member func-
tions (4–6) return references to the connected mesh entities. The member functions
(7–9) return the position of the connected mesh entities inside the vertex lists. When
the template parameterList=false in p2 common, methods (1–3) return the value
0 while methods (4–9) produce a run-time error.

There is no particular order in the elements returned by functions (4–6) the only con-
straint is that ifV is a reference to a vertex, either the couple of vertices

(V, V . vertex(i)) or (V . vertex(i), V)

defines the edge

p2 vertex public interface 15

V . edge(i)

n. Method Description

10 double & x() vertex first coordinate

11 double & y() vertex second coordinate

The member functions (10–11) return the values of the coordinates of the current
p2 vertex instance.

16 Programmer’s Manual

4 p2 edge public interface

1

0

1

0

Figure 2: Edge-Vertex and Edge-Polygon connections for an edge in a triangle-based
mesh.

Class Name p2 edge

Description The classp2 edge is the base class for the public derivation of the classEdge, which
is the user definededgetype of the project. The private attributes are:

• the pointers to the twoVertex instances in the geometrical definition of the current
edge;

• the pointers to the two adjacentPoly instances in the geometrical definition of the
current edge; the second pointer is set toNULL if the edge is on the boundary.

Remark Each edge is oriented from the first vertex to the second one. The orientation uniquely
defines a normal direction to the edge, conventionally oriented from the left to the
right side of the edge. The pointers to the adjacent polygons are such that the first
one always refers to the polygon on theleft edge side. On boundary edges, the normal
vector is always defined in the outward direction, that is the unique adjacent polygon is
always located on the left side and the pointer to the right side polygon is automatically
set toNULL.

p2 edge public interface 17

Usage The edge class of the user application is denoted byEdge, and is constructed by public
derivation from the edge classp2 edge of the library. p2 edge is parametrized
by Common, which is the common class defined by the user. The typeCommon
must appear as the argument in the template header specification of the library class
p2 edge

class Edge : public p2_edge<Common> {
// private definitions
public:
// public definitions
};

Member
Functions

The following methods return the topological information stored as private attributes
in the currentp2 edge instance

n. Method Description

12 unsigned n_vertex(void) return2

13 unsigned n_edge (void) return the number of adjacent edges

14 unsigned n_poly (void) return the number of adjacent polygons

15 Vertex & vertex(unsigned i) reference to vertexi

16 Edge & edge (unsigned i) reference to edgei

17 Poly & poly (unsigned i) reference to polygoni

18 unsigned local_number(Vertex & v) local id of vertexv

19 unsigned local_number(Edge & e) local id of edgee

20 unsigned local_number(Poly & p) local id of polygonp

21 bool ok_poly(unsigned i) true if polygoni exists

Method (12) returns2, that is the number of vertices which define the edge.
Method (13) returns the number of adjacent edges. For a triangle-based mesh this
number is4 when the current edge is internal and2 when it is located on the boundary.
These numbers become respectively6 and3 for a mesh of quadrilaterals. Method (14)
returns the number of adjacent polygons. This number is2 when the current edge is
internal and1 when it is located on the boundary. Method (15) returns the reference
to the first (second) vertex of the current edge wheni=0 (i=1). Method (16) returns
the references to the edges on the left and right side for respectively

18 Programmer’s Manual

• Triangle-based mesh: lefti=0,1 , right i=2,3 .

• Quadrilateral-based mesh: lefti=0,1,2 , right i=3,4,5 .

Figure 3 depicts the local references to the adjacent edges. Method (17) returns the ref-
erence to the left (right) adjacent polygon wheni=0 (i=1). Methods (18-20) and (21)

2

1

3

0

5

0

1

2

3

4

Figure 3: Surrounding edge numbering for triangles and quadrilaterals

are self explanatory. The following public methods return the geometrical information
which are stored as private attributes in the current edge.

n. Method Description

22 double & x(unsigned i) vertexi : first coordinate

23 double & y(unsigned i) vertexi : second coordinate

24 double xm() midpoint first coordinate

25 double ym() midpoint second coordinate

26 double xt(double & t) interpolated first coordinate

27 double yt(double & t) interpolated second coordinate

28 double nx() first component of normal vector

29 double ny() second component of normal vector

30 double tx() first component of tangent vector

31 double ty() second component of tangent vector

32 double length() edge length

Methods (22–23) are similar to the statements

vertex(i).x() and vertex(i).y() .

p2 edge public interface 19

Notice that the value of the coordinates cannot be changed by the user application by
means of the former methods.

Methods (24–25) return the coordinates of the edge midpoint, i.e.

xm() =
x0 + x1

2

ym() =
y0 + y1

2

Methods (26–27) return the coordinates of the linearly interpolated point(x(t), y(t))
on the edge at the locationt ∈ [0, 1]. The interpolation is given by the affine mapping

x(t) = x0 + t (x1 − x0)

y(t) = y0 + t (y1 − y0)

Note, also, thatxt(0.5) andyt(0.5) return the same values returned byxm()
andym() .

Methods (28–29) return the components of the vector
n =(y(1)-y(0),x(0)-x(1)) , which is orthogonal to the edge, oriented
counterclockwise (as specified in the previous remark). Methods (30–31) return the
components of the vectort =(x(1)-x(0),y(1)-y(0)) , which is parallel to the
edge, oriented counterclockwise. These vectors are not normalized, and their lengths
are equal to the length of the edge which is returned by method (32).

Remark The information returned by methods (24–32) are not stored as part of the edge def-
inition, but it is evaluated on the current edge instance each time the corresponding
method is invoked. When the same information must be used several times, it is con-
venient to introduce those quantities in the definition of the project edge class. This
strategy allows some CPU time saving at the price of a greater storage requirement.
The following code fragment illustrates the issue.

1 class Edge : public p2_edge<Common> {
2 Real stored_xm, stored_ym, stored_nx, stored_ny, stored_lenght;
3 // additional private definitions
4 public:

5 void SetUp(void) {
6 stored_xm = p2_edge<Common>::xm() ;

20 Programmer’s Manual

7 stored_ym = p2_edge<Common>::ym() ;
8 stored_nx = p2_edge<Common>::nx() ;
9 stored_ny = p2_edge<Common>::ny() ;

10 stored_length = p2_edge<Common>::length() ;
11 }

12 // overload library function
13 Real const & xm (void) const { return stored_xm ; }
14 Real const & ym (void) const { return stored_ym ; }
15 Real const & nx (void) const { return stored_nx ; }
16 Real const & ny (void) const { return stored_ny ; }
17 Real const & length(void) const { return stored_length ; }

18 // additional public definitions
19 }

The methodSetUp assigns some computed geometrical quantities to the correspond-
ing attributes defined in the project classEdge. The member functions in lines13–17
override the ones inherited from the base classp2 edge . The methodSetUp must be
called by the application forany instance of typeEdge at the initialization step. Note
that in the methodSetUp , the aliasReal which internally parametrizes the library is
used instead of the built-in arithmetic typedouble .

p2 poly public interface 21

5 p2 poly public interface

2

0
0

1

1
2

0

1
2

Figure 4: On the left Polygon-Edge and Polygon-Vertex connections for a triangular
p2 poly instance (the pointers are stored in memory). On the right Polygon-Polygon
connections (the pointers are determined at run-time)

Class Name p2 poly

Description p2 poly is the base class for the public derivation of the project classPoly which is
the user defined polygon type of the project. The private attributes are

• the pointers to then vertices in the definition of the current polygon

(
v0, v1, . . . , vn−1

)
;

• the pointers to then edges in the definition of the current polygon

(
e0, e1, . . . , en−1

)
.

The number of vertices or edges in the polygon definition is by defaultn = 3, which
corresponds to a triangle-based mesh, and can be set ton = 4 for a quadrilateral-based
mesh.

22 Programmer’s Manual

Remark (the edge orientation)
The set of vertices listed in a polygon forms a closed path which is always oriented
counterclockwise in the case of an external boundary and clockwise on an internal
one. This fact requires that any edge in the definition of a polygon be oriented in a
very precise way. Nevertheless, the orientation of an edge in the mesh is determined
by the order in which its two vertices are stored in the edge data structure, which is
independent of the way edges are memorized in polygons. Moreover, the two polygons
sharing an internal edge would always “see” it with opposite orientation!

To solve this consistency problem, it is crucial to recognize the orientation of the edge.
To this purpose, the public interface of the classp2 poly implements the method
ok_oriented() , which returns the booleantrue/false depending the orienta-
tion of an edge in the current polygonis/is notthe same in edge definition.

We emphasize that the orientation of an edge specifies also the orientation of the nor-
mal vector to that edge. When an edge has the same orientation in the mesh data set
and in the actual definition of a polygon instance, its normal vector is oriented outward
that polygon. Remember also that a boundary edge is always built in such a way that
its normal vector is oriented outward the computational domain. Therefore, bound-
ary edges always form a counterclockwise closed path of an external boundary and a
clockwise closed path of an internal one. A boundary edge must also show the same
orientation in the mesh data set and in the definition of the unique polygon instance it
belongs to.

Usage The polygon class of the user application is denoted byPoly, and is constructed
by public derivation from the polygon classp2 poly of the library. p2 poly is
parametrized byCommon, which is the common class defined by the user. The type
Common must appear as the argument in the template header list of the library class
p2 poly

class Poly : public p2_poly<Common> {
// private definitions
public:
// public definitions
} ;

p2 poly public interface 23

Member
Functions

Topological methods
The following methods return the topological information stored as private attributes
in ap2 poly -type object

n. Method Description

33 unsigned n_vertex() number of vertices

34 unsigned n_edge () number of edges

35 unsigned n_poly () number of adjacent sides

36 Vertex & vertex(unsigned i) reference to vertexi

37 Edge & edge (unsigned i) reference to edgei

38 Poly & poly (unsigned i) reference to polygoni

39 unsigned local_number(Vertex & v) local id of vertexv

40 unsigned local_number(Edge & e) local id of edgee

41 unsigned local_number(Poly & p) local id of polygonp

42 bool ok_poly (unsigned i) check the existence of thei -th polygon

43 bool ok_oriented(unsigned i) check the edge orientation

Methods (33–35) return the number of vertices, edges and adjacent sides of a given
polygon. The three methods always return the same value, since the number of ver-
tices, edges and adjacent sides necessarily coincide. However, it is clearer and safer to
distinguish them when writing loops on vertices, edges, or adjacent polygons.

Methods (36–37) return the reference to thei -th vertex or edge in the polygon defi-
nition. Method (38) returns the reference to the polygon adjacent to thei -th edge. If
this edge is located on the domain boundary, a run-time error is produced, because that
polygon does not exist. This case is also checked by method (42).

Method (39) accepts an input reference to a vertex and returns the local id in the vertex
list of the polygon. Method (40) accepts an input reference to a edge and returns the
local id in the edge list of the polygon. Method (41) accepts an input reference to
an adjacent polygon and returns the its local id. Whenever the input reference is not
correct a run-time error is produced. Typical mistakes consist in referencing to a vertex
or an edge not belonging to the current polygon, or to a polygon which is not adjacent.

Method (43) verifies whether the edge orientation in the polygon (which is always
counterclockwise) is the same as the orientation of the edge instance in the mesh
data set. Method (42) accepts in input the local identifier of the edge and returns
true/false whether the edgeis not/is located on the boundary.

24 Programmer’s Manual

Geometrical methods
The following public methods return some geometrical information.

n. Method Description

44 double & x(unsigned i) vertexi : first coordinate

45 double & y(unsigned i) vertexi : second coordinate

46 double xm(unsigned i) edgei : midpoint first coordinate

47 double ym(unsigned i) edgei : midpoint second coordinate

48 double xt(unsigned i, double & t) edgei : interpolated first coordinate

49 double yt(unsigned i, double & t) edgei : interpolated second coordinate

50 double nx(unsigned i) edgei : normal vector first component

51 double ny(unsigned i) edgei : normal vector second component

52 double tx(unsigned i) edgei : tangent vector first component

53 double ty(unsigned i) edgei : tangent vector second component

54 double length(unsigned i) edgei : length

55 double xc() centroid first coordinate

56 double yc() centroid second coordinate

57 double area() polygon area

Methods (44–45) are equivalent tovertex(i).x() andvertex(i).y() but the
coordinate values cannot be changed.

Remark (Midpoint and linearly interpolated points on a polygon edge)
Methods (46–47) return the coordinates(x, y) of the midpoint of thei -th edge in
the current polygon. The midpoint is, to some extent, a special one, because it is
equidistant from both the edge vertices and its location is independent of the edge
orientation. Thus, ifP is a reference to a polygon, the statement

double x = P . xm(i) ;

is equivalent to the statement

double x = P . edge(i) . xm()

Methods (46–47) are equivalent toedge(i).xm() andedge(i).ym() .

p2 poly public interface 25

Instead, methods (48–49) return the coordinates(x, y) of the linearly interpolated point
at t ∈ [0, 1] on thei -th edge. The point location is determined by the choice of the
origin on the edge, i.e. by the edge orientation. Thus, ifP is a reference to a polygon,
the statement

double xt = P . xt(i, 0.3) ;

is not equivalent to the statement

double xt = P . edge(i) . xt(0.3) ;

because the edge maynot be oriented in the same way as in the current polygon in-
stance. For the correct equivalence, refer to the following statement

double xt ;
if (P . ok_oriented(i))

xt = P . edge(i) . xt(0.333) ;
else

xt = P . edge(i) . xt(1 - 0.333) ;

which takes into account the edge orientation.

Remark The multiple accessing syntax is allowed. For example, ifpPoly is a pointer to
a polygon object, the coordinates of the centroid of the adjacent polygoni can be
accessed by

double xc = pPoly -> poly(i) . xc() ;
double yc = pPoly -> poly(i) . yc() ;

The simultaneous usage of both the deferentiation operators “-> ” and “. ” may appear
rather cumbersome. Notice that it is just a matter of choosing in the library design
whether methods (36-38) should return a reference or a pointer. In the authors’ opin-
ion, the second alternative is safer, since it forces the final user to work with references.
Inelegant multiple accessing can be avoided by adopting expressions like

Poly & P = pPoly -> poly(i) ;
double xc = P . xc() ;
double yc = P . yc() ;

26 Programmer’s Manual

which generally require one more statement but are still elegant and perhaps clearer.

Methods (50–51) arenot equivalent toedge(i).nx() andedge(i).ny() be-
cause orientation depend on edge orientation. For example

double nx = P . nx(1) ;

is equivalent to

double nx ;
if (P . ok_oriented(1))

nx = P . edge(i) . nx() ;
else

nx = - P . edge(i) . nx() ;

Analogously methods (52–53) arenot equivalent to edge(i).tx() and
edge(i).ty() . For example

double tx = P . tx(1) ;

is equivalent to

double nx ;
if (P . ok_oriented(1))

tx = P . edge(i) . tx() ;
else

tx = - P . edge(i) . tx() ;

Remark Methods (38) and (46–57) return values which are not stored as private attributes in
the actual instance, but are evaluated each time the corresponding method is invoked.
This implementation choice, as in the analogous case forp2 edge , is motivated by the
intention of limiting the memory required by the library classes. A project application
which makes intensive and repeated usage of this kind of information may however
result too expensive and therefore computationally inefficient. However, CPU costs
can be reduced and computational efficiency can be improved by estimating these
geometrical quantities only once and then storing them as attributes of the project
classes. The following source fragment code illustrates the case.

p2 poly public interface 27

1 class Poly : public p2_poly<Common> {
2 Real stored_xc, stored_yc, stored_area ;
3 // additional private definitions
4 public:
5 void SetUp(void) {
6 stored_xc = p2_poly<Common>::xc() ;
7 stored_yc = p2_poly<Common>::yc() ;
8 stored_area = p2_poly<Common>::area() ;
9 }

10 // override library member functions
11 Real const & xc (void) const { return stored_xc ; }
12 Real const & yc (void) const { return stored_yc ; }
13 Real const & area(void) const { return stored_area ; }
14 }

The member functions in lines11–13 override the homonymous ones inherited from
the classp2 poly . The methodSetUp must be called for any polygon instance dur-
ing the initialization phase. Notice that the aliasReal , whose definition is contained
in the project common class (see page 10), is used instead of the numerical built-in
typedouble .

5.1 Reference frame supporting functions

TheP2MESHlibrary provides the user application with a minimal set of suitable meth-
ods to map each polygon (either triangle or quadrilateral) to a reference polygon.

The triangle
case

The reference triangleTref is the simplex defined in the(s, t) coordinate system by

Tref = {(s, t) | s ≥ 0, t ≥ 0, s + t ≤ 1}.

Let T denote a generic triangle defined by the ordered list of vertices(p0,p1,p2),
whose coordinates are indicated by

pi =

(
xi

yi

)
.

28 Programmer’s Manual

By introducing the two displacement vectorsu andv

u = p1 − p0 =

(
ux

uy

)
, v = p2 − p0 =

(
vx

vy

)
,

the non-singular affine mapping fromTref to T takes the form
{

x(s, t) = sux + tvx + x0

y(s, t) = suy + tvy + y0 ,
(1)

and the inverse mapping is

s(x, y) =
vx(x− x0)− vy(y − y0)

uyvx − uxvy
,

t(x, y) =
uy(x− x0)− ux(y − y0)

uyvx − uxvy
.

(2)

The
quadrilateral

case

The reference quadrilateralQref is the polygon defined in the(s, t) coordinate system
by

Qref = {(s, t) | − 1 ≤ s ≤ 1,−1 ≤ t ≤ 1}.

Let Q denote a generic quadrilateral defined by the ordered list of verticesQ =
(p0,p1,p2,p3), whose coordinates are indicated by

pi =

(
xi

yi

)
.

By introducing the following displacement vectors

c =
p0 + p1 + p2 + p3

4
, u =

−p0 + p1 + p2 − p3

4
,

v =
−p0 − p1 + p2 + p3

4
, w =

p0 − p1 + p2 − p3

4
,

the non-singular affine mapping fromQref to Q takes the form:
{

x(s, t) = sux + tvx + stwx + cx,

y(s, t) = suy + tvy + stwy + cy.
(3)

p2 poly public interface 29

The inverse mapping is

s =
1
as

{−bs(x, y) + ds(x, y) if bsds > 0

−bs(x, y)− ds(x, y) otherwise
,

t =
1
at

{−bt(x, y) + dt(x, y) if btdt > 0

−bt(x, y)− dt(x, y) otherwise
,

(4)

where

c0(x, y) = p0 + p1 − 2(x, y)T , d0(x, y) = p0 + p3 − 2(x, y)T ,

c1(x, y) = p2 + p3 − 2(x, y)T , d1(x, y) = p1 + p2 − 2(x, y)T ,

c2 = p1 − p0, d2 = p3 − p0,

c3 = p2 − p3, d3 = p2 − p1,

and

as = c2 ∧ c3,

bs(x, y) = c2 ∧ c1(x, y) + c0(x, y) ∧ c3,

cs(x, y) = c0(x, y) ∧ c1(x, y),

ds(x, y) =
√

b2
s (x, y)− 4ascs(x, y),

at = d2 ∧ d3,

bt(x, y) = d2 ∧ d1(x, y) + d0(x, y) ∧ d3,

ct(x, y) = d0(x, y) ∧ d1(x, y),

dt(x, y) =
√

b2
t (x, y)− 4atct(x, y),

with

p ∧ q = pxqy − pyqx.

30 Programmer’s Manual

n. Method Description

58 void st_to_xy(double & s, double & t
double & x, double & y)

affine mapping from reference to actual element

59 void xy_to_st(double & x, double & y,
double & s, double & t)

affine mapping from actual to reference element

60 void jacobian(double & s, double & t,
double J[2][2])

Jacobian of the mapping

61 void inverse_jacobian
(double & s, double & t,

double InvJ[2][2])

inverse Jacobian of the mapping

Methods (57–60) will refer to equations (1)–(2) for a triangle-based mesh or to equa-
tions (3)–(4) for a quadrilateral-based mesh.

p2 mesh public interface 31

6 p2 mesh public interface

Class Name p2 mesh

Description p2 mesh is the library class for the public derivation of the project classMesh. It is
the most complex data structure provided by the library. The private attributes include
the lists of

• vertices:
(
v0, v1, . . . , vnv−1

)
;

• edges:
(
e0, e1, . . . , ene−1

)
;

• polygons:
(
p0, p1, . . . , pnp−1

)
;

wherenv, ne andnp are respectively the total number of vertices, edges and polygons
contained in the mesh.

Usage As is the case of the other data structure hitherto examined, the project classMesh is
publicly derived from the library classp2 mesh and parametrized with the common
project classCommon, which appears explicitly in the template argument list of the
base classp2 mesh.

class Mesh : public p2_mesh<Common> {
// private definitions

public:
// public definitions

}

32 Programmer’s Manual

Member
Functions

The main geometrical and topological information are accessible by the following
methods:

n. Method Description

62 unsigned n_vertex () number of vertices

63 unsigned n_bvertex() number of boundary vertices

64 unsigned n_ivertex() number of internal vertices

65 unsigned n_edge () number of edges

66 unsigned n_bedge() number of boundary edges

67 unsigned n_iedge() number of internal edges

68 unsigned n_poly () number of polygonal elements

69 unsigned n_bpoly() number of boundary polygons

70 unsigned n_ipoly() number of internal polygons

71 Vertex & vertex(unsigned i) reference to vertexi

72 Edge & edge (unsigned i) reference to edgei

73 Poly & poly (unsigned i) reference to polygoni

74 unsigned local_number(Vertex & v) local id of vertexv

75 unsigned local_number(Edge & e) local id of edgee

76 unsigned local_number(Poly & p) local id of polygonp

77 void bbox(double & xmin,
double & ymin,
double & xmax,
double & ymax)

bounding box of the mesh

Methods (62–64), (65–67) and (68–70) return the total number of vertices, edges and
polygons in the mesh and the number of internal and boundary objects.

Methods (71–73) return the reference to thei -th vertex/edge/polygon in the mesh data
set. Methods (74–76) accept a reference to an instance of a given type and return its
internal location, that is the location in the corresponding mesh data set container. The
internal location may be used as the integer identifier (global number) of that instance.
As usual inC andC++ all numberings start from0.

Method (77) returns the coordinates of the bottom-left and the top-right points defining
the bounding box of the mesh.

p2 mesh public interface 33

6.1 Mesh builders

The mesh data set is automatically initialized by invoking a mesh builder method. In
the present implementation several different mesh builders are available, which per-
form quite different actions. The mesh builders can be logically grouped whether they
start from astructureddescription of the computational mesh or they accept anun-
structuredlist of coordinates and connectivities.

The former ones are

(78) tensor_mesh ,

(79) std_tensor_mesh ,

(80) map_mesh,

(81) read_map_mesh ;

while the latter ones are

(82) build_mesh ,

(83) read_mesh .

The methods (78–81) build a regular mesh of triangles – three different orientations
are possible – or quadrilaterals. They start from astructureddescription of the domain
triangulation, which is internally generated for the first three methods, and given as
an input data file for the fourth one. The methodmap_meshallows a re-mapping of
the computational domain onto a generic shaped four-side domain by a user provided
coordinate transformation function.

The method (82) initializes the mesh data set starting from anunstructureddescription
of the initial triangulation, provided by the user application as lists of coordinates and
connectivities while the method (83) performs the mesh data set initialization starting
from a input data files in the output format of the mesh generatorTriangle . For
both methods, the list of vertex coordinates and the list of connections “polygon→

34 Programmer’s Manual

vertices” are mandatory; a list of edges can be optionally given in input. TheEdge-
type data structures are initialized by using such a list when available, otherwise they
are internally built.

The nature of the polygons to be generated by the mesh builders, that is triangles or
quadrilaterals, is not explicitly indicated as an entry argument of the mesh builder
methods. This information is already specified as an argument in the template header
declaration of the project classCommon.

Remark (Markers)
It is a common practice in programming numerical algorithms that a marker, usually
an integer identifier, be assigned to mesh geometrical entities, such as vertices, edges
or polygons. The marker is generally used to drive a specific process during the calcu-
lation, such as the treatment of the boundary conditions. For this reason, every mesh
builder inP2MESHtakes input pointers to user defined functions capable of processing
markers. Pointer names are indicated by

• mark_vertex

• mark_edge

• mark_poly

When the mesh is internally generated, a set of markers following an internal conven-
tion – described in a later remark – is automatically created. The markers indicate the
location of the internally generated vertices, edges and polygons of the mesh to the
external marker processing functions. Two examples will illustrate how markers work
in P2MESH.

The simplest action a program can do with a marker – apart from ignoring it – is to save
its value somewhere. In the source fragment which follows, markers are read from an
external file by the mesh builderread_mesh , but if they were internally generated,
the case would be the same.

//define class Vertex
class Vertex : public p2_vertex<Common> {

unsigned v_marker ;
public:

p2 mesh public interface 35

static void Set_BC(Vertex & v, unsigned const & marker)
{ v . v_marker = marker ; }

} ;

//define class Edge
class Edge : public p2_edge<Common> {

unsigned e_marker ;
public:

static void Set_BC(Edge & e, unsigned const & marker)
{ e . e_marker = marker ; }

} ;

//define class Triangle
class Triangle : public p2_poly<Common> {

unsigned t_marker ;
public:

static void Set_BC(Triangle & t, unsigned const & marker)
{ t . t_marker = marker ; }

} ;

class Mesh : public p2_mesh<Common> {
public:

Mesh(char const file[])
{ read_mesh(file,

Vertex::Set_BC,
Edge::set_BC,
Triangle::set_BC) ; }

}

Analysis The project classesVertex, Edge, and Triangle are defined in order to contain
a public integer attribute to be used for storing the value of the external mar-
ker. This action is specified in the definition of the corresponding marker process-
ing function, which takes as input argument the reference to the current instance
and the marker value. The function action consists in assigning the input marker
value to the public marker attribute of the current geometric entity. The construc-
tor Mesh(char const file[]) invokes the mesh builderread_mesh which
takes in input the pointers to the three marker processing function.

When the mesh is instantiated, the mesh builderread_mesh performs an internal
loop over all the vertices, edges and triangles of the mesh data set, and for any entity
the appropriate marker processing function is called. No action would occur if the
entryNULL is given in input.

36 Programmer’s Manual

Markers may also be defined by the user as data with an internal structure. The fol-
lowing source fragment illustrate the situation:

include "p2mesh.hh"

// declare the name of the user defined classes
class Vertex ;
class Edge ;
class Triangle ;
class Mesh ;

// define the marker type Marker
struct Marker {

string name ;
double value ;

} ;

// define the output operator <<
ostream &
operator << (ostream & s, Marker const & m)
{ s << "(" << m . name << " = " << m . value << ")" ; return s ; }

// define the input operator >>
istream &
operator >> (istream & s, Marker & m)
{ s >> m . name >> m . value ; return s ; }

// define the class Common with the user defined type Marker
class Common : public p2_common<Vertex,Edge,Quad,Mesh,

3,false,
double, int, unsigned,
Marker, Marker, Marker> {

// .. user stuff
} ;

Analysis The marker typeMarker is defined by astruct statement. It contains the string
variablename and the double precision variablevalue . The user is also asked to
implement the I/O operators>> and<<, whose definitions overload the built-in ones.
The complex marker data type is then introduced in theP2MESH-based application by
specifying it in the argument list ofp2 commonwhen the project classCommon is
publicly derived.

p2 mesh public interface 37

6.1.1 tensormesh

The methodtensor_mesh generates a regular mesh within the rectangle specified
by the coordinates of the bottom-left vertex(xmin, ymin) and the top-right vertex
(xmax, ymax) :

void
tensor_mesh(

double const & xmin, // bounding box of the mesh
double const & xmax,
double const & ymin,
double const & ymax,
unsigned const nx, // x-subdivision
unsigned const ny, // y-subdivision
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker
void (*mark_edge) (Edge &, unsigned const &),// edge marker
void (*mark_poly) (Poly &, unsigned const &),// polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

6.1.2 stdtensormesh

The methodstd_tensor_mesh generates a regular mesh within the unit square
box [0, 1]× [0, 1]:

void
std_tensor_mesh(

unsigned const nx, // x-subdivision
unsigned const ny, // y-subdivision
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker
void (*mark_edge) (Edge &, unsigned const &),// edge marker
void (*mark_poly) (Poly &, unsigned const &),// polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

• The integer valuesnx andny are the number of partitions in thex andy cartesian
directions.

• The pointer functionsmark_vertex , mark_edge andmark_poly allow to spec-
ify some actions on the geometrical entities at the mesh data set initialization phase,

38 Programmer’s Manual

for example assigning boundary condition identifiers and so on. If one of this input
entry is set toNULL, no action is performed on the corresponding set of entities. See
also the following remarks on the internal marker convention and marker usage.

• The entrykind is specific to triangular meshes and is ignored on quadrilateral meshes.
It allows to change the orientation of triangles in the mesh, see Figure 5.

6.1.3 mapmesh

The methodmap_meshgenerates a regular mesh within a four-side domain which is
the image of the unit square box by the user defined mapping functionshape :

void
map_mesh(

void (*shape) (double const & s, double const & t,
double & x, double & y) ,

// shape function
unsigned const ns, // s-subdivision
unsigned const nt, // t-subdivision
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker
void (*mark_edge) (Edge &, unsigned const &),// edge marker
void (*mark_poly) (Poly &, unsigned const &),// polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

• The integer valuesns andnt specify the number of partitions in thes andt cartesian
directions.

6.1.4 readmap mesh

The methodread_map_mesh generates a regular mesh from the input triangulation
in the ASCII filefile_name :

void
read_map_mesh(

char const * const file_name, // base name for file grid
void (*mark_vertex)(Vertex &, unsigned const &),// vertex marker

p2 mesh public interface 39

void (*mark_edge) (Edge &, unsigned const &),// edge marker
void (*mark_poly) (Poly &, unsigned const &),// polygon marker
unsigned const kind = 0) // 0 or 1 based index vectors

Example Figure 5 shows the grids that can be generated by different values of the parameter
kind by the statement

tensor_mesh(0.0, 1.0, 0.0, 1.0, 4, 4, NULL, NULL, NULL, kind) ;

that is also equivalent to

std_tensor_mesh(4, 4, NULL, NULL, NULL, kind) ;

since in this casexmin , xmax, ymin , ymax are set to the standard square box[0, 1]×
[0, 1].

Example The mapping function

void shape(double const & s, double const & t,
double & x, double & y) {

static double const PI2 = 2 * atan(1.0) ; // pi/2
x = (1+t) * sin(s * PI2) ;
y = (1+t) * cos(s * PI2) ;

}

maps the unit square onto the four-side domain shown in figure 6, that can then be
triangulated by changing quadrilaterals or triangles – and different orientations for
these latter ones – by choosing the appropriate value ofkind .

Example A four-side domain of generic shape can also be triangulated starting from an input
data file, containing an header line and the vertex coordinates of a basic grid. The
header line requires two integer fields,ns andnt , that stands for the number of ver-
tices in thes andt directions. The total number of vertices must bens×nt , and for

40 Programmer’s Manual

KIND = 0 KIND = 1

KIND = 2 QUADRILATERAL

Figure 5: Grids built usingtensor mesh

any vertex an entry line in the file gives its first and second coordinates. The fastest
running index is the one for the directions.

For easy of use, comments may be introduced in the file by inserting any of the fol-
lowing symbols

“ ! ”, “ #”, “ ; ”, “ %”, “ $”,

as the first character of the line; the rest of the line is then ignored.

p2 mesh public interface 41

2

y

1 x

1

2

Figure 6:

Suppose the filemesh.grd contains, according to the previous specifications, the ver-
tex coordinates of the grid produced by applying the mesh builder functionmap_mesh
with the mapping functionshape andns=4 andnt=4 .

Then, the two statements

map_mesh(shape, 4, 4, NULL, NULL ,NULL, kind) ;

and

read_map_mesh("mesh.grd", NULL, NULL, NULL, kind) ;

generates the grids in Figure 7:

Remark (The internal convention for markers)
When one of the previous mesh builders is executed, internal markers are automati-
cally generated. The markers indicate the logical location onto the regular four-side
regular grid of any instance of the project classes. Thus, they can be processed at
the initialization phase of the mesh data set by invoking suitable user defined marker
functions, whose action has to be coherently specified in the application program.

Internal markers are generated using the following convention.

42 Programmer’s Manual

file: mesh.grd
ns+1 nt+1
3 3
ns+1 nt+1
x y
0.00 1.00
0.71 0.71
1.00 0.00
#
0.00 1.50
1.06 1.06
1.50 0.00
#
0.00 2.00
1.41 1.41
2.00 0.00

KIND = 0 KIND = 1

KIND = 2 QUADRILATERAL

Figure 7: grid built usingmap mesh andred map mesh

Vertex
convention

0 internalvertex;
1 bottom sideboundary vertex;
2 right sideboundary vertex;
3 top sideboundary vertex;
4 left sideboundary vertex;
5 bottom leftcorner vertex;
6 bottom rightcorner vertex;
7 top right corner vertex;
8 top leftcorner vertex.

p2 mesh public interface 43

Edge
convention

0 internaledge;
1 bottom sideboundary edge;
2 right sideboundary edge;
3 top sideboundary edge;
4 left sideboundary edge;

Element
convention

0 internalelement;
1 bottom sideboundary element;
2 right sideboundary element;
3 top sideboundary element;
4 left sideboundary element;
5 bottom leftcorner element;
6 bottom rightcorner element;
7 top right corner element;
8 top leftcorner element.

Figure 8 illustrates the internal convention in the case of a regular3× 3 triangle based
mesh. It is worth noting that for all these mesh builders, the entity numbering proceeds

6

78

1 1

2

2

33

4

4 0 0

00

0 0

0 0 0

0 0

333

4

4

4 0

1 11

2

2

20

6

7

2

2

2

2

2

3

0

0

0

0

0

0

0

11

0

0

0

33 3

0000

0

00

0 0

0

0

0 0

00

00

0

0

0

1 115

4

4

4

8 3

4

40

0

0

0

0

0

0

5

5

0

0

0

0

0

0

0

0

1 1

2

2

733

4

4

0 0

0

0

0

0

0 0

4

1 1 6

2

2

338

4

Figure 8: Marker internal convention

in a very rigid way. The numbering always starts from the most left-bottom located
geometric entity; then, the boundary entities are first numbered following the external
boundaries in a counterclockwise way and then the internal perimeters in a clockwise
way; finally, all internal entities are numbered from left to right and bottom to up.

44 Programmer’s Manual

Hence, the location of every geometric entity on the mesh can also be determined
by simply knowing itslocal_number , but this approach should demand for more
expensive run-timeif-testcomparisons scattered in the code. Internal markers allow an
easier manipulation of this information, at the cost of a very small redundancy, which
can also be avoided by simply ignoring them whenever useless.

6.1.5 buildmesh

The methodbuild_mesh generates a mesh from a topology description in memory.
The prototype is:

void
build_mesh(

unsigned const nv,
double const *XY,
Vmark const *mv,
void mark_vertex(Vertex &, Vmark const &),

unsigned const ne,
unsigned const *E,
Emark const *me,
void mark_edge(Edge &, Emark const &),

unsigned const np,
unsigned const *P,
Pmark const *mp,
void mark_poly(Poly &, Pmark const &),

unsigned const base = 0) ;

where

• nv total number of vertices;

• XY real array storing the vertex coordinatesx andy in a sequential way, i.e.:

XY= (x0, y0, x1, y1, . . . , xnv, ynv)

p2 mesh public interface 45

• mvinteger array storing the vertex marker values; when markers are not to be specified,
the entryNULLmust be set;

• mark_vertex pointer to a user-defined marker routine; when markers are not to be
specified, the entryNULLmust be set;

• ne total number of edges;

• E integer array storing the edge connectivities, given sequentially by the pairs of point-
ers(ea

i , e
b
i) to the position of the verticesea

i andeb
i within the arrayXY, i.e.

E = (ea
0, e

b
0, e

a
1, e

b
1, . . . , e

a
ne, e

b
ne);

• meinteger array storing the edge marker values; when markers are not to be specified,
the entryNULLmust be set;

• mark_edge pointer to a user-defined marker routine; when markers are not to be
specified, the entryNULLmust be set;

• np total number of polygons;

• P integer array storing the vertex indices forming the polygon (3 for a triangular mesh,
4 for a quadrilateral mesh); for example, in the former caseP stores information as

P = (ta0, t
b
0, t

c
0, t

a
1, t

b
1, t

c
1, . . . , t

a
np, t

b
np, t

c
np)

where(tai , t
b
i , t

c
i) are the indices within the arrayXYof the vertexi.

• mp integer array storing the triangle marker values; when markers are not to be speci-
fied, the entryNULLmust be set;

• mark_poly pointer to a user-defined marker routine; when markers are not to be
specified, the entryNULLmust be set;

• base is the offset of the connectivity array indexing. It must be explicitly set to1 if
the arrays are indexed from1 in accord with theFORTRAN convention. Otherwise,
the offset is0 in accord with theC convention.

46 Programmer’s Manual

6.1.6 readmesh

The public methodread_mesh generates a mesh data set from an input ASCII file.
The prototype of the method is

void
read_mesh(

char const file_name[],
void (*mark_vertex) (Vertex &, Vmark const &),
void (*mark_edge) (Edge &, Emark const &),
void (*mark_poly) (Poly &, Pmark const &),
unsigned const base = 0)

The methodread_mesh can read three ASCII files with namefile_name and
extensions*.node , *.ele , and*.edge , in the output format of the freeware mesh
generatorTRIANGLE2 . This format is briefly described in the following. Unless
otherwise indicated in the format description the entry fields are mandatory.

file *.node Mandatory .
The file lists the vertex coordinates and, optionally, a vertex marker. The first line
is a header with the number of vertices, which indicates also the total number of the
remaining lines in the file. Each other line contains the following entries

1. the vertex identifier (one integer field);

2. the vertex coordinates (two floating point fields);

3. the vertex marker (oneVmark field, optional).

file *.ele Mandatory .
The file contains the node–element connectivity, and optionally, an element marker.
The first line is a header with the number of elements, which indicates also the total
number of the remaining lines in the file. Each other line contains the following entries

1. the element identifier (one integer field);

2. the identifiers of the vertices in the current element (as many integer fields as
vertices in the polygon);

3. the element marker (onePmark field, optional).

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/quake/public/www/triangle.html

p2 mesh public interface 47

file *.edge Optional .
If the file is present, it contains the edge–vertex connectivity, and optionally an edge
marker. If absent, the edge–vertex connections are internally detected and no edge
marker is assigned. The first line is a header with the number of edges, which indicates
also the total number of the remaining lines in the file. Each other line contains the
following entries

1. the edge identifier (one integer field);

2. the identifiers of the vertices connected by the current edge (two integer fields);

3. the edge marker (oneEmark field, optional).

If the first character of the lines in the files is one of the following:

“ ! ”, “ #”, “ ; ”, “ %”, “ $”,

the rest of the line is ignored as a comment. Notice that this format is slightly more
general than the one used by triangle, because instead of an integer number the marker
can be an object of a different type defined in the project.

Example The following two filesbox.node andbox.ele are given by

file: box.node
vertices (no marker)
9
nv x y

1 0.0 0.0
2 0.5 0.0
3 0.5 0.5
4 1.0 0.5
5 1.0 1.0
6 0.0 1.0
7 0.25 0.5
8 0.5 0.75
9 0.5 1.0

file: box.ele
triangles (no marker)
8
nt v0 v1 v2

1 1 2 7
2 6 7 8
3 8 5 9
4 2 3 7
5 3 4 8
6 8 9 6
7 5 8 4
8 3 8 7

Table 1: Example of file mesh definition

The use of the file “box ” in input of read_mesh

48 Programmer’s Manual

Figure 9: Generated mesh

read_mesh("box", NULL, NULL, NULL, 1) ;

produces the mesh in figure 9.

6.2 Statistics and diagnostics

The two following methods respectively print some simple information about the mesh
data set generated by one of the previous mesh builders and check the consistency of
the data set.

n. Method Description

84 void report(ostream& s) generate mesh statistics

85 bool test_mesh() check the mesh consistency.

The output of method (84) is sent to the output streams . For example, the statement
report(cout) produces on the standard output stream the following info about the
mesh defined in Table 1 on page 47:

p2 mesh public interface 49

p2_mesh statistics
Polygon Type = Triangle

+----------+----------+----------+
| Total | Internal | Boundary |

+----------+----------+----------+----------+
| Vertices | 14 | 5 | 9 |
+----------+----------+----------+----------+
| Edges | 30 | 21 | 9 |
+----------+----------+----------+----------+
| Polygons | 17 | 8 | 9 |
+----------+----------+----------+----------+

When a mesh is generated from an external file, the consistency of the mesh should
be ensured by the final user of the application program. However, when the files
containing connectivities are corrupted, results are unpredictable and errors may be
difficult to detect.

A number of errors are signaled during the reordering procedure, but many other may
be hidden. Method (85) checks the internal consistency of the mesh data set generated
during the initialization phase. When invoked, the methodtest_mesh() performs

• a test on the connectivities of polygons, edges, and vertices in the data set;

• a test on the orientation of the vertices in any polygon list, which must be ran in a
counterclockwise manner; an error in orientation is responsible of negative polygon
areas;

• a test on the connectivity of the vertex lists, when active;

• a test to detect eventual not referenced instances in the data set.

This method, although not too much expensive in terms of CPU time should not be
used in normal situations.

The following methods prints information contained in the mesh objects.

50 Programmer’s Manual

n. Method Description

86 void print(ostream & s, Unsigned base) print the mesh in a human readable form. The number-
ing starts from the offsetbase .

87 void print(ostream & s,
Vertex & V,
unsigned base)

print the contents of vertexV in a human readable form.

88 void print(ostream & s,
Edge & E,
unsigned base)

print the contents of edgeE in a human readable form.

89 void print(ostream & s,
Poly & P,
unsigned base)

print the contents of polygonP in a human readable
form.

STL Iterators 51

7 STL Iterators

Description An iterator is an object that iterates over the mesh lists of vertices, edges, and polygons
in a very effective and transparent way. Its use is highly recommended, since it hides
all the details of how the sequence of items on which we wish to iterate is actually
stored and accessed. Hence, the user application is implemented to be truly indepen-
dent of both the platform and of the language version. Compatibility is also ensured
with any future library developments.

TheP2MESHsoftware library has been designed using as much as possible theSTL
technology. The mesh iterators inP2MESHare thus inherited from the ones given in
STL.

7.1 Vertex iterators

There aretwo iterator types derived fromSTL:

• vertex_iterator iterates onVertex -type objects;

• vertex_const_iterator iterates on constantVertex -type objects;

The iterator types are defined as public ones but in the scope of the classMesh. To
access them, the scope operator must be used, e.g.

Mesh::vertex_iterator .

The following methods may be used to build loops on the vertices of the current mesh
data set. They return an iterator object, which, as indicated, points either to the first or
to the past-to-last instance in the internal mesh representation of the vertex data set.

52 Programmer’s Manual

n. Method Description

90 vertex_iterator vertex_begin()
vertex_const_iterator vertex_begin()

smart pointer to the first vertex

91 vertex_iterator vertex_end()
vertex_const_iterator vertex_end()

smart pointer to the past-to-last vertex

92 vertex_iterator ivertex_begin()
vertex_const_iterator ivertex_begin()

smart pointer to the first internal vertex

93 vertex_iterator ivertex_end()
vertex_const_iterator ivertex_end()

smart pointer to the past-to-last internal vertex

94 vertex_iterator bvertex_begin()
vertex_const_iterator bvertex_begin()

smart pointer to the first boundary vertex

95 vertex_iterator bvertex_end()
vertex_const_iterator bvertex_end()

smart pointer to the past-to-last boundary vertex

Usage The following example illustrates how these iterators may be used.

Mesh my_mesh ; // create a mesh object
// do something...
Mesh::vertex_iterator iv ; // define an iterator on vertex data
for (iv = mesh.ivertex_begin() ;// points to the first internal edge

iv != mesh.ivertex_end() ; // is it the last vertex ?
++iv) { // advance to the next vertex

Vertex & V = *iv ; // the current vertex reference
Vertex * pV = &*iv ; // pointer to the current vertex
/*
... do something on the vertex referenced by V or pointed by pV
*/

7.2 Edge iterators

There aretwo iterator types derived fromSTL:

• edge_iterator iterates onEdge-type objects;

• edge_const_iterator iterates on constantEdge-type objects;

STL Iterators 53

The iterator types are defined as public ones but in the scope of the classMesh. In or-
der to access them, the scope operator must be used, e.g.Mesh::edge_iterator .

The following methods may be used to build loops on the edges of the current mesh
data set. They return an iterator object, which, as indicated, points either to the first or
to the past-to-last instance in the internal mesh representation of the edge data set.

n. Method Description

96 edge_iterator edge_begin()
edge_const_iterator edge_begin()

smart pointer to the first edge

97 edge_iterator edge_end()
edge_const_iterator edge_end()

smart pointer to the past-to-last edge

98 edge_iterator iedge_begin()
edge_const_iterator iedge_begin()

smart pointer to the first internal edge

99 edge_iterator iedge_end()
edge_const_iterator iedge_end()

smart pointer to the past-to-last internal edge

100 edge_iterator bedge_begin()
edge_const_iterator bedge_begin()

smart pointer to the first boundary edge

101 edge_iterator bedge_end()
edge_const_iterator bedge_end()

smart pointer to the past-to-last boundary edge

Usage The following example illustrates how these iterators may be used.

Mesh my_mesh ; // create a mesh object
// do something...
Mesh::edge_iterator ie ; // define an iterator on edge data
for (ie = mesh.edge_begin() ; // points to the first edge

ie != mesh.edge_end() ; // is it the last edge ?
++ie) { // advance to the next edge

Edge & E = *ie ; // the current edge reference
Edge * pE = &*ie ; // pointer to the current edge
/*
... do something on the edge referenced by E or pointed by pE
*/

7.3 Poly Iterators

There aretwo iterator types derived fromSTL:

54 Programmer’s Manual

• poly_iterator iterates onPoly -type objects;

• poly_const_iterator iterates on constantPoly -type objects;

The iterator types are defined as public ones but in the scope of the classMesh. In or-
der to access them, the scope operator must be used, e.g.Mesh::poly_iterator .

n. Method Description

102 poly_iterator poly_begin()
poly_const_iterator poly_begin()

smart pointer to the first polygon

103 poly_iterator poly_end()
poly_const_iterator poly_end()

smart pointer to the past-to-last polygon

104 poly_iterator ipoly_begin()
poly_const_iterator ipoly_begin()

smart pointer to the first internal polygon

105 poly_iterator ipoly_end()
poly_const_iterator ipoly_end()

smart pointer to the past-to-last internal polygon

106 poly_iterator bpoly_begin()
poly_const_iterator bpoly_begin()

smart pointer to the first boundary polygon

107 poly_iterator bpoly_end()
poly_const_iterator bpoly_end()

smart pointer to the past-to-last internal polygon

Usage The usage of this iterators is quite standard

Mesh my_mesh ; // create a mesh object
// do something...
Mesh::poly_iterator ip ; // define an iterator on polygons
for (ip = mesh.bpoly_begin() ;// points to the first boundary item

ip != mesh.bpoly_end() ; // is it the last polygon ?
++ip) { // advance to the next polygon

Poly & P = *ip ; // the current poly reference
Poly * pP = &*ip ; // pointer to the current poly
/*
... do something on the poly referenced by P or pointed by pP
*/

}

Iterators public interface 55

8 Iterators public interface

Class Name Iterator<T> ,
CIterator<T> .
Throughout the section the keywordT will generically indicates one of the three user
defined classesVertex, Edge, Poly, (not necessarily the same at any occurrence).

Description The iterators previously introduced and directly derived from theSTL are sufficient
to implement any kind of loops in numerical algorithms. However, a different set
of iterators is available inP2MESHthat allows, without any loss of efficiency, the
implementation of more readable source codes. Iterator objects are instantiated by a
template definition, which requires the type of the data set to be iterated on. The current
mesh to whom the data set belongs and the iteration range may be specified either
as arguments of the iterator constructor methods or set in a subsequent moment by
invoking the methodset_loop . The classesIterator<T> andCIterator<T>
have the same functionality, the only difference is that the classCIterator<T>
iterates overconstantobjects.

Usage The following piece of code illustrates how iterators can be instantiated in the code.

Iterator<Vertex> v_iter; // instantiate an iterator on mesh vertices
Iterator<Edge> e_iter; // instantiate an iterator on mesh edges
Iterator<Poly> p_iter; // instantiate an iterator on mesh polygons

Member
Functions

Several iterator constructors are supported byP2MESH. The following table reports the
different cases.M indicates the current mesh data set, andf=1,2,3 is a flag which
specifies the iteration range.

n. Constructor Description

108 Iterator<T> (Mesh & M) iterator for the meshM

109 Iterator<T> (Mesh & M, unsigned f) iterator for the meshMon the rangef

110 Iterator<T> (void) iterator, no mesh and range specified

The mesh data set and the iteration range can be set up after the iterator was instantiated
by the public methods in the table.

56 Programmer’s Manual

n. Method Description

111 void set_loop(Mesh & M) select the mesh data setM

112 void set_loop(Mesh & M, unsigned f) select the mesh data setMand the rangef

113 void begin() set iterator to the first item

114 bool end_of_loop() return true if all items were iterated

115 Iterator<T> const & operator ++ () advance the iterator to the next item

116 T const * operator () () const
T * operator () ()

return the current item of the iterator

The methods (108–109) accept in input as a first entry the reference to the given in-
stance of the classMesh, indicated byM. The methodset_loop in the forms (112)
has an optional flag indicating the iteration range

• f=0 : iterates over all the items in the mesh data set;

• f=1 : iterates on the boundary items in the mesh data set;

• f=2 : iterates on the internal items in the mesh data set;

Constructor (108) assumes thatf=0 as the default state for the iteration range. Con-
structor (110), instead, does not assume any default state; hence, the iteration range
is undefined until directly specified by the user application, for example by a later us-
age of the methodset_loop() . An iteration loop can be finally built by using the
public methods (113–116). The following piece of code illustrates an example of how
iterators can be instantiated and used in an application program.

Mesh my_mesh ; // create a mesh object
// do something...
Iterator<Edge> edge_iterator ; // an iterator on edge data
edge_iterator . set_loop(my_mesh,2) ; // loops on internal edges
for (edge_iterator.begin() ; // points to the internal edge

! edge_iterator.end_of_loop() ; // it is not the last edge
++edge_iterator) { // advance to the next edge

Edge & E = *edge_iterator ; // the current edge reference
Edge * pE = &*edge_iterator ; // pointer to the current edge
/*
... do something on the edge referenced by E

Iterators public interface 57

*/
}

The macro
foreach .

A special macro, namedforeach , is available. It is defined by the preprocessor
statement

define foreach(X) for (X . begin() ; ! X . end_of_loop() ; ++X)

and makes possible a very short and effective definition of loops, as shown by the
following example.

// user stuff...

include "p2mesh.hh"

// user stuff...

void main() {
Mesh my_mesh ; // create a mesh object
/*

do something...
*/

// define an iterator and set it to loop on internal edges
Iterator<Edge> internal_edge(my_mesh, 2) ;

foreach(internal_edge) { // loops on internal edges
Edge & E = *internal_edge ; // the current edge reference
Edge * pE = &*internal_edge ; // pointer to the current edge
/*
... do something on the edge referenced by E
*/

}
// other stuff ...

}

In order to avoid conflicts with other libraries, which may define macros with the
same name for similar purposes, it is possible to turn off the macroforeach by the
following preprocessor directive

define P2MESH_NO_FOREACH

58 Programmer’s Manual

Iterators public interface 59

Three preprocessordefine statements can be used inP2MESHbeforethe inclusion
of the header file of the library. They are:

• P2MESH_DEBUG

• P2MESH_VERBOSE

• P2MESH_NO_FOREACH

The following piece of code

define P2MESH_DEBUG
include "p2mesh.hh"

forces the library code to check if subscripts are within their bounds during execution
of internal loops.

The verbose mode is switched by

define P2MESH_VERBOSE
include "p2mesh.hh"

and produces run-time info messages on standard output aboutP2MESHinternal op-
erations.

Finally, the macroforeach can be switched off by the following source fragment

define P2MESH_NO_FOREACH
include "p2mesh.hh"

60 Programmer’s Manual

A – Files included by P2MESH

P2MESHincludes theSTL header files:

• algo

• vector

theC++ header files:

• fstream

• iomanip

• iostream

• string

and the standardC header file:

• stdlib.h

– Error indicators and warnings 61

B – Error indicators and warnings

This section documents the run-time diagnostics messages which are output by
P2MESH. The symbol “•” indicates that an internal control is always performed by
the library code. Otherwise, the symbol “◦” indicates that the control is detected and
printed only when the preprocessor directive# define P2MESH_DEBUG is given
explicitly.

B.1 Diagnostics Messages of the class p2 vertex

• P2MESH in method ‘‘p2_vertex::operator =’’
Fatal error: attempt to use copy constructor.

This error message is given on return when the user application program attempts to
invoke the default copy constructor provided by theC++ programming language. The
failure is motivated in order to force the user to perform a (safer) bitwise copy.

◦ P2MESH in method ‘‘p2_vertex::vertex(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_vertex::n_vertex()-1] .

• P2MESH in method ‘‘p2_vertex::vertex(#1)’’
Fatal error: vertex list not defined.

This error message is output whenever the user tries to access the list of adjacent
vertices but the argumentList in the template header definition of the project class
Common is set tofalse (default).

◦ P2MESH in method ‘‘p2_vertex::edge(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer in the
range[0...p2_vertex::n_edge()-1] .

• P2MESH in method ‘‘p2_vertex::edge(#1)’’
Fatal error: edge list not defined.

62 Programmer’s Manual

This error message is output whenever the user tries to access the list of adjacent edges
but the argumentList in the template header definition of the project classCommon
is set tofalse (default).

◦ P2MESH in method ‘‘p2_vertex::poly(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer in the
range[0...p2_vertex::n_poly()-1] .

• P2MESH in method ‘‘p2_vertex::poly(#1)’’
Fatal error: polygon list not defined.

This error message is output whenever the user tries to access the list of adjacent
polygons but the argumentList in the template header definition of the project class
Common is set tofalse (default).

B.2 Diagnostics Messages of the class p2 edge

• P2MESH in method ‘‘p2_edge::operator =’’
Fatal error: attempt to use copy constructor.

This error message is produced when the user application program attempts to invoke
the default copy constructor provided by theC++ programming language. The failure
is motivated to force the user to perform a (safer) bitwise copy.

◦ P2MESH in method ‘‘p2_edge::vertex(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_edge::n_vertex()-1] .

◦ P2MESH in method ‘‘p2_edge::edge(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_edge::n_edge()-1] .

◦ P2MESH in method ‘‘p2_edge::poly(#1)’’
Fatal error: local index out of range.

– Error indicators and warnings 63

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_edge::n_poly()-1] .

◦ P2MESH in method ‘‘p2_edge::x(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be0 or 1.

◦ P2MESH in method ‘‘p2_edge::y(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be0 or 1.

B.3 Diagnostics Messages of the class p2 poly

• P2MESH in method ‘‘p2_poly::operator =’’
Fatal error: attempt to use copy constructor.

This error message is given on return when the user application program attempts to
invoke the default copy constructor provided by theC++ programming language. The
failure is motivated in order to force the user to perform a (safer) bitwise copy.

◦ P2MESH in method ‘‘p2_poly::ok_oriented(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be0 or 1. An invalid
index was detected on entry. The correct value must be0 or 1.

◦ P2MESH in method ‘‘p2_poly::vertex(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_poly::n_vertex()-1] .

◦ P2MESH in method ‘‘p2_poly::edge(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_poly::n_edge()-1] .

◦ P2MESH in method ‘‘p2_poly::poly(#1)’’

64 Programmer’s Manual

Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_poly::n_poly()-1] .

◦ P2MESH in method ‘‘p2_poly::poly(#1)’’
Fatal error: invalid polygon access.

The user application attempts to access to an adjacent polygon which does not exist.
The polygonpoly(i) does not exist whenedge(i) is a boundary edge.

◦ P2MESH in method ‘‘p2_poly::ok_poly(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_poly::n_poly()-1] .

• P2MESH in method ‘‘p2_poly::local_number(vertex &)’’
Fatal error: bad reference.

The vertex reference given to the methodlocal_number as input argument does
not correspond to a vertex objects in the list of vertices defining the current polygon
instance.

• P2MESH in method ‘‘p2_poly::local_number(edge &)’’
Fatal error: bad reference

The edge reference given to the methodlocal_number as input argument does not
correspond to an edge objects in the list of edges defining the current polygon instance.

• P2MESH in method ‘‘p2_poly::local_number(poly &)’’
Fatal error: bad reference.

The poly reference given to the methodlocal_number as input argument does not
correspond to a poly objects in the list of polygons adjacent to the current polygon
instance.

◦ P2MESH in method ‘‘p2_poly::x(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be0 or 1.

◦ P2MESH in method ‘‘p2_poly::y(#1)’’
Fatal error: local index out of range.

– Error indicators and warnings 65

An invalid index was detected on entry. The correct value must be0 or 1.

◦ P2MESH in method ‘‘p2_poly::xm(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be0 or 1.

◦ P2MESH in method ‘‘p2_poly::ym(#1)’’
Fatal error: local index out of range.

An invalid index was detected on entry. The correct value must be0 or 1.

◦ P2MESH in method ‘‘p2_poly::length(#1)’’
Fatal error: local index out of range.

B.4 Diagnostics messages of the class p2 mesh

◦ P2MESH in method ‘‘p2_mesh::vertex(#1)’’
Fatal error: global index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_mesh::n_vertex()-1] .

◦ P2MESH in method ‘‘p2_mesh::edge(#1)’’
Fatal error: global index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_mesh::n_edge()-1] .

◦ P2MESH in method ‘‘p2_mesh::poly(#1)’’
Fatal error: global index out of range.

An invalid index was detected on entry. The correct value must be an integer within
the range[0...p2_mesh::n_poly()-1] .

B.5 Build mesh error indicators

The internal methodsBuildEdges() , JointEdges() andReorder() are used
by P2MESHto construct edges from a list of polygon connectivities and to reorder

66 Programmer’s Manual

them by the algorithm depicted in the kernel description [1]. When a problem is de-
tected in run-time initialization, a diagnostics message is produced. If such a situation
occurs, the input mesh is more likely corrupted.

• P2MESH in method ‘‘p2_mesh::BuildEdges()’’
Fatal error:
an edge is referenced twice from the same side.

An edge is shared by two different polygons which are located at the same side. In a
correct mesh definition, an edge may be shared by no more than two polygons, which
must be located at the two opposite sides of the edge.

• P2MESH in method ‘‘p2_mesh::JointEdges()’’
Fatal error: incomplete polygon found.

In the list of vertices of the current polygon one or more vertex references areNULL,
i.e. they are not assigned to a valid vertex objects.

• P2MESH in method ‘‘p2_mesh::JointEdges()’’
Fatal error: try to build a polygon with a not existing edge.

The mesh data set misses the edge specified by two consecutive vertices in the vertex
list of the current polygon.

• P2MESH in method ‘‘p2_mesh::JointEdges()’’
Fatal error: try to assign a polygon to an already assigned edge side.

JointEdges() attempts to assign more than one polygon to the same side of an
edge.

• P2MESH in method ‘‘p2_mesh::Reorder()’’
Fatal error: isolated edge found.

An edge is found that does not belong to any polygon in the mesh data set.

• P2MESH in method ‘‘p2_mesh::Reorder()’’
Fatal error: incomplete edge found.

An edge is found with one or bothNULLvertices.

• P2MESH in method ‘‘p2_mesh::Reorder()’’
Fatal error: corrupted boundary.

– Error indicators and warnings 67

The mesh is corrupted, because a boundary edge seems to be shared by two different
boundaries.

• P2MESH in method ‘‘p2_mesh::Reorder()’’
Fatal error: open boudary.

The mesh is corrupted, because a chain of boundary edges cannot be closed.

B.6 Diagnostics messages for read map mesh

• P2MESH in method ‘‘p2_mesh::read_map_mesh(...)’’
Fatal error: cannot open input file.

An error occurred in opening the data file.

• P2MESH in method ‘‘p2_mesh::read_map_mesh(...)’’
Fatal error: bad grid dimension.

An error occurred in reading the data file of a tensor map mesh; notice that the grid
must ben×m with n,m > 1.

B.7 Diagnostics messages for build mesh

• P2MESH in method ‘‘p2_mesh::build_mesh(...)’’
Fatal error: bad edge definition in edge list.

The method attempts to build an edge composed by two vertices, one or both of whose
do not exist in the vertex list.

• P2MESH in method ‘‘p2_mesh::build_mesh(...)’’
Fatal error: bad polygon definition in polygon list.

The method attempts to assign an invalid vertex to a polygon.

68 Programmer’s Manual

B.8 Diagnostics Messages for read mesh

• P2MESH in method ‘‘p2_mesh::read_mesh(...)’’
Fatal error: cannot open nodes file.

An error occurred in opening the node file.

• P2MESH in method ‘‘p2_mesh::read_mesh(...)’’
Fatal error: cannot open polygons file.

An error occurred in opening the polygon file.

• P2MESH in method ‘‘p2_mesh::read_mesh(...)’’
Fatal error: error in reading vertex coordinates.

An invalid vertex coordinate is found or premature end-of-file is reached.

• P2MESH in method ‘‘p2_mesh::read_mesh(...)’’
Fatal error: error in reading polygon definitions.

An invalid polygon number is found or premature end-of-file is reached.

• P2MESH in method ‘‘p2_mesh::read_mesh(...)’’
Fatal error: error in reading vertex numbers for the polygon.

Invalid vertex numbers for the definition of a polygon are found or premature end-of-
file is reached.

• P2MESH in method ‘‘p2_mesh::read_mesh(...)’’
Fatal error: error in reading edge definition.

An invalid edge number is found or premature end-of-file is reached.

• P2MESH in method ‘‘p2_mesh::read_mesh(...)’’
Fatal error: error in reading vertex numbers for the edge.

Invalid vertex numbers for the definition of an edge are found.

REFERENCES 69

References

[1] BERTOLAZZI, E., AND MANZINI , G. The kernel of P2MESH. Tech. Rep. IAN–
1166, IAN – CNR, 1999.

70 REFERENCES

