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Abstract

P2MESHwvas developed for the solution of partial differential equation in two dimen-
sions on unstructured meshes. The library is a collectidd+ef classes and iterators
which allows to design and implement the data structures involved in Finite Element
and Finite Volume methods. Four different examples show the practical application of
P2MESHo the development of numerical solvers for PDE problems.






(NO) Installation

The P2MESHsoftware library consists in the header fi2mesh.hh to be included

at the beginning of each program source file ust@iESHacilities. No installation

or pre-compilation of library files is required. No library object or archive files must
be linked.

Conditions for Using p2mesh

TheP2MESHsoftware library is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
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1 The model problem

Let 2 be an open subset &" with boundaryoS2 andT a real positive constant. The
mathematical form of a typical time dependent problem is

ou
E‘FV'F:Q, x €, tE[O,T]
boundary conditions fox € 02, ¢ € [0, T] ()

U assigned at = 0 for x € ,

whereU = U(t, x) is the vector of unknown®) = Q(t,x) is a given source term,
andF = F(t,x,U, VU, ...) takes into account the dependenceldmand its spatial
derivatives. The mathematical form of a stationary problem is

V- -F=Q, x €,
boundary conditions fox € 0f,

(2)

with similar definitions forU, Q, F.

A suitable set of boundary conditions and initial solutions must be provided in order
to have a well-defined mathematical problem. Tbaservativeor sometimes called
divergenceform, has been preferred because it is a natural starting point for Finite
Volume (FV) methods. These ideas apply to FV methods as well as to Finite Element
(FE) ones.

Both FV and FE discretizations are based anesh triangulationthat is on the par-
titioning of the computational domaifd, in some basic geometrical entities (usually
called cells, elements or control volumes), such as triangles, quadrilaterals in 2-D,
or tetrahedrons, prisms, in 3-D. Managing such entities may be trivial in simple sit-
uations, for instance when one deals with a structured rectangular mesh on a simple
domain (such as a square), but it is not at all evident when an unstructured mesh on a
general shaped domain is considered.

A PDE solver must be capable to handle all the topological and geometrical informa-
tion required by the numerical algorithm. Such a solver generally manages information
whose nature depends on both the applications and the numerics. The main difference
in the implementation of different algorithms relies in theta structuresnvolved and

the way these latter ones aranipulated

Basically, all relevant information, such as geometrical quantities, physical unknowns
and auxiliary dependent variables, can be logically associated to different geometri-



4 FE and FV Programming

cal entities, which intuitively correspond in the 2-D case téeatex, anEdge, or a
Polygon in the mesh. More complex mesh-based data structures can be built as the
completion of a set of suitably parameterized geometric containers and the mesh itself
is a container for instances of these data structures.

In this framework, the design of a PDE solver requires the careful specification of
the basic data types and their functionalities. At the highest level of abstraction, a
very general solution approach is truly independent of the details of the problem to be
solved and of the discretization method to be applied.

For example, one considers a geometrical type such &slge, and wants to extend

it into a more complex data type, in such a way that certain basic properties of the
basic type continue to hold for the extended type. The application-dependent extended
Edge will transparently manage the underlying geometric mesh and will contain all
the data and functionalities required by the problem and the approximation algorithm
under consideration.

In this respect, OOP techniques turn out to be quite effective. Actually, in a procedural
programming model, the data structures are manipulated by external procedures that
take them as input/output arguments. Instead, in non-procedural OOP models the
different functionalities which operate upon different data are themselves part of the
data specificationsee [7].

OOP techniques are versatile in the description of data containers and help to isolate
the data structure design from the implementation of the application program.

This work mainly deals with the following issue of scientific programming:

“how to design a PDE solver for unstructured mesh computation in terms
of generic parameterized containers for mesh-based data structures
and related functionalities”.

The parameterization of a container is mainly achievable by these three strategies:

1. encapsulatiorof the user defined data;
2. inheritancefrom abstract base containers;

3. direct parameterization

The latter one makes possible very effective implementations, because it dramatically
reduces the number of pointer dereferences and the function-call overheads. Remark,
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also, that the first technique is supported by any procedural language and the second
one, which needs the mechanism of inheritance, is present in almost all object-oriented
languages. Direct parameterization, instead, is the most recent developed technique
and just few programming languages support it (ADA, C++ andEIFFEL).

2 FE and FV discretizations

The exact solution of the problems stated in equations (1-2) is usually unknown and
impossible to obtain in very general situations by analytical methods. Hence, these
problems must be reformulated in a suitadhitscreteform, which allows computations.

The section illustrates some basic features of the Finite Element and Finite Volume
methods, focusing on those computational aspects related to the management of data
structures in a numerical solver.

2.1 Basic ideas of Finite Element Methods

In literature there are many papers and textbooks devoted to the presentation of the
theoretical aspects of the finite element methods, which discuss the properties of the
above formulations, show the way to construct suitable discrete approximations and

analyze convergence in terms of error estimates. A general but also detailed presenta-
tion of these issues can be found, for example, in [1].

The present section reviews some essential issues on FE methods by an application to
the homogeneous Laplace equation. The problem

{—Au = f, in Q
u = 0, on o<}

can be considered in the framework of (2) with= u, F(u) = —Vu andQ = f.
The starting point of every FE method is the “variational formulation” of the problem.

(3)

Findu in a space of admissible functiomSsuch that
a(u, v) = L(v) forallv € V,
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whereu € V is the weak solution. In the particular case of the homogeneous Laplace
problem,V = HZ(Q) indicates the standard Sobolev space of square-integrable
functions with null trace on the boundary and whose first derivatives are all square-
integrable functions. The bilinear forat-, -) : V x V' — R and the linear functional
L(:):V —Rare

a(u, v) = /QVu -V, L(v) = /va. 4)

The discrete form of the variational formulation derived from (3) and suitable for com-
putation is formally given by

{Find up, in @ space of admissible functioly such that
ah(uh, ’Uh) = Lh(vh) for all vy, € Vi,

®)
wherewy, is the approximation of: in the finite-dimensional spadé,, which is, in

the case of conforming finite elements, a subspace of the Hilbert $patie bilin-

ear formay(-,-) : V3 x V3 — R and the functional,(-) : V;, — R are suitable
approximations of the bilinear forma(-, -) and the linear functional (-) introduced

in (4), respectively. The simplest choiceds(-, ) = a(-,-) andL;(-) = L(-), but
more complex ones are also possible, depending on different choic&s &d also
involving approximations by suitable quadrature rules of the integrals in equation (5).

Roughly speaking, a FE method requires the definition of a finite-dimensional sub-
spacel}, which should be convenient from both a theoretical viewpoint, because it
preserves some useful properties of the exact solution dpaaad from a computa-
tional viewpoint, because it allows an easy estimation of the discrete approximation
up, € Vj tow.

The finite-dimensional space of admissible functidfss essentially built by piece-

wise polynomials defined onmeshor triangulation usually denoted by}, of the
domain(;, which is an approximation of the doméih A triangulation is a union of

a suitable set oflementd( and is generally demanded to satisfy some regularity con-
straints, which affect both the more practical implementation aspects and the eventual
underlying theoretical analysis.

The spacéd/, usually consists in functions whose restriction to any eleniérg 7y,

is a polynomial of an assigned order. Some regularity conditions are usually satisfied
by the functions inV;, and sometimes also by their derivatives, such as the global
continuity on the closure of the domain,).
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The key point in the construction of the spdggis that there exists a set of basis func-
tions{v;} having a small support. This fact enormously simplifies the computation of
the integrals imu, (-, -) and L (). Thus, the approximate solutiar, is given by the
linear combination of the functionis); }, that is

N
up, = Zulvl (6)
i=1

The N termsu = {u;} are generally called the “degrees of freedom”. They are
computed by solving the linear system that arises from relation (5) for all the basis
functions{v; }.

A particular choice of the basis functiods;} strongly affects the meaning of the
degrees of freedom; for example, in Lagrange-type finite elements, the degrees of
freedom approximate the values of the solution at a given set of nodes within the
element; in Hermite-type finite elements the degrees of freedom approximate also the
values of the directional derivatives at some given locatiorfs.in

Thus, a finite element method formally implies a suitable choice for the triplet
(K, Yk, Px), whereX g is the set of degrees of freedom aRg the space of poly-
nomials defined on the generic geometrical eleniénbDifferent choices of this triplet
correspond to different finite element methods and are equivalent to the specification
of V}, once a triangulatioff;, has been given.

Finally, substitution of (6) in (5) yields the linear algebraic problem
Au =D,

where the matrixA is usually called the “stiffness matrix” and the right-hand-side

b the “load vector” (the terminology comes from elasticity problems). In a standard
implementation, the stiffness matrix and the load vector are assembled from local con-
tributions estimated on every mesh element, i.e.

Aij= 345 n= 3 o

KeTy, KeT,

A typical implementation is based on a loop over all the elements of the triangulation.
Hence, it is very natural to utilize element-based data structures and access their val-
ues for the current element instance and its neighbors. Essential boundary condition,
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dependent on the physical problem and the variational formulation, are usually consid-
ered at this stage. Finally, a library solver for linear problems is invoked, the degrees
of freedom ofu; are computed and the approximate solutigrcan be post-processed.

2.2 Basic ideas of Finite Volume Methods

The FV method basically consists in producing an appropriate discretization of a set of
conservation laws expressing, in an equivalent integral way, the original problem (1-2).

Methods based upon the FV spatial discretization have become very popular during
the last two decades, mainly because they present some advantages on FE methods in
the case of large transport terms. In particular, they are very suitable for systems of
conservation laws. With respect to FE methods, where the integrals of the stiffness ma-
trix are usually calculated by a transformation onto a reference element, the advantage
of FV methods is that they are able to solve the equations directly in the computa-
tional domain. Since all the costs associated with the evaluation of the jacobian of the
transformation matrix are removed, an important reduction of computational costs can
occur. For the sake of exposition, the discussion in the section is restricted to time-
dependent problems. The considerations presented hereafter apply also to stationary
problems.

FV methods are based on a suitafmieshpartitioning of the computational domatity

which can be given as a set of “control volumds also called “finite volumes”, or

more simply “cells”. Contrary to the case of FE methods, the set of volymgsis

not necessarily identified wit,. Indeed, the FV methods referred to in literature for
unstructured grid computations may actually deal with two different kinds of meshes:
the primal meshthat is7;,, and itsdual mesh The relation betweefi;, and its dual

is based on the association between the vertices, the edges and the centroids of two
meshes. Since this association is not unique, more than one dual mesh can be specified
from a given primal mesh.

For the sake of exposition and without pretending of being exhaustive, the FV methods
are regrouped into the two following families, depending on which mesh the control
volumes are considered:

e acell centered~V method takes the control volumes as elements of the primal
mesh;
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e acell vertexFV method takes the control volumes as elements of a dual mesh.

Since a number of dual meshes are possible, many variants of the cell vertex FV meth-
ods exist and are documented in literature.

The integration of equation (1) on the mesh control volumes yields the following set
of integral conservation laws

6/U+/ V‘F:/ Q, foreveryK (7)
615 K K K

The derivative with respect tb has been taken outside the first integral under the
assumption that the control volumes do not change in time. The final form, which is
the most suitable for the FV discretization, is then achieved by introducing in the first
integral the quantityU x, which is the average value of the unknoWwion the control
volume K,

— 1
G- v
K| Jk

and by applying the divergence theorem to the second integral. Equations (7), then,
become

dU g 1

1
oYK L 1 nK‘F:/Q’ for every K (8)
dt  |K| Jox K| Jk

wheredK is the boundary of control volum& andng is its outward normal vec-

tor. The discrete FV method is given by introducing the unknofWds (t")} which
approximates at time levelthe cell-averaged valuB x over the control volumex.

A common approach consists in separating the discretization in time and space by
treating them independently. This approach is historically known in literatutieeas
method of lines

Finite differences in time are usually adopted for the time derivative (first term in
(8)), which produce in the simplest cabet order explicit or implicit time-marching
schemes. Higher-order accurate and more complex approximations are produced by
“predictor-corrector” and Runge-Kutta schemes.

As far as space discretization is concerned, the crucial point is that the evolution in time
of the cell-averaged quantitigdJ x } depends only upon the distribution of the flux
densityn-F on the cell interface boundari¢8 K }. Furthermore, the flux integral term
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depends on the (pointwise) value that the solulibr and sometimes its gradient —
takes on the control volume boundary. However, only the approximéliba} of the
cell-averaged valueSU i } are available during the solution process, which demands
for a “recovering” step from the averages to the pointwise values.

The simplest procedure consists in taking the cell-average values as the approximation
to the solution values at the centroids of the control volumes. The resulting scheme is
1-st order accurate-in-space. Higher-order accurate spatial representations are based
on higher-order polynomialeconstructionprocedures. Spurious numerical oscilla-
tions may appear when discontinuities are present. This is typical of non-linear prob-
lems but it may happen also in the simpler case of a rigid advection of an initially
discontinuous solution. Numerical oscillations are avoided by requiring that some ad-
ditional monotonicity constraints are satisfied by the discretization.system

No special assumptions are usually given on the regularity of the approximated solu-
tion, such as global continuity d, as is the case of conforming FE methods. Thus,
the solution which is locally reconstructed within any control volumés generally
discontinuous across control volume boundaries. Flux integral computation must be
performed via a suitable numerical flux model, which takes into account the contribu-
tions from both sides of any internal edge and the boundary conditions set on boundary
edges.

Assuming, for simplicity, that the physical flux depends only on the solutionhe
second term in equation (8) can be modelled by

/ nK-F(U) ~ Z @(UK,UR,I’IKR),
oK KeN(K)

where N(K) is the set of control volumes adjacent to the control volufig
n, 7 is the average normal along the edge sharedkbynd K € N(K), and
@(Ug,Ug;n, ) is the numerical flux.

An extensive number of numerical fluxes has been proposed in literature. We men-
tion the family of central fluxes eventually corrected by an artificial dissipation term,
the one of upwind fluxes, based on the (exact or approximate) solution of Riemann
problems, and the one of flux-vector splitting-based fluxes.

In this framework, once one has identified the FV control volumes with the cells of
the primal or the dual mesh, both the integral formulation of the original differential
problem (1) and its discrete FV counterpart basically remain the same. Nevertheless,
the program design and its implementation substantially differ.



A FE solver for the Poisson problem 11

In fact, when an explicit time-marching scheme is coupled with an FV method, at any
time step (or any internal stage for explicit Runge-Kutta or multistage schemes) the
two following operations must be performed:

e for any (primal or dual mesh) edge, the estimation of the contribution of the
numerical flux to the residual of the control volumes sharing that edge;

e for any (primal or dual mesh) control volume, the updating of the cell-averaged
solution.

In a cell center FV method, the control volumes are the primal mesh cells. Hence, the
solver implementation may demand for a first loop on the edges and a second loop
on the cells of the primal mesh. In a cell vertex FV method, the control volumes are
the dual cells associated to the primal mesh vertices. Hence, the solver implementation
may demand for a first loop on the primal mesh cells closed to the primal mesh vertices,
and a second loop on the primal mesh vertices.

In the former situation, the program must be capable to retrieve efficiently the infor-
mation stored in objects of type, s&ggeandcell; in the latter one, in objects of type

cell andvertex Other totally different implementations could be possible, of course;
the ones proposed, even if rather common, just exemplify the basic ideas. Special care
should also be devised to the treatment of the boundary conditions, but this issue will
no be addressed for the time being.

3 A FE solver for the Poisson problem

Here we introduce the reader to the facilities provided bypRemesh software li-

brary. Since the best way to leaR2MESHSs to use it by writing programs, some
examples, commented line-by-line, will descrP2MESHnN action. Two FE different
solvers are given for the Poisson problem with non-homogeneous boundary condi-
tions, by using conformin@-, and Q- Lagrangian elements. Two different FV solvers
are also given for the compressible Euler equations by using a cell center and a cell
vertex scheme. The reader is assumed to be familiar with both theoretical and nu-
merical issues related to these problems, since the attention in the presentation will
be focused just on the implementation details concerning the us&®pMESHIn all

these applications, the2MESHclasses, which contain a complete representation of
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the mesh, are inherited to define the mesh-based application classes. Due to the tuto-
rial nature of the examples, no particular effort to produce a “good” implementation

is spent in issues other than the grid representation and the mesh-based representation
of the numerical algorithm and the solution. For instance, in the case of the Poisson
problem, neither the sparsity nor the symmetry of the resulting linear system are at all
exploited. LetQ? = (0,1) x (0,1) be the computational domain; then, the Poisson
problem with non-homogeneous Dirichlet conditions reads

—Auy = f in €,
u = g on o).

The resulting algorithm follows the line described in paragraph 2.1.

4 A P, conforming solution

This section describes the program contained in theflesolver.cc  in the direc-
tory examples of the P2ZMESHistribution package.

Include the library

# include "p2mesh.hh"

Line 1 includes the header file g2mesh.hh .

Declare the user-defined class names

class Vertex ;

class Edge ;

class Triangle ;
class Mesh ;

class Elliptic_Solver ;
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typedef double (*pFun)(double const & x, double const & y) ;

Lines2—6 declare the names of all the mesh-based project classes. A function pointer
type is also declared in ling. Declarations in line@—-5 are mandatory by the mech-
anism of inheritance, while the one in lidecould be omitted. Th®2MESHibrary

does neither require nor enforce any particular choice for the project class names. In
this and following examples the nam¥srtex , Edge, Triangle , andMesh are
conventionally adopted for the project classes. The n@wm@monis used for the
common project class.

Define the class Common

class Common : public p2_common<Vertex,Edge,Triangle,Mesh> {
protected:
static unsigned const degree_of_freedom = 6 ;

static void shape(unsigned const,
double const &,
double const &,
double &) ;

static void shape_grad(unsigned const,
double const &,
double const &,
double [2]) ;

The classCommornis publicly inherited from the library template clag2 _common
This latter one is parameterized in lieby the project class names introduced in
lines2-5.

The classCommonis a container for information, such asum, static or
typedef definitions, to be shared by different instances of different project classes.
In very simple situations the class might also be empty. In the present case it contains
the prototypes of the static functioshape andshape_grad , which are thePs
polynomial basis functions and their gradients.
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Define the classes Vertex, Edge and Triangle

class Vertex : public p2_vertexxCommon> {

public:
unsigned EgNumber (Mesh const &) const ;
bool IsOnBoundary(Mesh const &) const ;
J .
class Edge : public p2_edge<Common> {
public:
unsigned EgNumber (Mesh const &) const ;
bool IsOnBoundary(Mesh const &) const ;
J.

class Triangle : public p2_poly<Common> {
public:
void eval_JJT(double[2][2], double &) const ;
double eval_int_f(unsigned const, pFun, double const &) const ;
double eval_int_grad(unsigned const, unsigned const,
double const [2][2], double const &) const ;

unsigned EqNumber (Mesh const &, Unsigned const) const ;
bool IsOnBoundary(Mesh const &, Unsigned const) const ;

b

The code fragment in line80-38 defines the project classd®rtex , Edge and
Triangle . The mechanism of inheritance from the base claggyertex
p2_edge andp2 _poly ensures each project class the access to the underlying mesh
data representation R2ZMESHThe base classes are moreover parameterized by the
project classCommonin such a way that they contain also the common information
of the project.

When P, basis polynomials are used, thé degrees of freedom of the FE dis-
cretization may be logically assigned to mesh vertices or edge midpoints. Notice
that N = Nyertex + Neage- The degrees of freedom are globally enumerated (and
of course uniquely identified) by an integer number running throuigh N — 1.

The Vertex , Edge and Triangle types are equipped with the public method
EqNumber, which returns the global identifier.

The public method¥ertex::IsOnBoundary andEdge::IsOnBoundary  re-
turn the boolean valugue whenever the current instance ofartex or anEdge
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is located on the mesh boundary. The latter method is useful when the boundary con-
ditions must be set up.

Both method€£qNumber andisOnBoundary require the reference to the current
Mesh object because the information they return is deduced from the rank of the in-
stance within the mesh the instance belongs to.

The public method3riangle::EqNumber andTriangle::IsOnBoundary
take as input arguments also an unsigned integer which is the local identifier of the
degree of freedom within the given triangle instance.

In the classTriangle the prototypes of the following three methods are also de-
clared:

e void eval_int_f(unsigned const i,
pFun func,
double const & detJ)

evaluates by a suitable quadrature rule on the reference element the value of the integral

J[ 1@ vy dedy = [[ 5,005,018 ds .
T T

where f is the source term of the Poisson problem,i = 0,1,...,5, are the local
basis functions on the triangle and f and; their counterparts defined on the refer-
ence triangl€’.. ;. A non-singular affine mapping' transforms the reference triangle
Ty into the actual triangl@’, in such a way that the following relations hold

f=foF!
v =00 F1, i=0,1,...,5

Jr is the Jacobian matrix of the mappihgand|.J¢| its determinant, which is constant
because of the linearity of the transformation.

e double eval_int_grad(unsigned const i,
unsigned const j,
double const JJT[2][2],
double const & detd) ;
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computes an approximate value of

/ Vui(z,y) - Vuj(z,y) dedy = / V(s t) Jpt Tt Vo,(s,t) | Jp|ds dt
T Tres

void eval _JJT(double JJT[2][2], double & detJ)
computes

JrazT and  |Jp|

which are needed in the previous formulae.

Define the class Mesh

class Mesh : public p2_mesh<Common> {} ;

The classMesh inherits the mesh representation from tR@MESHbase class

p2_mesh, which has been parameterized by the project dz@mmmon No further

specification is required in the current application, and the class functionalities are the

ones inherited fronp2 __mesh.

Define the solver class Elliptic  _Solver

class Elliptic_Solver : public Common {

private:
Mesh mesh ;
double **mat ;
double *sol, *rhs ;

public:
Elliptic_Solver(void) {} ;
“Elliptic_Solver(void) {} ;
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void Solve(pFun, pFun, unsigned const, unsigned const) ;
void Save_Mtv(void) ;
b

The main solver class of the application is caligliptic_Solver . TheP2MESH
library does not support any specific discretization method; thus, the final user must
explicitly supply its implementation. The class definition is given in li4@s50. The

solver class contains a private instancéviefsh, see line42, and the working arrays
required to store the stiffness matrixat, the right-hand-side vectorhs , and the
solution vectorsol , see linegsl3—44. The stiffness matrix is implemented in a rather
usual style irC andC++, that is, by an array of pointers to the array of double storing
the matrix rows. The statements in liné8—49 declare the prototype of the public
methodsSolve andSave Mtv . The former one implements the FE method while
the latter one dumps out the approximated solution in a rather common graphic format
(MTV). Solve takes four arguments in input: two function pointers to the functions
andg, whose type is globally declared in liife and two integerax andny, which are

used to specify the partitioning in the directionandy of the domairt2. The method
actually builds the mesh data set, performs some local computations and assembles the
global right-hand-side vector and stiffness matrix. Then, it computes the approximate
solution, which is finally stored isol , by solving the resulting linear system by a
standard (and rather inefficient) factorization technique.

The methodsave_Mtv saves the solution for graphical post-processing by using the
“MTV” data format in a file which can be immediately visualized by the program
plotmtv 1.

The methods of the class Common

void
Common::shape(unsigned const nb,
double const & s, double const & t,
double & res) {
switch ( nb ) {
case 0: res
case 1: res

(1-2*(s+t))*(L-(s+t)) ; break ;
4*s*(1-(s+t)) ; break ;

Theplotmtv  program
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case 2: res = s*(2*s-1) ; break ;
case 3: res = 4*s*t : break ;
case 4: res = (2*-1)*t ; break ;
case 5: res = 4*(1-(s+t))*t ; break ;

}

The source fragment defines the local basis functions for the confofipglynomi-
als in the reference trianglg..r. T;.. s is the simplex{(s,t) | s,t > 0; s+t < 1}. The
value of thenb-th local basis function at the positids, ¢) is returned by the method
shape in the arrayres . The degrees of freedom within the reference triangle
are enumerated as shown in figure 1.

/I values of gradients of bases function
void
Common::shape_grad(unsigned const nb,
double const & s,
double const & t,
double g[2]) {
switch ( nb ) {

case 0: g[0] = 4*(s+t)-3 7 g[l] = 4*(s+t)-3 ; break ;
case 1: g[0] = 4 - 8*s - 4*t ; g[l] = -4*s ; break ;
case 2: ¢g[0] = 4*s-1 ;g1 =0 ; break ;
case 3: g[0] = 4* ; g[l] = 4*s ; break ;
case 4: g[0] = 0 ; g[l] = 4%-1 ; break ;
case 5: ¢g[0] = -4* ; g[1l] = 4 - 4*s - 8* ; break ;

}

The source fragment defines the functelmape _grad , which returns in the array
g[2] thetwo components of the gradient of thie-th local basis function at the point
(s,t) in the reference triangle.

The methods of the class Vertex and Edge

inline
unsigned
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)

@

Figure 1:

Vertex::EqNumber(Mesh const & m) const
{ return m . local_number(*this); }

inline

bool

Vertex::IsOnBoundary(Mesh const & m) const

{ return m . local_number(*this) < m . n_bvertex() ; }

inline

unsigned

Edge::EqNumber(Mesh const & m) const

{ return m . n_vertex() + m . local_number(*this) ; }

inline

bool

Edge::IsOnBoundary(Mesh const & m) const

{ return m . local_number(*this) < m . n_bedge() ; }

The source fragment defines the implementation of the metkogdumber and

IsOnBoundary for Vertex andEdge type objects. Both methods make usage
of the internal numbering of vertices and edges, which is returned by the function

local_number . WhenEgNumber is invoked by aVertex object, it returns the
rank in the mesh of the current vertex instance; instead, \iuydumber is invoked
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by anEdge object, it returns the rank of the current edge instance, augmented by the
total number ofVertex instances in the mesh. The degrees of freedom associated
to the edges of the mesh are in this way enumerated after the ones associated to the
vertices. Finally, since all the boundary objects are ordered before the internal ones
in the underlying mesh representation, a simple test on the rank distinguishes internal
vertices and edges from the boundary ones.

The methods of the class Triangle

void

Triangle::eval_JJT(double JJT[2][2], double & detJ) const {
double J[2][2] ;
inverse_jacobian(0.0, 0.0, iJ) ;

JJT[O][0] = 1J[0][0]1J[O][0] + II[O][A]*I[O][] ;
JIT[O][1] =

JIT[L][0] = J[O][O]I[L][0] + II[O]L]*I[L][L] ;
JIT[A] = Y[OHIAN0] + I[LN[LII[LIA] ;

detd = L/GI[O][0] * iI[L][1] - iI[LI[O] * iI[OI]) :

The method in line§5-104 computes the entries of the matdy.' J.” and the de-
terminant|Jr| of the affine mappind”. In the current implementation, tiR2MESH

library methodinverse_jacobian is first invoked, which returns the Jacobian
matrix J,'. ThenJ,'J." and|Jz| are directly evaluated. The first two arguments

in inverse_jacobian would specify the local positiofs, t) on the reference tri-

angle where]g1 must be calculated. However, the Jacobian matrix of a linear trans-
formation defined on the reference triangle is constant. Thus, these arguments are not
really used, and are conventionally set to zero.

double

Triangle::eval_int_f(unsigned const i,
pFun func,
double const & det]) const {

static double s[] = { 0.5, 0.5, 0.0 } ;
static double t[] = { 0.0, 0.5, 0.5 } ;
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111 double b ;
112| double res = 0 ;
13| for (unsigned k = 0 ; k < 3 ; ++k ) {

114 shape(i, s[k], t[k], b) ;

115 res += func( xm(k), ym(k) ) * b ;
16| }

117 return detd * res / 6 ;

118] }

21

This source fragment approximates the integral
|JF|//f(s,t)@i(s,t)dsdt
Tref
by the edge midpoint quadrature rule:
Jr| | & . .
%F| £(0.5,0)0;(0.5,0) + f(0.5,0.5) 0;(0.5,0.5) + £(0,0.5) 9;(0,0.5)
119/ double
120| Triangle::eval_int_grad(unsigned const i,
121 unsigned const |,
122 double const JJT[2][2],
123 double const & detJ) const {

124/  static double s[]
125/  static double {[]

{05, 05 00} ;
{ 00, 05 05} ;

126 double gi[2], gj[2] ;

127 double res = 0 ;

128/ for (unsigned k = 0 ; k < 3 ; ++k ) {
129 shape_grad(i, s[k], t[k], gi) ;

130 shape_grad(j, s[k], t[k], gj) ;

131 res += JJT[O][O] * gi[0] * g@j[0] +
132 JJT[O][1] * gi[O] * gj[1] +
133 JJIT[1][0] * gi[1] * gj[0] +
134 JIT[AR] * gill] * gil1] ;
35| }

136 return detd * res / 6 ;
137/ }
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Analysis  This source fragment approximates the integral

IJF\// Vo (s, ) (Jo TR )Vo,(s,t) dsdt
T’raf

by the edge midpoint quadrature formula:

[7e|

V;(0.5,0) 7 (J-1 T T)V0;(0.5,0) + V;(0.5,0.5) T (J- 1 T-T)V©;(0.5,0.5) +

V#;(0,0.5) 7 (J-1T-T)V0,(0,0.5)

138| unsigned
139| Triangle::EqNumber( Mesh const & m, Unsigned const loc) const {
140 if (loc % 2 == 1) return edge(loc/2) . EqNumber(m) ;
141  else return vertex(loc/2) . EQNumber(m) ;
142| }
143| bool
144| Triangle::IsOnBoundary( Mesh const & m, const Unsigned loc) const {
15| if (loc % 2 == 1) return edge(loc/2) . IsOnBoundary(m) ;
146| else return vertex(loc/2) . IsOnBoundary(m) ;
147

}

Analysis  The method&EgNumber in lines138-142 andisOnBoundary inlines143-147
takes in input the reference to the current instance of the mesh and the local (within the
triangle) number of a degree of freedom. The first method returns the global number
within the program application of the degree of freedom. The local numbering of the
degrees of freedom is counterclockwise ordered, running througtb and starting
from a vertex, see Figure 1. In this case, the degrees of freedom associated to triangle
vertices are given even local numbers, the ones associated to the triangle edges are
given odd local numbers. The second method, instead, returns the baalean
whenever the input local number specifies a degree of freedom associated to a vertex
or an edge on the boundary of the computational domain.
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void
Elliptic_Solver::Solve(pFun f, pFun g,
unsigned const nx, unsigned const ny) {
unsigned i, j, k ;

/I build the mesh
mesh . std_tensor_mesh( nx, ny, NULL, NULL, NULL ) ;

/| allocate memory
unsigned neq = mesh . n_vertex() + mesh . n_edge() ;
unsigned nnum = 2*neq + neq * neq ;
sol = new double [ nnum ] ;
mat = new double * [ neq ] ;
if ( sol == NULL || mat == NULL )
{ cerr << "not enought memory" << endl| ; exit(0) ; }
rhs = sol + neq ;
mat[0] = rhs + neq ;
for (i =1 ;i< neq ; ++i ) mat[i] = mat[i-1] + neq ;

/I clean up memory
for (i =0 ;i< nnum ; ++i ) solli] = 0 ;

/I build the linear system
Iterator<Triangle> triangle(mesh) ;
foreach( triangle ) {

double detJ, JJT[2][2] ;

triangle -> eval_JJT(JJT, detd) ;

for (i = 0 ; i < degree_of_freedom ; ++i ) {
if ( triangle -> IsOnBoundary(mesh,i) ) continue ;
unsigned ig = triangle -> EqNumber(mesh,i) ;
rhsfig] += triangle -> eval_int_f(i,f,detd) ;
for (j = 0 ; j < degree_of_freedom ; ++j ) {
unsigned jg = triangle -> EgNumber(mesh,j) ;
matfig][jg] += triangle -> eval_int_grad(i, j, JJT, detd) ;

}
}

/I setup boundary conditions
Iterator<Vertex> vertex(mesh,1) ;
foreach( vertex ) {
unsigned ig = vertex -> EqNumber(mesh) ;
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matfiglig] = 1 ;
rhsfig] = g( vertex -> x(), vertex > y() ) ;

}

Iterator<Edge> edge(mesh,1) ;

foreach( edge ) {
unsigned ig = edge -> EgNumber(mesh) ;
matfig]lig] = 1 ;
rhsfig] = g( edge -> xm(), edge -> ym() ) ;

/I copy rhs to the solution vector
for (i =0 ;i< neq; ++i ) solli] = rhs[i] ;

/I solve the linear system by modified Gaussian Elimination
/I without pivoting.
cout << "Solving a " << neq << "X" << neq << " linear system"
<< endl ;
for (i =0;i<neq; ++i ) {
for (k=0 ; k <neq; ++k ) {
if (k!'=1i){
double bf = mat[K][i)/mat[i][i] ;
sol[k] -= bf * sol[i] ;
for (j =i+l ; j < neq ; ++ )
mat[k][j] -= bf * mat[i][j] ;
}
}
}

for (i =0 ;i< neq; ++i ) solli] /= mat[i][i] ;

The source fragment in linel18-211 implements the metho8olve , which is ac-

tually the computational core of the application program. This part of the program is
very close to a “procedural” routine, because of the sequential nature of the computa-
tions to be performed.

The resolution process can be schematically depicted in several steps as follows.

In line 153, the P2MESHsoftware system methagtd_tensor_mesh  is invoked
in order to build an unstructured mesh by a regular triangulation of the dafain
(0,1) x (0,1). The mesh is composed By nx - ny triangles. The threBlULL entries
in the statement indicates that no particular treatment is required for boundaries. In
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a different application, suitable boundary conditions requiring some special treatment

could be required. The simplest way to manage the situation is by the assignment
of markers, whose conventional meaning is decided by the user. These entries may
be given pointers to three user-defined functions, respectively for vertices, edges, and
triangles, which take care of correctly specifying the boundary treatments.

The source fragment in linelb4—163 allocates and initializes the arrays used in the
construction and resolution of the linear system. In 3 -156 the total memory
occupation in terms of double floating point numbers is determined, and then allocated
in line 157. In line 158 the memory required by the matrix row pointers is allocated.

In line 161-162 the pointers to the arrayes andmat are initialized. In linel63

the pointers to the matrix rows are initialized, and finally in lig&5 all the initial
matrix and vectors values are set uto

This part of the program basically implements the standard way the stiffness matrix
and the r.h.s. vector are built. That is, a loop is performed on all the triangles of
the mesh, and the local contribution to the stiffness matrix and the r.h.s. vector are
first evaluated and then assembled into the global arrays. Boundary conditions are
taken into account by a direct modification of the final global arrays. InliBié the
source code instantiates an iterator, catimhgle , to be used for looping on all

the triangles within the mesh. In lirk68 the macrdoreach implements a loop on

the mesh triangles by using the iterator just introduced. Within the loop, the current
triangle is given by the reference returned by the iteratangle . Inline 170 the
methodtriangle->eval_JJT returns the values of

JrIzT and  |Jp|

which are stored in the matrkJF and in the scaladetJ .

Thefor statementinline4d71 and175 loops on the local degrees of freedom of the
current triangle. The integerg andjg store the global number corresponding to the
local degree of freedom respectively indicated bgndj . If a degree of freedom is
associated to a boundary vertex or edge, the loop is skipped because the corresponding
boundary condition will be set in a subsequent part of the program.
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In line 174 the local contribution to the r.h.s. vector from the integral

]Jﬂ//f(s,t)@i(s,t)dsdt

Tref

is estimated and added to the arrhyg .

In line 177 the components of the local stiffness matrix given by the integral

IJFI// Vo (s, ) (Jo TR )Vo,(s,t) dsdt
T’raf

are evaluated and added to the global stiffness matai

The source fragment in linds82-193 modifies the stiffness matrix and the r.h.s vec-
tor in order to take into account the boundary conditions on boundary vertices and
edges.

The iteratorvertex s first instantiated in lind.82 and initialized to perform loops
on boundary vertices. Within this loop, implemented in [k&3 by using the macro
foreach , the integer identifieig is set to the degrees of freedom associated to the
current boundary vertex. In lind85-186 the stiffness matrix and the r.h.s. vector are
modified in correspondence of tige —th row in accord with the boundary conditions
given by the functiorg.

The boundary condition for the degree of freedom associated to a boundary edge is
set up in a similar way. The iteratedge is instantiated and initialized to loop on

the boundary edges in liri88, and then utilized within the macforeach in 189

to implement the loop. In line§90-192 the identifierig is set to the degree of
freedom associated to the current boundary edge, anig thth row of the stiffness
matrix and the r.h.s vector are modified in accord with the boundary conditions given
by the functiong.

A modified Gaussian elimination algorithm [2] is implemented in 1i266-210 for
the resolution of the linear system. The final solution is stored in the aalay
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Saving the computed solution

212| void

213| Elliptic_Solver::Save_Mtv(void) {

214 cout << "saving data file..." ;

215)  cout . flush() ;

216|  ofstream file("p2.mtv") ;

2171 file << "$ DATA=CONTCURVE\n%contstyle=2 meshplot=true" << endl ;
218)  Iterator<Triangle> ip(mesh) ;

219 foreach (ip ) {

220 for (‘unsigned nv = 0 ; nv < 3 ; ++nv ) {

221 Vertex & V = ip -> vertex(nv) ;

222 unsigned i = mesh . local_number(V) ;

223 file << V. x() <<"" <<V .y)<<"" << solli] << endl ;
224 }

225 file << endl ;

226 }

22711 file << "$ END" << endl ;
208| file . close() ;

229 cout << "saved" << endl ;
230| }

The final solution stored in the arrapl is saved on disk in “MTV” format.

The driving program

231| static

232| double

233| f(double const &, double const &)
234/ { return -4 ; }

235/ Static

236 double

237| g(double const & x, double const & vy)
238 { return Xx*x+y*y ; }

239/ int

240/ main() {

241 Elliptic_Solver es ;

242 es . Solve( f, g, 8, 8) ;
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243 es . Save_Mtv() ;
244| }

Analysis  The driving program defines as static functions the right-hand-sideftesae lines
231-234, and the boundary condition terg) see line35-238. Then, it invokes
the method$olve andSave_ Mtv .

In Figure 2, the final solution computed by the program is shown.

P2

Y-AXxis

X—-AXis

Figure 2: Linear triangle-based FE solution of the Poisson problem.

5 A Q, conforming solution

This section describes the program contained in theflesolver.cc  in the direc-
tory examples of the P2MESHlistribution package.
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1’# include "p2mesh.hh"

The source fragment in link includes the header file 8 2MESH

class Vertex ;
class Edge ;
class Quad ;
class Mesh ;
class Elliptic_Solver ;

o A W N

7| typedef double (*pFun)(double const &, double const &) ;

See the comment given for the earlier example with conformiingolynomials. No-
tice also that in lingl the class nam@uad takes the place dfriangle

8| class Common : public p2_common<Vertex,Edge,Quad,Mesh,4> {
9| static double pO(double const &) ;
10| static double pl(double const &) ;
11|  static double p2(double const &) ;

12| static double dpO(double const &) ;

13|  static double dpl(double const &) ;

14|  static double dp2(double const &) ;

15| protected:

16|  static unsigned const degree_of freedom = 9 ;

17|  static void shape(unsigned const,

18 double const &,
19 double const &,
20 double &) ;

21| static void shape_grad(unsigned const,
22 double const &,
23 double const &,
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24 double [2]) ;
250} ;

The classCommonis defined by inheritance from the library clag& common
which, on its turn, is parameterized in lieby using the class names declared in
lines 2-5. The general considerations given for the example usingPthpolyno-
mials hold here. However, notice that the valués explicitly assigned to th&-th
argument in the template argument list of the clp8scommonin order to build a
guadrilateral-based mesh. Since the default value of this entry, whihsisecifies

a triangle-based mesh, it was not explicitly indicated in the analogous definition of
the project clas€ommonfor the conformingP, polynomials. The clas€ommon
contains in this case the prototype of the static funct&imepe andshape_grad

for the basisQ, polynomial functions and their gradients, and of six other “auxiliary”
functionsp0, p1, p2, dp0, dpl, dp2 which are useful in computing the values of
the basis functionshape andshape_grad . It also contains the static integer con-
stantdegree_of freedom , which stores the number of degrees of freedom per
guadrilateral element.

26| class Vertex : public p2_vertexxCommon> {

27| public:

28| unsigned EqNumber (Mesh const &) const ;
29| bool IsOnBoundary(Mesh const &) const ;
30} ;

31| class Edge : public p2_edge<Common> {

32| public:

33| unsigned EqNumber (Mesh const &) const ;
34| bool IsOnBoundary(Mesh const &) const ;
350} ;

36| class Quad : public p2_poly<Common> {

37|  static double detJ[2][2] ;

38| static double JJT[2][2](2][2] ;

39| static double st[2] ;

40| public:

41| void eval_JJT(void) const ;

42| double eval_int_f(unsigned const, pFun) const ;

43| double eval_int_grad(unsigned const, unsigned const) const ;
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unsigned EqNumber (Mesh const &, Unsigned const) const ;
bool IsOnBoundary(Mesh const &, Unsigned const) const ;

a6} ;

The code fragment in lineB6—-46 defines the project class&®rtex , Edge and

Quad of the application. The mechanism of inheritance from the corresponding
P2MESHbase classgs2 vertex , p2_edge andp2_poly provides the application
classes with a complete mesh representation. The base classes are moreover parame-
terized by the project clasdommonin such a way that they contain also the common
information of the project.

When Q> base polynomials are used, thé unknowns (or degrees of freedom) of
the FE discretization may be logically assigned to mesh vertices, edge midpoints or
quadrilateral centroids. In this case, we have that Nycrter + Nedge + Nguads-

The same considerations given for thB, case about EQNumber and
IsOnBoundary also hold here.

In the project clas®uad, the static arrayslet] andJJT store the values of the
Jacobian at the four vertices and of the mattjx' J,.” at the quadrature points, while

the static arragt stores the local coordinates of the quadrature nodes in the reference
guadrilateral element. These arrays are implemented as static ones and consequently
are shared by all the instances of the cl@ssd. This programming choice limits the
memory occupation, but these arrays must be recomputed by the current quadrilateral
instance before usage.

In the Quad class the prototypes of the following methods are also declared:

void eval_int_f(unsigned const i, pFun func)

evaluates by a suitable quadrature rule on the reference element the value of the integral

//f(x,y)vi(x,y)dxdyZ// f(s,t) 05(s,t)|Jp| ds dt
Q

Qref

where f is the source term of the Poisson problam,i = 0,1,...8, are the local
basis functions on the quadrilatel@landf andv; their counterparts defined on the
reference quadrilaterd),.;. A non-singular affine mapping’ transforms the refer-
ence quadrilaterd),. s into the actual quadrilaterg), in such a way that the following
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relations hold
f=foF,
v =0; 0 F71, i=0,1,...8.

Jr is the Jacobian matrix of the mappi#gand|Jr| is its determinant. Contrary to
the triangular caseé/Jr| is NOT constant.

e double eval_int_grad(unsigned const i, unsigned const j)

evaluates an approximate value of the integral

/ Voi(z, y)Tij (z,y)dxdy =
T

/ Vi (s, ) (Jot TnT)V (s, t) | Tp| ds dt
Qref

e void eval_JJT(void) ;

evaluates at the quadrature points the terms
JotJzt and | Jp|,

and stores them in the corresponding arrays.

Define the
class Mesh

a7/ class Mesh : public p2_mesh<Common> {} ; ‘

Analysis  As for the P, example program, the project clagesh does not require any partic-
ular specification other than the public derivation from the template g2assmesh
parametrized by the project cla€®@mmon All the class functionalities are the ones
inherited fromp2 _mesh.



A 9, conforming solution 33

Define the

solver class
Ellip- 48 class Elliptic_Solver : public Common {
: 49| private:
tic _Solver 50 Mesh mesh ;
51| double **mat ;
52 double *sol, *rhs ;

53| public:
s4|  Elliptic_Solver(void) {} ;
s5|  "Elliptic_Solver(void) {} ;

s6| void Solve(pFun, pFun, unsigned const, unsigned const) ;
57| void Save_Mtv(void) ;
58|} ;

Analysis  This class definition is identical to the one of the example ighbasis polynomi-
als and the considerations given there apply equally well in this case. However, the
methods have a differentimplementation, because the numerical algorithm is different.
This issue is a practical example of how the encapsulation paradigm works.

The methods

of the class

Common 59| inline double Common::pO(double const & x) { return 0.5*(x-1)*x ; }
60| inline double Common::pl(double const & x) { return (1-x)*(1+x) ; }
61| inline double Common::p2(double const & x) { return 0.5*(x+1)*x ; }

62| inline double Common::dpO(double const & x) { return x-0.5 ; }
63| inline double Common::dpl(double const & x) { return -2*x ; }
64| inline double Common::dp2(double const & x) { return x+0.5 ; }

Analysis  The source fragment defines some simple polynomials which are quite useful in the
definition of the conforming?, basis functions.

65| void

66| Common::shape(unsigned const nb,

67 double const & s, double const & t,
68 double & res) {

69| switch ( nb ) {
70| case 0: res = pO(s)*pO(t) ; break ;
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case 1: res = p1(s)*pO(t) ; break ;
case 2: res = p2(s)*p0O(t) ; break ;
case 3: res = p2(s)*pl(t) ; break ;
case 4: res = p2(s)*p2(t) ; break ;
case 5: res = pil(s)*p2(t) ; break ;
case 6: res = pO(s)*p2(t) ; break ;
case 7: res = pO(s)*pl(t) ; break ;
case 8: res = pi(s)*pl(t) ; break ;
}

}

FE and FV Programming

The source fragment defines the local basis functions for the confor@rmplyno-

mials in the reference quadrilatel@l..; = {(s,t)| — 1 < s,t < 1}. The value of

the nb-th local basis function at the position given by the reference coordifates
is returned irres by invoking the methodhape with suitablenb, s andt entries.

The degrees of freedom within the reference quadrilateral are enumerated as shown in

figure 3.

/I values of gradients of bases function
void
Common::shape_grad(unsigned const nb,
double const & s,
double const & t,
double g[2]) {
switch ( nb ) {

case 0: g[0] = dpO(s)*pO(t) ; 9[1] = pO(s)*dpO(t)
case 1: g[0] = dpl(s)*pO(t) ; g[1] = pI(s)*dpO(t)
case 2: g[0] = dp2(s)*pO(t) ; 9[1] = p2(s)*dpO(t)
case 3: g[0] = dp2(s)*pl() ; 9[1] = p2(s)*dpl()
case 4: g[0] = dp2(s)*p2(t) ; g[1] = p2(s)*dp2(t)
case 5: g[0] = dpl(s)*p2(t) ; g[1] = pl(s)*dp2(t)
case 6: g[0] = dpO(s)*p2(t) ; 9[1] = pO(s)*dp2(t)
case 7: g[0] = dpO(s)*p1(t) ; g[1] = pO(s)*dpl(t)
;:ase 8: g[0] = dpl(s)*pl(t) ; g[1] = p1(s)*dpl()

break ;
break ;
break ;
break ;
break ;
break ;
break ;
break ;
break ;

The source fragment defines the functelmape_grad , which returns in the array
g[2] the two components of the gradient of thie-th local basis function at the point

(s,t) in the reference quadrilateral.
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Figure 3:
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inline

unsigned

Vertex::EqNumber(Mesh const & m) const
{ return m . local_number(*this) ; }

inline

bool

Vertex::IsOnBoundary(Mesh const & m) const

{ return m . local_number(*this) < m . n_bvertex() ; }

inline

unsigned

Edge::EqNumber(Mesh const & m) const

{ return m . n_vertex() + m . local_number(*this) ; }

inline

bool

Edge::IsOnBoundary(Mesh const & m) const

{ return m . local_number(*this) < m . n_bedge() ; }

See the comments given for the triangular case.
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The methods

of the class

Quad 115| void
116| Quad::eval_JJT() const {
1171 for (unsigned i = 0 ;i <2 ; ++i ) {
118 for (unsigned j =0 ;] <2 ; ++ ) {
119 double iJ[2][2] ;
120 inverse_jacobian(st[i],st[j], iJ) ;
121 JIT[]HIO][0] = iI[O][0]*iJ[0][0] + iJ[O][1]*iI[O][1] ;
122 JIT[GIONL] =
123 JITLIHIAI0] = i9[O][0]*iJ[1][0] + iJ[OJ[1]*iI[L][1] ;
124 JITGNANA] = iJ[A][0]*id[a][0] + iJ[AJ[A]XiI[L[L] ;
125 detJ[ilj]] = 1/(J[0][0] * iJ[1][1] - iJ[a][O] * iJ[O][1]) ;
126 }
27}
128 }

Analysis  This source fragment is rather similar to the one of the triangular case. However, since
the Jacobian matrix and its inverse matrix are no more constant over the reference

element, the library methoidiverse_jacobian is invoked with the first two ar-
guments equal tsti],st[j] , which store the local coordinates of the quadrature
nodes.

129| double

130| Quad::eval_int_f(unsigned const i, pFun func) const {

131 double X, y, b, res = 0 ;

132|  for (unsigned ii = 0 ; ii < 2 ; ++i ) {
133 for (‘unsigned jj = 0 ; jj < 2 ; ++jj ) {
134 shape(i, stfii], st[jj], b) ;

135 st_to_xy(stfii], stfijl, X, y) ;

136 res += detJ[ii][jj] * func(x,y) * b ;

137 }

138 }

139| return res ;
140 }
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The source fragment approximates the integral

/|JF(s,t)|f(s,t)@i(s,t)dsdt
Qref

by the quadrature rule

> wiwslTr (& E)IF (65 &)

1,7=0,1

where (&;,£;) andw; are the local coordinates of thieth quadrature point and its
correspondent weight. It should be noticed that the termim the quadrature for-
mula here implemented are all equal to one, and thus do not explicitly appear in the
implementation. Higher order formulae would have non-trivial weight values.

double
Quad::eval_int_grad(unsigned const i, unsigned const j) const {
double gi[2], gj[2], res = 0 ;
for (unsigned ii = 0 ; ii < 2 ; ++i ) {
for (‘unsigned jj = 0 ; jj < 2 ; ++jj ) {
shape_grad(i, st[ii], st[jj], gi) ;
shape_grad(j, st[ii], st[jjl, gj) ;
res += detJ[ii][jj] *
( JIT[i]G010] * ¢il0] * gjl0] +
JITIGONA] * gif0] * gj[1] +
JITIGLI0] * gif1] * gj[0] +
} JITLGAIA] * gil1] * gj[1] ) ;
}

return res ;

}

The source fragment approximates the integral

/|Jp(s,t)|V1§i(s,t)T(JFljFT)Vﬁj(sJ)dsdt
Q'rcf
by the quadrature rule

> wiwlJp (&, &) Vi &) (Ta' (6, §) T (6,€5)VD5(6, &)

i,j=0,1
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unsigned
Quad::EqNumber( Mesh const & m, Unsigned const loc) const {
if (loc ==28){
return m . n_vertex() + m . n_edge() + m . local_number(*this) ;

} else {
if (loc % 2 == 1) return edge(loc/2) . EqNumber(m) ;
else return vertex(loc/2) . EqNumber(m) ;
}
}
bool

Quad::IsOnBoundary( Mesh const & m, const Unsigned loc) const {
if (loc ==28){
return false ;

} else {
if (loc % 2 == 1) return edge(loc/2) . IsOnBoundary(m) ;
else return vertex(loc/2) . IsOnBoundary(m) ;
}

The source fragment implements the public meth@gdsad::EqNumber and
Quad::IsOnBoundary , see also the comments given for the same methods in the
classQuad for the Q, case. The degrees of freedom are locally enumerated in a coun-
terclockwise order, starting froth(a vertex), see Figure 3. The last degree of freedom,
identified bys, is logically associated to the centroid of the quadrilateral element.

void
Elliptic_Solver::Solve(pFun f, pFun g,
unsigned const nx, unsigned const ny) {
unsigned i, j, k ;

/I build the mesh
mesh . std_tensor_mesh( nx, ny, NULL, NULL, NULL ) ;

/I allocate memory

unsigned neq = mesh.n_vertex() + mesh.n_edge() + mesh.n_poly() ;
unsigned nnum = 2*neq + neq * neq ;

sol = new double [ nnum ] ;

mat = new double * [ neq ] ;
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if ( sol == NULL || mat == NULL ) {
cerr << "not enought memory" << endl| ;

exit(0) ;
}
rhs = sol + neq ;
mat[0] = rhs + neq ;
for (i =1 ;i< neq; ++i ) matli] = matfi-1] + neq ;

/I clean up memory
for (i =0 ;i< nnum ; ++i ) solli] = 0 ;

/I build the linear system
Iterator<Quad> quad(mesh) ;
foreach( quad ) {

quad -> eval_JJT() ;

for (i = 0 ;i < degree_of_freedom ; ++i ) {
if ( quad -> IsOnBoundary(mesh,i) ) continue ;
unsigned ig = quad -> EgqNumber(mesh,i) ;
rhs[ig] += quad -> eval_int_f(i,f) ;

for (j = 0 ; j < degree_of_freedom ; ++j ) {
unsigned jg = quad -> EgNumber(mesh,j) ;
mat[ig][jg] += quad -> eval_int_grad(i, j) ;
}
}
}

/I setup boundary conditions

Iterator<Vertex> vertex(mesh,1) ;

foreach( vertex ) {
unsigned ig = vertex -> EqNumber(mesh) ;
matfiglig] = 1 ;
rhsfig] = g( vertex -> x(), vertex -> y() ) ;

}

Iterator<Edge> edge(mesh,1) ;

foreach( edge ) {
unsigned ig = edge -> EqNumber(mesh) ;
matfig]lig] = 1 ;
rhsfig] = g( edge -> xm(), edge -> ym() ) ;

/I copy rhs to the solution vector
for (i =0 ;i< neq ; ++i ) solli] = rhs[i] ;

39
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/I solve the linear system by modified Gaussian Elimination
/I without pivoting.
cout << "Solving a " << neq << "X" << neq << " linear system"

<< endl ;
for (i =0 ;i<mneq; ++i ) {
for (k = 0 ; k <neq; ++k ) {
if (k!'=i){

double bf = mat[K][il)/matl[i][i] ;
sol[k] -= bf * sol[i] ;
for (j =i+l ;) < neq ; ++ )
mat[k][j] -= bf * mat[i][j] ;
}
}
}

for (i =0 ;i< neq; ++i ) solli] /= mat[i[i] ;

The source fragment implements the metl&mive . This method is very similar to

the one implemented for the triangular case. However, for the sake of clarity, line-by-
line comments are repeated. The resolution process can be schematically depicted as
follows.

A regular unstructured triangulation ofx - ny quadrilaterals over the computa-
tional domain? = (0,1) x (0, 1) is built by invoking theP2MESHibrary method
std_tensor_mesh . About theNULL entries and how the boundary markers work,
see the comments for th@, case.

The source fragment in linélsr5-239 allocates and initializes the arrays used in the
construction and resolution of the linear system. In 82 -183 the total memory
occupation in terms of double floating point numbers is determined, and then allocated
in line 184. In line 185 the memory required by the matrix row pointers is allocated.

In line 190-192 the pointers to the arrayls andmat are initialized and the array
values are set up @in line 194.
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This part of the program basically implements in a standard way the construction of the
stiffness matrix and the r.h.s. vector. That s, a loop is performed on all the elements of
the mesh, and the local contribution to the stiffness matrix and the r.h.s. vector are first
evaluated and then assembled into the global arrays. Boundary conditions are taken
into account by a direct modification of the final global arrays.

Inline 196 the source code instantiates an iterator, cajlead , to be used for looping
on all the quadrilaterals within the mesh. In lin€87-208 the macroforeach
implements a loop on the mesh cells by using the iterator just introduced. Within the
loop, the current quadrilateral is given by the reference returned by the itgqretdr.
In line 198 the methodyuad->eval JJT  returns the values of

JrIpT and | Jp|
which are stored in the matriddF and in the scaladetJ .

Thefor statementinline499 and203 loops on the local degrees of freedom of the
current quadrilateral. The integegs andjg store the global number corresponding to

the local degree of freedom respectively indicated laydj . If a degree of freedomis
associated to a boundary vertex or edge, the loop is skipped because the corresponding
boundary condition is set up in a subsequent part of the program.

In line 202 the local contribution to the r.h.s. vector from the integral

// |Jr|f(s,t)0:(s, t) ds dt
Qref
is estimated and added to the arrhg .

In line 205 the components of the local stiffness matrix given by the integral

// ||V oi(s, )T (TRt T 1)V (s,t) ds dt
Qref
are evaluated and added to the global stiffness mataii.

This part is the hard core of the solver.

Line 216 declares and initializes the iteratguad to loop over all the mesh quadri-
laterals and linR17 uses it within the macréoreach . The methodeval _JJT in
line 198 is used to evaluate

JrazT and  |Jp|
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on the current quadrilateral at the quadrature points. The values are stored in the static
part of theQuad class. The source fragment in lin2s0—-221 modifies the stiffness
matrix and the r.h.s vector in order to take into account the boundary conditions on
boundary vertices and edges.

The iteratorvertex is first instantiated in lin10 and initialized to loop on the
boundary vertices. Within this loop, implemented in liekl —215 by using the
macroforeach , the integer identifieig is set to the degree of freedom associated
to the current boundary vertex. In lin@43-214 the stiffness matrix and the r.h.s.
vector are modified in correspondence of idfpe-th row in line212 in agree with the
boundary conditions given by the functign

The boundary conditions for the degree of freedom associated to boundary edges are
set up in a similar way. The iteratedge is instantiated and initialized to loop on

the boundary edges in lir 6, and then utilized within the macforeach inlines
217-221 to implement the loop. In line218-220 the identifierig is set to the
degree of freedom associated to the current boundary edge, aigd-ttrerow of the
stiffness matrix and the r.h.s vector are modified in accord with the boundary condi-
tions given by the functioqg.

A modified Gaussian elimination algorithm is implemented in [iB28—-238 for the
resolution of the linear system. The final solution is stored in the aohy

void
Elliptic_Solver::Save_Mtv(void) {
cout << "saving data file..." ;
cout . flush() ;
ofstream file("g2.mtv") ;
file << "$ DATA=CONTCURVE" << endl
<< "Opcontstyle=2 meshplot=true topLabel=Q2" << endl ;
Iterator<Quad> ip(mesh) ;
foreach ( ip ) {
for (‘unsigned nv = 0 ; nv < 4 ; ++nv ) {
Vertex & V = ip -> vertex(nv) ;

unsigned i = mesh . local_number(V) ;

file << V. x() << "" <<V .y)<<"" << solli] << endl ;
}
file << endl ;
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26| file << "$ END" << endl ;
2571 file . close() ;

258| cout << "saved" << endl ;
259| }

The final solution stored in the arrapl is saved on disk in “MTV” format.

260| double Quad::detJ[2][2] ;
261/ double Quad::JJT[2][2][2][2] ;
262| double Quad::st[2] = { -0.577350269189626, +0.577350269189626 } ;

The source fragment allocates the static part ofQbed class and initialize the vector
st with the nodal values of the quadrature rule.

263| Static

264/ double

265| f(double const &, double const &)
266/ { return -4 ; }

267| Static

268| double

269 g(double const & X, double const & y)
270/ { return x*x+y*y ; }

21| int

272l main() {

273|  Elliptic_Solver es ;

274 es . Solve( f, g, 8, 8) ;
2751 es . Save_Mtv() ;

276| }

The driving program defines as static functions the right-hand-sidefteseae lines
263-266, and the boundary condition terg) see linek67-270. Then, it invokes
the method$olve andSave Mtv .

In Figure 4, the final solution computed by the application program is shown.
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Q2

Y-AXxis

X-AXxis

Figure 4: Linear Quadrilateral-based FE Solution of the Poisson problem

6 A FV solver for the compressible Euler
equation

In this section two different implementations of a FV solver are presented. The first
one implements a cell center method, while the second one a vertex center method.
For the sake of simplicity, both schemes are considered only in their simplest version,
which is 1-st order accurate in space. A two stagesd order accurate Runge-Kutta
time-marching scheme advances the solution in time.

The system of compressible Euler equation in 2-D are

oU | 9F(U)  9G(U)

?ﬁ_+ ox ox =0
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with the conventional notations

P pu pv
2
pu pu”+p puv
U= , FU)= ;o GU) =] o
pv puv pv-+p
oE puH pvH

andp = (y — 1)p(E — (u? +v?)/2) andH = E + p/p.

A detailed description of solution algorithms for cell center schemes can be found
in [4] and for cell vertex schemes in [5] the numerical flux is estimated by using the
exact Riemann solver [8].

7 A cell centered finite volume solution

This section describes the program contained in thefilssolver.cc  in the direc-
tory examples of the P2ZMESHlistribution package.

Include the
library

i

# include "p2mesh.hh"
# include <math.h>

N

Analysis  The statement in lin& includes the header filg2mesh.hh . The pre-processor state-
ment in line2 includes the header filmath.h for the standard mathematical function
prototypes and definitions.

Declare the
project class
names 3|typedef double Real ;

class Vertex ;
class Edge ;
class Triangle ;
class Mesh ;

~N o o b~
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g| class Common ;
9| class Solver ;

10
11
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See the comments given for the FE examples. Notice also thigitbdef

statement

in line 3 introduces the alias nanfkeal for the floating point built-in typelouble .

o

class Common :

protected:

public p2_common<Vertex,Edge, Triangle,Mesh,

3,false,Real> {

typedef bool (*PCHECK) (Real const [4]) ;

typedef void (*PFLUX) (Real [4],
Real
Real

typedef void (*PNUMFLUX) (Real [4],
Real
Real
Real
Real

typedef void (*PCFL) (Real &,
Real
Real
Real

typedef enum {
BC_INTERNAL=0,
BC_SUPERSONIC_INLET,
BC_SOLID,
BC_FREE

} BC ;

(4],
const [4]) ;

const [4],
const [4],
const &,

const &) ;

const &,
const &,
const [4]) ;

The piece of source in linek3-25 contains theypedef s of four function pointer
types. They are
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PCHECK function pointer type to functions that perform tests about the numerical and
physical consistency of the approximated solution (for example, negative pressures) ;

PFLUX: function pointer type to functions that compute the physical flux in the carte-
sian directions ;

PNUMFLUXfunction pointer type to functions that compute the numerical flux in the
edge normal direction;

PCFL: function pointer type to functions that compute the CFL number.
The statements in lin€&6—-31 define theenumtype BC which is inherited by all the

application classes. The BC values are used throughout the application program to
discriminate the boundary conditions. Their names are self explanatory.

class Vertex : public p2_vertexx<Common> {} ;

class Edge : public p2_edge<Common> {
friend class Triangle ;
friend class Solver ;

private:

BC ibc ;

Real num_flux[4] ;
public:

void InternalNumFlux(PNUMFLUX) ;
void BoundaryNumFlux(PNUMFLUX, Real const [4]) ;

}i

The private attributes of the clagsige listed in lines38-39 are the variablébc

of type BCand a four-element array of tygeeal , namednum_flux . The variable

ibc distinguishes whether the edge is an internal or a boundary item, and in the latter
case specifies its boundary condition.
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The arraynum_flux is assigned the numerical flux along the edge normal direction.
Recall that edges have a conventional orientation in the underlying mesh representation
provided byP2MESHibrary. The orthogonal direction along which the numerical flux

is evaluated is oriented “from left to right” with respect to the orientation of the current
edge instance.

The public methoddnternalNumFlux and BoundaryNumFlux respectively
evaluate the numerical flux on internal and on boundary edges.

class Triangle : public p2_poly<Common> {
friend class Edge ;
friend class Solver ;
private:
Real hxy, _area, sol[4], sol0[4] ;
public:
void Init(Real const [4]) ;
Real const & area(void) const { return _area ; }
void RK_Setsol(void) ;
void RK_Update(Real const &, Unsigned const) ;

The private attributes of the cla$siangle declared in line89 are
hxy : it is the characteristic size of the triangular cell used in the estimation of the
CFL number;

_area : it stores the area of the cell in order to reduce the CPU costs, because the
facility provided byP2MESHomputes the area of the cell each time it is invoked;

sol[4] : it stores the approximate solution at intermediate and final time steps of the
Runge-Kutta time marching scheme;

solO[4] : it stores the initial solution of any Runge-Kutta time step.

The public methods declared in linB8-53 are



Define the
class Mesh

Define the
class Solver

A cell centered finite volume solution 49

e Init : it initializes the class and in particular, the value of the area of the current

triangle;

e area : it returns the value of the private attributarea ; this method overrides the

homonymous one inherited froR2EMESH

e RK_ Setsol : itinitializes a Runge-Kutta time step;

e RK Update : it performs the solution update in an intermediate Runge-Kutta time

step.

s5| class Mesh : public p2_mesh<Common> {} ;

56| class Solver : public Common {
57| private:
sg|  static void mark_edge(Edge & E, Unsigned const & marker) ;

59| Mesh mesh ;
60| Iterator<Edge> iedge, bedge ;
61| Iterator<Triangle> triangle ;

62| Unsigned max_iter ;
63 Real CFL_run, Tend, time, dt ;

64| PCHECK  ok_State ;
65 PNUMFLUX NumFlux ;
66 PFLUX Flux ;

67 PCFL CFLxy ;

68| Real inlet_state[4], init_state[4] ;

69| public:

70|  Solver(PFLUX, PNUMFLUX, PCHECK, PCFL) ;
71| void SetUp(char const *) ;

72| void SetTimeStep(bool &, Unsigned const);

73| void TimeStep(void) ;
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void Save_Mtv(void) ;

75}

The definition of the class Solver is given in ling8—75.

As part of the class definition, a private instance of the didssh is contained, see
line 59.

The statements in line80—61 define as private attributes the edge and triangle iter-
atorsiedge , bedge andtriangle . These iterators are initialized in such a way
that

iedge performs loops on the internal edges;
bedge performs loops on the boundary edges;

triangle performs loops on all the mesh triangles.

The variables defined in lindg2—-63 are used during the computation of an interme-
diate Runge-Kutta step:

max_iter : itis the maximum allowable number of time steps;

CFL_run : itis the advancing time step expressed as a fraction of the CFL number;
Tend : itis the final time at which the computation terminates;

time :itisthe currenttime;

dt : itis the currenttime step.

The statements in line84—67 declare the names of the functions which defines the
problem. The two four-element sized arrays declared in6®eare used to store the
inflow boundary state (a supersonic inlet) and the initial state of the computation.

The class Solver also contains in lin&3—74 the public methods:
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Solver : the constructor links the application program the (externally defined) func-
tions for consistency check, for both the physical and numerical flux calculation, and
for the estimation of the CFL number.

SetUp : it reads from an external file the mesh description (in the output format
of the mesh generator Triangle), the inlet and the initial state and initialize the mesh
representation d?2MESHibrary and some other variables;

SetTimeStep : it computes the new time stelb ;

TimeStep : it advances the solution of a time step;

Save Mty : it saves on disk the final solution in MTV format.

of the class
Edge 76| void
77| Edge::InternalNumFlux(PNUMFLUX NumFlux) {
78| Real len = length() ;
79| Real nnx = nx() / len ;
go| Real nny = ny() / len ;
81|  NumFlux(num_flux, poly(0).sol, poly(1).sol, nnx, nny) ;
82|}
Analysis  The statements in line&88—-80 computes the two components of the normalized vec-

tor nnx, nny orthogonal to the edge. The functiomm_flux called in line81
evaluates the numerical flux across the edge. The left and right solution states are
assigned the solution states at the center of the left and the right triatgd¢®Kder
accurate-in-space scheme).

83| void

84| Edge::BoundaryNumFlux(PNUMFLUX NumFlux, Real const inlet[4]) {
ss| Real len = length() ;

g6 Real nnx = nx() / len ;

g7| Real nny = ny() / len ;

ss| Real rsol[4] ;

go| switch (ibc) {
9| case BC_FREE:
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copy(poly(0).sol, poly(0).sol+4, rsol) ;
break ;
case BC_SUPERSONIC_INLET:
copy(inlet, inlet+4, rsol) ;
break ;
case BC_SOLID:
{
Real gt = -poly(0).sol[1] * nny + poly(0).sol[2] * nnx ;
Real gqn = 0 ;
rsol[0] = poly(0).sol[0] ;
rsol[1] = gn * nnx - gt * nny ;
rsol[2] = gn * nny + gt * nnx
rsol[3] = poly(0).sol[3] ;
}
break ;
default:
cerr << "bad boundary " << (int)ibc << endl ;
exit(0) ;
}
NumFlux(num_flux, poly(0).sol, rsol, nnx, nny) ;
}

The statements in lin€35—-87 computes the two components of the normalized vector
nnx, nny orthogonal to the edge. Then, the statements in 1B&s109 set up

the right state which corresponds to solution “outside” the computational domain, by
taking care of the boundary condition specified by the value oBtigariableibc .

The functioncopy belongs to the Standard Template Library [3, 6].

Finally, the functiomum_flux called inlinel10 evaluates the numerical flux across
the edge. The left solution state is the one assigned to the center of the (unique) left
triangle adjacent to the boundary ed@est order accurate-in-space scheme).

inline
void
Triangle::Init(Real const state[4]) {
copy(state, state+4, sol) ;
_area = p2_poly<Common>::area() ;
hxy = 2*_area/edge(0) . length() ;
hxy = min(hxy,2*_area/edge(l) . length()) ;
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119|  hxy = min(hxy,2*_area/edge(2) . length()) ;
120| }

Analysis  Lines 112-120 initialize the current triangle instance. The initial solution state is
copied from the input array. The private attributerea is set up by using the in-
herited functionarea , and the private attributbxy is estimated as the “minimum
height” of the triangle.

121| inline
122| void
123| Triangle::RK_Setsol(void) {
124/  copy(sol, sol+4, sol0) ;
125| }

Analysis  Lines121-125 copy the actual state in the buffer variabE0 .

126| void

127| Triangle::RK_Update(Real const & dt, Unsigned const irk) {
128| /I residual

129| Real res[4] ;

130 res[0] = res[1] = res[2] = res[3] = O ;

131 for ( Unsigned ie = 0 ; ie < n_edge() ; ++ie ) {

132 Edge & E = edge(ie) ;

133 Real len = ok_oriented(ie) ? E.length() : -E.length() ;
134 res[0] += len * E.num_flux[O] ;

135 res[l] += len * E.num_flux[1] ;

136 res[2] += len * E.num_flux[2] ;

137 res[3] += len * E.num_flux[3] ;

138 }

139| /I update

140/  static Real crkO[2] = {1, 0.5} ;
141|  static Real crk1[2] = {0, 0.5} ;
142| static Real CRKR[2] = {1, 0.5} ;
143]  Real crkr = CRKR][irk]*dt/area() ;

144|  sol[0] = crkO[irk] * sol0[0] + crkl[irk] * sol[0] - crkr * res[0] ;
145/ sol[1] = crkO[irk] * solO[1] + crkl[irk] * sol[1] - crkr * res[1] ;
146|  sol[2] = crkO[irk] * sol0[2] + crkl[irk] * sol[2] - crkr * res[2] ;
1471 sol[3] = crkO[irk] * solO[3] + crkl[irk] * sol[3] - crkr * res[3] ;

148| }
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The approximate solution within each triangular cell is advanced in time by applying
a two-stage-nd order accurate Runge-Kutta scheme also known as the Heun scheme.
The approximate solution of the initial ODE problem

du
dt
F(0)

satisfies the explicit scheme

Mer1 = up + AtF(uy,),
At
Ukl = ug + 7(F<uk) + F (1)

When applied to the semi-discrete formulation of the cell center FV method

> &,

ecOK

dUg

K - _
K| —

the Runge-Kutta scheme results in the source fragment implemented in the public
methodRK _Update . The local residual

_ Z &,
ecOK

is estimated in line414-121, while lines144-149 advance the solution to the next
step.

Solver::Solver(PFLUX Flux_,
PNUMFLUX NumFlux_,
PCHECK ok_State_,
PCFL Cfl) {
Flux = Flux_ ;
NumFlux = NumFlux_ ;
ok_State = ok_State_ ;
CFLxy = Cfl_ ;
}
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The method assigns the pointers of the functions used in the application program the
address of the corresponding (externally defined) functions.

158| void

159| Solver::mark_edge(Edge & E, Unsigned const & marker) {
160 switch ( marker ) {

161/ case 0 : E.ibc = BC_INTERNAL ; break ;
162 case 1 : E.ibc = BC_SUPERSONIC_INLET ; break ;
163 case 2 : E.ibc = BC_SOLID . break ;
164 case 3 : E.ibc = BC_FREE ; break ;
165/  default:

166 cerr << "mark_edge( E, "<< marker

167 << ") bad boundary condition" << endl ;

168 exit(0) ;

169 }

170| }

The methodnark_edge processes the markers read in the input file and assigns the
variableibc its correct boundary condition. The input file is generated by the mesh
generatotriangle

In the current example, the input markers correspond to the following situations:

0 internal edge;
1 supersonic inlet edge;
2 solid wall edge;

3 free outlet edge;

171| void
172| Solver::SetUp(char const * file) {

173|  char file_par[1024] ;

174|  strepy(file_par file) ;

17| strcat(file_par,".inp") ;

176|  ifstream file_input( file_par ) ;

wr7| if (! file_input . good() ) {
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cerr << "error in opening file:
exit(0) ;
}

<< file_par << endl ;

time = 0 ;
file_input
>> dt
>> Tend
>> max_iter
>> CFL_run
>> inlet_state[0]
>> inlet_state[1]
>> inlet_state[2]
>> inlet_state[3]
>> init_state[0]
>> jnit_state[1]
>> init_state[2]
>> init_state[3] ;

cout
<< "Parameters" << end|
<< "dt =" << dt << endl
<< "Tend =" << Tend << endl
<< "max_iter = " << max_iter << endl
<< "CFL_run =" << CFL_run << endl
<< endl
<< "Input state:"
<< " r =" << setw(5) << inlet_state[0]
<< " u = " << setw(5) << inlet_state[1]
<< " v = " << setw(5) << inlet_state[2]
<< " E = " << setw(5) << inlet_state[3]
<< endl
<< "Initial state:"
<< " r =" << setw(5) << init_state[0]
<< " u = " << setw(5) << init_state[1]
<< " v = " << setw(5) << init_state[2]
<< " E = " << setw(5) << init_state[3]

<< endl << endl ;

file_input . close() ;

/I initialize

mesh . read_mesh(file, NULL, mark_edge, NULL, 1) ;
bedge . set_loop(mesh,1) ;

iedge . set_loop(mesh,2) ;

triangle . set_loop(mesh) ;
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220, foreach ( triangle ) triangle -> Init(init_state) ;
221 }

Analysis  The method initializes the run. The string variafile  stores the basename for
the external files containing the initial mesh description, the initial and the inlet flow
conditions.

The source fragment in linds3—-176 opens the file with the extensiorirfp ". The
statements in line$81—-194 read all the parameters of the run.

The statements in linekB5-213 dump on the standard output the input parameters.

Finally, the statements in lingsl6—220 initialize the mesh (all the work is done by
the functionread_mesh inherited from the clasg2 _mesh), initialize the private it-
erators of the solver, and loop on all the triangles to invoke their initialization function.

222| void

223| Solver::SetTimeStep(bool & continue_loop, Unsigned const iter) {
224/ Real CFL_curr = 0 ;

225 foreach(triangle)

226 CFLxy( CFL_curr, dt, triangle -> hxy, triangle -> sol ) ;

2271 Real rapp = min(1.2, CFL_run / CFL_curr) ;
208 dt *= rapp ;
229  CFL_curr *= rapp ;

230| /I chek time step
2311 Real new_time = time+dt ;
232| if ( new_time > Tend ) {

233 continue_loop = false ;

234 dt = Tend - time ;

235 time = Tend ;

236 } else {

237 time = new_time ;

238 continue_loop = continue_loop && iter < max_iter ;
239 }

240 cout

241 << " jter=" << setw(4) << iter

242 << " time (n+1)=" << setw(8) << time

243 << " CFL=" << setw(8) << CFL_curr
244 << " odt=" << setw(8) << dt

245 << endl ;
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}

The method computes the new time step. The statements in2B#e226 compute
the current CFL number (and store it in the variaGIEL_curr ). The time step is
modified in lines227-239 as follows:

if CFL_curr islesstharCFL_run , dt isincreased of at most the 20% of its current
value;

if CFL_curr is greater than CFL_run, dt is reduced of the ratio
CFL_run / CFL_curr ;

Inlines231-239 the program checks if the run terminates at the current iteration. The
boolean variableontinue_loop is set up consequently. Finally, the statements in
lines240-245 print on standard output some useful information.

void
Solver::TimeStep(void) {
foreach(triangle) triangle -> RK_Setsol() ;
for( Unsigned irk = 0 ; irk < 2 ; ++irk ) {
foreach(iedge) iedge -> InternalNumFlux(NumFlux) ;
foreach(bedge) bedge -> BoundaryNumFlux(NumFlux,inlet_state) ;
foreach(triangle) {
triangle -> RK_Update(dt,irk) ;
if ( lok_State(triangle -> sol) ) {
cerr << "POSITIVITY_CHECK: negative pressure found" ;
exit(0) ;
}
}
}

}

This piece of code advances the solution to the next step. I248ehe Runge-Kutta
scheme is initialized. Line51-252 compute the numerical flux of internal and
boundary edges. Ling54 performs therk -th stage of the Runge-Kutta stepping
scheme.
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void

Solver::Save_Mtv(void) {
ofstream file("cc.mtv") ;
if (! file. good() ) {

exit(0) ;
}

<< endl ;
foreach ( triangle ) {
Real fun = triangle -> sol[0] ;
file << triangle->x(0) << " "
<< endl

<< endl

<< endl << end! ;

}

file << "$ END" << endl ;
file . close() ;

cerr << "Cannot open for write file: “cc.mtv™ << endl ;

file << "$ DATA=CONTCURVE\n%contstyle=2 topLabel=mass"

<< triangle->y(0) <<

<< triangle->x(1) << " " << triangle->y(1) << " " << fun

<< triangle->x(2) << " " << ftriangle->y(2) << " " << fun

The method saves the solution in MTV format.

# include "eu.hh"

int
main() {

Solver solver(Euler::Flux,
Euler::Godunov,
Euler::ok_State,
Euler::CFL) ;

/I set input data
solver . SetUp("ramp”) ;




Analysis

292
293
294
295
296
297

298
299

300

60 FE and FV Programming

/I advancing loop

bool continue_loop = true ;

for ( unsigned iter = 1 ; continue_loop ; ++iter ) {
solver.SetTimeStep(continue_loop, iter) ; // variable time step dt
solver.TimeStep() ; // update one time step

b

solver . Save_Mtv() ;
cout << "End of Program" << endl ;

Line 283 includes the header fileu.hh . This file contains the implementation of
the physical flux of the Euler equations and the Godunov and Lax-Friedrics numerical
fluxes. The statements in lin@86—-289 instantiate and initialize an object of the
classSolver . Notice that the constructor takes in input the addresses of the functions
defined in the clasBuler .

Figure 5 shows the final solution computed by this application program.

mass

'l o D0 S

Y-AXxis

Figure 5: Double Mach reflection solution produced by the cell center FV Euler solver
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8 A vertex centered finite volume solution

This section describes the program contained in thedilssolver.cc  in the direc-
tory examples of the P2MESHlistribution package.

Include the
library

[iN

# include "p2mesh.hh"
# include <math.h>

N

Analysis  The source fragment includes the library headergenesh.hh and the standard
C++ header fileamath.h for the mathematical function prototypes and definitions.

Declare
user-defined
class names 3|typedef double Real ;

class Vertex ;
class Edge ;
class Triangle ;
class Mesh ;
class Common ;
class Solver ;

© 00 N o U A

Analysis  See the comments given for the earlier example.

Define the
class
Common 1o|class Common : public p2_common<Vertex,Edge,Triangle,Mesh,
11 3,true,Real> {

12| protected:
13| typedef bool (*PCHECK) (Real const [4]) ;
14| typedef void (*PFLUX) (Real [4],

15 Real [4],
16 Real const [4]) ;
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17|  typedef void (*PNUMFLUX) (Real [4],

18 Real const [4],
19 Real const [4],
20 Real const &,
21 Real const &) ;
22| typedef void (*PCFL) (Real &,

23 Real const &,
24 Real const &,
25 Real const [4]) ;

26| typedef enum {

27 BC_INTERNAL=0,

28 BC_SUPERSONIC_INLET,
29 BC_SOLID,

30 BC_FREE

31l } BC ;

320} ;

Analysis  The actual implementation makes usage of the topological lists of the vertices, edges
and triangles incident on a given verteéR2MESHautomatically initializes such lists
when we seLIST = true in the template argument list @f2_commonin lines
10-11.

Define the
class Vertex

33| class Vertex : public p2_vertexxCommon> {

34| private:

35| friend class Edge ;

36 friend class Solver ;

371 Real _area, hxy, sol[4], sol0[4] ;

38| public:

39| void Init(Real const[4]) ;

40| Real const & area(void) const { return _area ; }
41 void RK_Setsol(void) ;

42|  void RK_Update(Real const &, Unsigned const) ;
430}

Analysis  The class/ertex contains in line37 the following private attributes
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hxy : it is the characteristic size of the vertex control volume on the dual mesh used
to estimate the CFL number;

_area : it stores the area of the control volume to reduce the CPU costs of area

calculations;

sol[4] : it stores the approximate solution at any intermediate and final time step of
the Runge-Kutta time marching scheme;

sol0[4] : (work array) it stores the initial solution of any Runge-Kutta time step;

and the following public methods

Init : itinitializes the class; in particular, compute the the value of the area of the
control volume of the current vertex instance;

area : it returns the value of the private attributarea ;

RK_Setsol : itinitializes a Runge-Kutta time step;

RK_Update : it performs the solution update in an intermediate Runge-Kutta time

step.

Notice that in a cell vertex scheme the application unknowns are logically associated
to the vertices, which naturally implies this very rich definition of the vertex data
structure. Compare this definition with the one given for the previous cell center im-
plementation.

class Edge : public p2_edge<Common> {
private:

friend class Vertex ;

friend class Solver ;

BC ibc ;
Real num_flux[2][4], nx[2], ny[2], len[2] ;
public:

void Init(void) ;
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52| void InternalNumFlux(PNUMFLUX) ;
53| void BoundaryNumFlux(PNUMFLUX, Real const [4]) ;
54} ;

The private attribute of the clagglge are the variablédbc of typeBC and four arrays
of typeReal , num_flux , nx, ny, andlen :

e ibc :itdistinguishes the nature of the current edge instance, (internal or on the bound-

ary), and eventually specifies a boundary condition;

e nXx : it stores the first component of the two non-normalized vectors orthogonal to the

medians from the leftQ) and right () adjacent triangles;

e ny : it stores the second component of the two non-normalized vectors orthogonal to

the medians from the lef0j and right () adjacent triangles;

e len : it stores the two length of the segment joining the edge midpoint with the

centroid of the left @) and right (1) adjacent triangles; notice thgn(i] =
nx[i] 2-+ny[i] 2, wherei=0 ,1;

e num_flux : it contains the numerical flux across the two segments joining the edge

midpoint with the centroid of the lef0) and right () adjacent triangles;

Notice that whenever the current edge is located on the boundary of the computational
domain, half of the edge coincides with a portion of the control volume boundary. In
this case,{x[1] , ny[1] ) defines a vector whose direction is outward oriented and
orthogonal to the edge and whose lenigih is half of the edge length.

The public methods of the clagslge are

e Init it computesx, ny, andlen ;
e InternalNumFlux . it computes the numerical flux of internal edges;

e BoundaryNumFlux : it computes the numerical flux of boundary edges.
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Define the
main solver
class

s5| class Triangle

A vertex centered finite volume solution 65

Figure 6:

. public p2_poly<Common> {} ;

The body of the clas$riangle is empty as a consequence of the cell vertex nature
of the numerical algorithm. Compare this definition with the one given for the cell
center scheme implementation.

56| class Mesh : public p2_mesh<Common> {} ;

57
58
59

60
61
62

class Solver : public Common {

private:

static void mark_edge(Edge &, Unsigned const &) ;

Mesh
Iterator<Vertex>

Iterator<Edge>

mesh ;
vertex ;
edge, iedge, bedge ;
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Iterator<Triangle> triangle ;

Unsigned max_iter ;
Real CFL_run, Tend, time, dt ;

PCHECK  ok_State ;
PNUMFLUX NumFlux ;
PFLUX Flux ;
PCFL CFLxy ;

Real inlet_state[4], init_state[4] ;

public:

Solver(PFLUX, PNUMFLUX, PCHECK, PCFL);
void SetUp(char const *) ;

void SetTimeStep(bool &, Unsigned const);
void TimeStep(void) ;

void Save_Mtv(void) ;

The definition of the class Solver is given in lingg—77.

As part of the class definition, a private instance of the dssh is contained, see
line 60.

The private attributes in line81-63 are the iteratorsertex , iedge , bedge and
triangle . The iterators are initialized in such a way that

vertex : it performs loops on all the vertices;
edge : it performs loops on all the edges;

iedge : it performs loops on the internal edges;
bedge : it performs loops on the boundary edges;

triangle it performs loops on all the triangles.

The variables defined in liné1—65 are used during the computation of an interme-
diate Runge-Kutta step:
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max_iter :itis the maximum allowable number of time steps;

CFL_run : itis the time step size expressed as a fraction of the CFL number;

Tend : itis the final time at which the computation terminates;

time :itis the current time;

dt :itis the current time step.

The statements in lin€86—69 declare the names of the functions that define the prob-

lem. The two arrays in lin€0 store the inflow boundary state (a supersonic inlet) and
the initial state of the computation.

The class Solver contains in lin@2—76 the following public methods:

Solver : the constructor links the application program the (externally defined) func-
tions for consistency check, for both physical and numerical flux calculation, and for
the estimation of the CFL number.

SetUp : it reads from an external file the mesh description (in the output format
of the mesh generator Triangle), the inlet and the initial state and initialize the mesh
representation dP2MESHibrary and some other variables;

SetTimeStep : it computes the new time stej ;
TimeStep : it advances the solution of a time ste{p;

Save Mty : it saves on disk the final solution in MTV format.

inline

void

Vertex::Init(Real const state[4]) {
copy(state, state+4, sol) ;
unsigned i ;
_area = 0 ;
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g4 for (i =0 ;i< n_poly() ; ++i )
85 _area += poly(i).area() ;
gs| _area /= 3 ;

87| hxy = edge(0) . length() ;

gs| for (i =1 ;i< n_edge() ; ++i)
89 hxy = min(hxy, edge(i) . length() ) ;
9|}

Analysis  The method initializes the clad&ertex . The area of the control volume associated
to the current vertex is evaluated and assigned to the varianka . The method
also initializes the value dixy , which is given by the minimum length of the internal
edges of the control volume, needed in the estimation of the CFL.

91| inline
92| void
93| Vertex::RK_Setsol(void) {
94| copy(sol, sol+4, sol0) ;
o5}

Analysis  See the comment given in the cell center example.

96| void
o7| Vertex::RK_Update(Real const & dt, Unsigned const irk) {

98| /I compute residual

99| Real res[4] ;

100 res[0] = res[1] = res[2] = res[3] = O ;

101 for ( Unsigned ie = 0 ; ie < n_edge() ; ++ie ) {

102 Edge & E = edge(ie) ;

103 bool ok_dir = this == &E.vertex(0) ;

104 Real len = ok_dir ? E.len[0] : -E.len[0] ;

105 res[0] += len * E.num_flux[0][0] ;

106 res[1] += len * E.num_flux[0][1] ;

107 res[2] += len * E.num_flux[0][2] ;

108 res[3] += len * E.num_flux[0][3] ;

109 len = (ok_dir || E.ibc = BC_INTERNAL) ? E.len[1] : -E.len[1] ;

110 res[0] += len * E.num_flux[1][0] ;
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111 res[1] += len * E.num_flux[1][1] ;
112 res[2] += len * E.num_flux[1][2] ;
113 res[3] += len * E.num_flux[1][3] ;
114 }

15| /I update

116|  static Real crkO[2] = {1, 0.5} ;
117/  static Real crk1[2] = {0, 0.5} ;
118|  static Real CRKR[2] = {1, 0.5} ;
119] Real crkr = CRKR][irk]*dt/area() ;

120  sol[0] = crkO[irk] * sol0[0] + crk1[irk] * sol[0] - crkr * res[0] ;
121|  sol[1] = crkO[irk] * solO[1] + crkl[irk] * sol[1] - crkr * res[1] ;
122|  sol[2] = crkO[irk] * sol0[2] + crkl[irk] * sol[2] - crkr * res[2] ;
123 sol[3] = crkO[irk] * solO[3] + crkl[irk] * sol[3] - crkr * res[3] ;
124| }

Analysis  The method computes in lin€@9-114 the residual
_ Z &,
ecOK

associated to the control volume of the vertex, which is then used in1P@s123
to advance the solution to the next Runge-Kutta stage.

The methods
of the class

Edge 125| void
126| Edge::Init(void) {
127 nx[0] = poly(0).yc() - ym() ;
128/ ny[0] = xm() - poly(0).xc() ;

129 if ( ok_poly(1) ) {
130 nx[1] = ym() - poly(1).yc() ;

131 ny[1] = poly(1).xc() - xm() ;
132 } else {
133 nx[1] = p2_edge<Common>:nx()/2 ;
134 ny[1l] = p2_edge<Common>:ny()/2 ;
135

}

136) for ((Unsigned i = 0 ;i <2 ; ++i ) {
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len[i] = sqrt( nx[iI*nx[i] + ny[i[*ny[i] ) ;
nx[i] /= len[i] ;
ny[i] /= len[i] ;
}
}

The method computesX[0] ,ny[0] ) and @x[1] ,ny[1] ). These two vectors are
orthogonal to the segment which joins the edge midpoint and the two centroids of
the left and right triangles. It also computes the length of the segments, since the
two orthogonal vectors are non-normalized. The test on12@ discriminates the
boundary edges.

void

Edge::InternaNumFlux(PNUMFLUX NumFlux) {
Vertex & VA = vertex(0) ;
Vertex & VB = vertex(1) ;

NumFlux(num_flux[0], VA.sol, VB.sol, nx[0], ny[O]) ;
NumFlux(num_flux[1], VA.sol, VB.sol, nx[1], ny[1]) ;
}

The statements in lines46-147 invoke the functionNumFIlux, which computes
the numerical fluxes across the left and right portion of the control volume boundary
associated to the current edge instance.

void

Edge::BoundaryNumFlux(PNUMFLUX NumFlux, Real const inlet[4]) {
Vertex & VA = vertex(0) ;
Vertex & VB = vertex(1) ;

NumFlux(num_flux[0], VA.sol, VB.sol, nx[0], ny[O]) ;

Real Isol[4], rsol[4] ;

Isol[0] = 0.5*(VA.sol[0] + VB.sol[0]) ;
Isol[1] = 0.5%(VA.sol[1] + VB.sol[1]) ;
Isol[2] = 0.5*(VA.sol[2] + VB.sol[2]) ;
Isol[3] = 0.5%(VA.sol[3] + VB.sol[3]) ;

switch (ibc) {
case BC_FREE:
copy(lsol, Isol+4, rsol) ;
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162| break ;

163 case BC_SUPERSONIC_INLET:

164 copy(inlet, inlet+4, rsol) ;

165 break ;

166 case BC_SOLID:

167 {

168 Real gt = -Isol[1] * ny[1] + Isol[2] * nx[1] ;
169 Real gn = 0 ;

170 rsol[0] = Isol[0] ;

171 rsol[1] = gn * nx[1] - qt * ny[1] ;

172 rsol[2] = gn * ny[1] + qt * nx[1] ;

173 rsol[3] = Isol[3] ;

174 }

175 break ;

176|  default:

177 cerr << "pad boundary " << (int)ibc << endl ;
178 exit(0) ;

79|}

180  NumFlux(num_flux[1], Isol, rsol, nx[1], ny[1]) ;
181 }

Analysis  As for the cell center scheme, the numerical flux in the case of a boundary edges is
given by a different method, which takes into account the boundary conditions.

The solver
code
182| Solver::Solver(PFLUX Flux_,
183 PNUMFLUX NumFlux_,
184 PCHECK ok_State
185 PCFL Cfl) {
186 Flux Flux_ ;

187 NumFlux = NumFlux_ ;
188) Ok_State = ok_State_ ;
189| CFLxy = Cfl_ ;

190 }

Analysis  See the comments given for the cell center case.

191/ void Solver::mark_edge(Edge & E, Unsigned const & marker) {
192  switch ( marker ) {
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case 0 : E.ibc = BC_INTERNAL ; break ;
case 1 : E.ibc = BC_SUPERSONIC_INLET ; break ;
case 2 : E.ibc = BC_SOLID ; break ;
case 3 : E.ibc = BC_FREE ; break ;
default:
cerr << "mark_edge( E, " << marker
<< ") bad boundary condition" << endl ;
exit(0) ;
}
}
See the comments given for the cell center case.

void Solver::SetUp(char const * file) {

char file_par[1024] ;
strepy(file_par,file) ;
strcat(file_par,".inp") ;

ifstream file_input( file_par ) ;

if (! file_input . good() ) {
cerr << "error in opening file: " << file_par << endl ;
exit(0) ;

}

time = 0 ;
file_input
>> dt
>> Tend
>> max_iter
>> CFL_run
>> inlet_state[0]
>> inlet_state[1]
>> inlet_state[2]
>> inlet_state[3]
>> init_state[0]
>> init_state[1]
>> jnit_state[2]

>> init_state[3] ;
cout
<< "Parameters" << endl
<< "dt =" << dt << endl
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229 << "Tend = " << Tend << endl
230 << "max_iter = " << max_iter << endl
231 << "CFL_run = " << CFL_run << endl
232 << endl

233 << "Input state:"

234 << " r =" << setw(5) << inlet_state[0]
235 << " u = " << setw(5) << inlet_state[1]
236 << " v =" << setw(5) << inlet_state[2]
237 << " E = " << setw(5) << inlet_state[3]
238 << endl

239 << "Initial state:"

240 << " r = " << setw(5) << init_state[0]
241 << " u = " << setw(5) << init_state[1]
242 << " v = " << setw(5) << init_state[2]
243 << " E = " << setw(b) << init_state[3]
244 << endl << endl ;

245/ file_input . close() ;

246/ [/ initialize

247 mesh . read_mesh(file, NULL, mark_edge, NULL, 1) ;
248|  vertex . set_loop(mesh) ;

249| edge . set_loop(mesh) ;

250,  bedge . set_loop(mesh,1) ;

251 iedge . set_loop(mesh,2) ;

252|  triangle . set_loop(mesh) ;

253 foreach ( vertex ) vertex -> Init(init_state) ;
254 foreach ( edge ) edge -> |nit() ;

255| }

Analysis  This source fragment is similar to the corresponding one of the cell center case. The
main difference is in the initialization phase performed on the vertices and not on the
triangles.

256 void

257| Solver::SetTimeStep(bool & continue_loop, Unsigned const iter) {
258 Real CFL _curr = 0 ;

259  foreach(vertex)

260 CFLxy( CFL_curr, dt, vertex -> hxy, vertex -> sol ) ;

261] Real rapp = min(1.2, CFL_run / CFL_curr) ;
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262| dt *= rapp ;

263 CFL_curr *= rapp ;

264| [/ chek time step

265 Real new_time = time+dt ;

266/ if ( new_time > Tend ) {

267 continue_loop = false ;

268 dt = Tend - time ;

269 time = Tend ;

2r0|  } else {

271 time = new_time ;

272 continue_loop = continue_loop && iter < max_iter ;
213}

274 cout

275 << " jter=" << setw(4) << iter

276 << " time (n+1)=" << setw(8) << time

277 << " CFL=" << setw(8) << CFL_curr
278 << " dt=" << setw(8) << dt

279 << endl ;

280| }

Analysis  The method computes the new time step by looping on all the vertices. Since this is the
only difference with respect to the cell center case, see the comments given therein.

281| void

282| Solver::TimeStep(void) {

283| foreach(vertex) vertex -> RK_Setsol() ;

284|  for( Unsigned irk = 0 ; irk < 2 ; ++irk ) {

285 foreach(iedge) iedge -> InternalNumFlux(NumFlux) ;

286 foreach(bedge) bedge -> BoundaryNumFlux(NumFlux,inlet_state) ;
287 foreach(vertex) {

288 vertex -> RK_Update(dt,irk) ;

289 if ( lok_State(vertex -> sol) ) {

290 cerr << "POSITIVITY_CHECK: negative pressure found" ;
291 exit(0) ;

292 }

293 }

204 }

295| }
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Analysis  This source fragment is almost identical to the one given for the cell center case. The
only difference is in the loop which is performed on vertices instead of on triangles.

Saving the
computed

solution 29| void
207| Solver::Save_Mtv(void) {
208| ofstream file("cv.mtv") ;
200 if (! file . good() ) {

300 cerr << "Cannot open for write file: “cv.mtv’ << endl ;
301 exit(0) ;
302 }

s03| file << "$ DATA=CONTCURVE\n%contstyle=2 topLabel=mass"

304 << endl ;

s05) foreach ( triangle ) {

306 for ( Unsigned nv = 0 ; nv < triangle -> n_vertex() ; ++nv ) {
307 Vertex & V = triangle -> vertex(nv) ;

308 file << Vx() << " " << Vy() << " " << V.s0l[0] << endl ;
309 }

310 file << endl ;

311 }

312| file << "$ END" << endl ;
a13| file . close() ;
314| }

Analysis  The method saves the computed solution in a MTV format file.

The main
program

315/ # include "eu.hh"

316/ int
317/ main() {

318  Solver solver(Euler::Flux,

319 Euler::Godunov,
320 Euler::ok_State,
321 Euler::CFL) ;

322/ solver . SetUp("ramp") ;
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bool continue_loop = true ;

for ( unsigned iter = 1 ; continue_loop ; ++iter ) {
solver.SetTimeStep(continue_loop, iter) ; // variable time step dt
solver.TimeStep() ; // update one time step

b

solver . Save_Mtv() ;
cout << "End of Program" << endl ;

In line 315 the header fileu.hh isincluded. This file contains the implementations
of the physical flux for the Euler equations and of the Godunov and Lax-Friedrics
numerical fluxes. The statements in lirBd8—-321 instantiate and initialize an object

of the classSolver . Notice that the constructor takes in input the addresses of the
functions defined in the claguler .

Figure 7 shows the final solution computed by this application program.

mass

Y-AXxis

Figure 7: Solution produced by the double Mach reflection vertex-center FV solver
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class Euler {
public:
typedef double Real ;

private:
/I private internal stuff

public:
static void CFL(Real &,
Real const &, Real const &, Real const &,
Real const [4]) ;
static bool ok_State(Real const [4]) ;

static void Flux(Real [4], Real [4], Real const [4]) ;

static void LF(Real [4], Real const [4], Real const [4],
Real const & , Real const & ) ;

static void Godunov(Real [4], Real const [4], Real const [4],
Real const &, Real const &) ;

B The file “eu.cc”

# include "eu.hh"

# include <iostream>
# include <math.h>

typedef Euler::Real Real ;

inline Real abs(Real const & a)
{retuna>0?a:-a;}

inline Real max(Real const & a, Real const & b)
{retuna>b?a:b;}
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inline Real min(Real const & a, Real const & b)
{retumma<b?a:b;}

static Real const GAMMA = 14 ;

static Real const G1 (GAMMA - 1) / (2 * GAMMA) ;
static Real const G2 = (GAMMA + 1) / (2 * GAMMA) ;
static Real const G3 = 2 * GAMMA / (GAMMA - 1) ;
static Real const G4 = 2 / (GAMMA - 1) ;

static Real const G5 = 2 / (GAMMA + 1) ;

static Real const G6 = (GAMMA - 1) / (GAMMA + 1) ;
static Real const G7 = (GAMMA - 1) / 2 ;

static Real const G8 1 / GAMMA ;

static Real const G9 GAMMA - 1 ;

Real Euler::ec(Real const val[4]) {
return 0.5 * ( val[1]*val[l] + val[2]*val[2] ) / r(val) ;
}

Real Euler::P(Real const val[4]) {
Real press = G9 * ( E(val) - ec(val) ) ;
if ( press <= 0 ) {
cerr
<< "Euler:P("
<< val[0] << ""
<< val[l] << ""
<< vall2] << "
<< val[3] << ") found bad pressure p ="
<< press << endl ;
exit(0) ;
}

return press ;

}

Real Euler::C(Real const val[4]) {
Real C2 = GAMMA * P(val) / r(val) ;
if (C2<=0){
cerr
<< "Euler:C("
<< val[0] << ""
<< valll] << "
<< vall2] << "
<< val[3] << ") found bad speed C2 ="
<< C2 << endl ;
exit(0) ;
}
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return sqrt(C2) ;
}

bool Euler::ok_State(Real const val[4]) {
Real press = G9 * ( E(val) - ec(val) ) ;
return press > 0 && r(val) > 0 ;

}
void Euler::CFL(Real & CFL,
Real const & dt,
Real const & h,
Real const val[4] ) {
Real ¢ = C(val) ;
Real u = U(val) ; if (u<0)u=-u;
Real v = V(val) ; if (v<0)vVv=-v;

CFL = max( dt*(max(u,v)+c)/h, CFL ) ;
}

void Euler::Flux(Real fx[4], Real fy[4], Real const val[4]) {

Real u
Real v

U(val) ;
V(val) ;

for (‘unsigned i = 0 ;i < 4 ; ++ ) {
fX[i] = u * valli ;
fylil = v * valfi] ;

}

Real press = P(val) ;

fx[1] += press ;
fx[3] += press * u ;

fy[2] += press ;
fy[3] += press * v ;

}

void Euler::LF(Real nflux[4],
Real const Isol[4],
Real const  rsol[4],
Real const & nx,
Real const & ny) {

Real vl = nx * U(lsol) + ny * V(Isol) ;

79
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Real vr = nx * U(rsol) + ny * V(rsol) ;
Real artvisc = max( abs(vl) + C(Isol), abs(vr) + C(rsol)) ;

Real Ifx[4], Ify[4], rfx[4], rfy[4] :

Flux(Iifx, Ify, Isol) ;
Flux(rfx, rfy, rsol) ;

for (unsigned i = 0 ;i < 4 ; ++ )
nflux[il = 0.5 * ( nx * (Ix[i]+rix[i]) + ny * (Ify[i]+rfy[i])
- artvisc * ( rsol[i] - Isoli] ) ) ;

}
void Euler::StateEval(State & s,
Real const  S[4],
Real const & nx,
Real const & ny ) {
s.r = r(S) ;
s.u = vn(S,nx,ny) ;
sp = P(S) ;

s.c = GAMMA * sp / r(S) ;
if (s.c<=0){

cerr << "error in StateEval negative sound speed" << endl ;
exit(0) ;

}

s.c = sqgrt( s.c ) ;

It

void Euler::Godunov(Real nflux[4],
Real const Isol[4],
Real const rsol[4],
Real const & nx,
Real const & ny) {

if ( lok_State(Isol) ) {
cerr << "Euler::Godunov bad left state" << endl ;
exit(0) ;

}

if ( lok_State(rsol) ) {
cerr << "Euler::Godunov bad right state" << endl ;
exit(0) ;




The file “eu.cc” 81

}

Real const SS = 0 ;

State sl, sr, sm ;

StateEval( sl, Isol, nx, ny ) ;
StateEval( sr, rsol, nx, ny ) ;

Real PM, UM ;

/I LOCAL RIEMANN PROBLEM RP(l,I+1) IS SOLVED EXACTLY
Riemann(PM, UM, sl, sr) ;

/I SOLUTION IS SAMPLED AT S=X/T=0 ALONG T-AXIS
Sample(PM, UM, SS, sl, sr, sm) ;

Real gn = sm.u ;
Real qt = gn > 0 ? vt(Isol,nx,ny) : vt(rsol,nx,ny) ;

Real u =qgn * nx - qt * ny ;

Real v =qgn * ny + gt * nx ;

nflux[0] = gn * sm.r ;

nflux[1] = gn * sm.r * u + sm.p * nx ;

nflux[2] = gn * sm.r * v + sm.p * ny ;

nflux(3] = gn * (sm.p+sm.p/G9 + 0.5*sm.r*(u*u+v*v)) ;
}
I
void Euler::Riemann(Real & P,

Real & U,

State const & sl,

State const & sr) {
/Il COMPUTE PRESSURE PM AND PARTICLE VELOCITY UM IN THE MIDDLE
/I PM IS FOUND ITERATIVELY BY A NEWTON-RAPHSON METHOD.

/I COMPUTE GUESS VALUE FROM PVRS RIEMANN SOLVER
Real PPV = 0.5*(sl.p+sr.p)
- 0.125*(sr.u-sl.u)*(sl.r+sr.r)*(sl.c+sr.c) ;
Real PMIN min(sl.p, sr.p) ;
Real PMAX max(sl.p, sr.p) ;
Real QRAT = PMAX / PMIN ;

if ( QRAT <= 2.0 && (PMIN <= PPV && PPV <= PMAX) ) {
/I USE PVRS SOLUTION AS GUESS
P = PPV ;
} else {
if (PPV < PMIN) { // USE TWO-RAREFACTION SOLUTION
Real PNU = sl.c + sr.c - G7 * (sr.u - slu) ;
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Real PDE = sl.c / pow(sl.p, G1 ) + sr.c / pow( sr.p, G1 ) ;
P = pow(PNU / PDE, G3 ) ;
} else { // USE TWO-SHOCK APPROXIMATION WITH PPV AS ESTIMATE
Real GEL = sqrt( (G5 / sl.r) / (G6 * sl.p + PPV) ) ;
Real GER = sqrt( (G5 / sr.r) / (G6 * sr.p + PPV) ) ;
P = (GEL*sl.p + GER*sr.p - (sr.u-sl.u) ) / (GEL + GER) ;
}
}

Real const TOL = 1le-6 ;
Real FL, FR, FLD, FRD ;
Real PO = P ;
Real DU = sr.u - slu ;
for ( unsigned k = 0 ; k < 50 ; ++k ) {
Prefun(FL, FLD, P, sl) ;
Prefun(FR, FRD, P, sr) ;
P -= (FL + FR + DU) / (FLD+FRD) ;
if (abs( (P - P0O)/ (P + PO)) <= 0.5 * TOL ) goto fine ;
PO=P>07?P: TOL;
}
cout << "Euler::Riemann(...)"
<< "DIVERGENCE IN NEWTON-RAPHSON ITERATION" << end! ;

fine:
/Il COMPUTE U
U=205*¢(lu+ sru+ FR - FL) ;

}

void Euler::Prefun(Real & F,
Real & FD,
Real const & P,
State const & s) {
if (P <= s.p) { // RAREFACTION WAVE
Real PRAT = P / sp ;
F =G4 * s.c * (pow(PRAT,G1) - 1) ;
FD = (1.0 / (s.r * s.c) ) * pow(PRAT, -G2 ) ;
} else { // SHOCK WAVE
Real AK = G5 / sir ;
Real BK = G6 * s.p ;
Real QRT = sqgrt(AK / (BK + P) ) ;
F =(P -sp) * QRT ;
FD = (1 -05* (P -sp)/ (BK + P)) * QRT ;
}
}

void Euler:Sample(Real const & PM,
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Real const & UM,
Real const & S,
State const & s,
State const & sr,
State & sm ) {
if (S <=UM) {
/I SAMPLE POINT IS TO THE LEFT OF THE CONTACT

if ( PM <= slp) { // LEFT FAN
Real SHL = slu - slc ;

if (S <= SHL ) { //LEFT DATA STATE
sm.r = shr ;
sm.u = slu ;
sm.p = slp ;
sm.c = sl.c ;
} else {

Real CML = sl.c * pow(PM / sl.p, G1 ) ;
Real STL = UM - CML ;

if (S > STL) {// MIDDLE LEFT STATE

sm.r = sl.r * pow(PM / sl.p, G8 ) ;
smu = UM ;
sm.p = PM ;

sm.c = sgrt( GAMMA * sm.p / sm.r ) ;

} else { // FAN LEFT STATE (INSIDE FAN)
smu = G5 * (sl.c + G7 * slu + S)
sm.c = G5 * (sl.c + G7 * (slu - S) )
sm.r = sl.r * pow(sm.c / sl.c, G4 ) ;
sm.p = sl.p * pow(sm.c / slc, G3 ) ;

1

}

}

} else { // LEFT SHOCK
Real PML = PM / slp ;

Real SL = slu - sl.c * sgrt(G2 * PML + G1) ;
if (S <= SL ) {// LEFT DATA STATE

sm.r = sh.r ;
sm.u = slu ;
sm.p = slp ;

sm.c = slc ;

} else { // MIDDLE LEFT STATE (BEHIND SHOCK)
sm.xr = slr * (PML + G6 ) / (PML * G6 + 1.0) ;
sm.u UM ;

sm.p PM ;

sm.c = sqrt( GAMMA * sm.p / sm.r ) ;

}
}

} else { // RIGHT OF CONTACT
if (PM > srp ) { // RIGHT SHOCK
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Real PMR = PM / sr.p ;

Real SR = sr.u + sr.c * sqrt(G2 * PMR + G1 ) ;
if (S >= SR) { // RIGHT DATA STATE

sm.r = sr.r ;
sSm.u = Sr.u ;
sm.p = sr.p ;
Sm.c = Sr.c ;

} else { // MIDDLE RIGHT STATE (BEHIND SHOCK)
sm.r = srr * (PMR + G6 ) / (PMR * G6 + 1.0) ;

sm.u = UM ;
sm.p = PM ;
sm.c =

sgrt( GAMMA * sm.p / sm.r ) ;

} else { // RIGHT FAN
Real SHR = sr.u + sr.c ;

if (S >= SHR ) { // RIGHT DATA STATE

sm.r = sr.r;
sm.u = sr.u ;
sm.p = sr.p ;
sm.c = sr.c ;
} else {

Real CMR = sr.c * pow(PM / sr.p, G1 ) ;
Real STR = UM + CMR ;

’

if (S <= STR) { // MIDDLE RIGHT STATE

sm.r = sr.r * pow(PM / sr.p, G8 ) ;
sm.u = UM ;

sm.p = PM ;

sm.c =

sqrt( GAMMA * sm.p / sm.r ) ;

} else { // FAN RIGHT STATE (INSIDE FAN)
smu =G5 * (-src + G7 *sru+S) ;
sm.c = G5 * (sr.c - G7 * (sru - S) ) ;

= sr.r * pow(sm.c / sr.c, G4 ) ;
sm.p = sr.p * pow(sm.c / sr.c, G3 ) ;
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