
ISTITUTO
DI

ANALISI NUMERICA
del

CONSIGLIO NAZIONALE DELLE RICERCHE
via Abbiategrasso 209 – 27100 PAVIA (Italy)

PAVIA
1999

PUBBLICAZIONI

N. 1165

Enrico Bertolazzi, Gianmarco Manzini

P2MESH: Programming Finite Element and
Finite Volume Methods

P2MESH: Programming Finite Element and Finite
Volume Methods

Enrico Bertolazzi1 & Gianmarco Manzini2

1Department of Mechanics and Structures Engineering
University of Trento

via Mesiano 77, I – 38050 Trento, Italy
Enrico.Bertolazzi@ing.unitn.it

2Institute of Numerical Analysis – CNR
via Ferrata 1, I – 27100 Pavia, Italy
Gianmarco.Manzini@ian.pv.cnr.it

II

Abstract

P2MESHwas developed for the solution of partial differential equation in two dimen-
sions on unstructured meshes. The library is a collection ofC++ classes and iterators
which allows to design and implement the data structures involved in Finite Element
and Finite Volume methods. Four different examples show the practical application of
P2MESHto the development of numerical solvers for PDE problems.

II

(NO) Installation

TheP2MESHsoftware library consists in the header filep2mesh.hh to be included
at the beginning of each program source file usingP2MESHfacilities. No installation
or pre-compilation of library files is required. No library object or archive files must
be linked.

Conditions for Using p2mesh

TheP2MESHsoftware library is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

Acknowledgements

We have a long list of people to thank for the interest they manifested aboutP2MESH
and the encouragement they gave us. In alphabetical order we mention Dr. Mario
Arioli, Dr. Antonio Cazzani, Dr. Loula Fezoui, Prof. Bruno Firmani, Dr. Luca
Formaggia, Dr. Alessandro Russo, Prof. Gianni Sacchi, Prof. Filippo Trivellato, and
Dr. Gianluigi Zanetti. Finally, we would like to address special thanks to Prof. Bruce
Simpson, Dr. J.-Daniel Boissonat and all the team of the project Prisme at INRIA,
Sophia-Antipolis, France, for the opportunity of the first official presentation of the
work.

III

IV

CONTENTS 1

Contents

1 The model problem 3

2 FE and FV discretizations 5

2.1 Basic ideas of Finite Element Methods5

2.2 Basic ideas of Finite Volume Methods8

3 A FE solver for the Poisson problem 11

4 A P2 conforming solution 12

5 A Q2 conforming solution 28

6 A FV solver for the compressible Euler equation 44

7 A cell centered finite volume solution 45

8 A vertex centered finite volume solution 61

A The file “eu.hh” 77

B The file “eu.cc” 77

2 CONTENTS

The model problem 3

1 The model problem

Let Ω be an open subset ofRn with boundary∂Ω andT a real positive constant. The
mathematical form of a typical time dependent problem is

∂U
∂t

+∇ · F = Q, x ∈ Ω, t ∈ [0, T]

boundary conditions forx ∈ ∂Ω, t ∈ [0, T]
U assigned att = 0 for x ∈ Ω,

(1)

whereU = U(t,x) is the vector of unknowns,Q = Q(t,x) is a given source term,
andF = F(t,x,U,∇U, . . .) takes into account the dependence onU and its spatial
derivatives. The mathematical form of a stationary problem is

{∇ · F = Q, x ∈ Ω,

boundary conditions forx ∈ ∂Ω,
(2)

with similar definitions forU, Q, F.

A suitable set of boundary conditions and initial solutions must be provided in order
to have a well-defined mathematical problem. Theconservative, or sometimes called
divergenceform, has been preferred because it is a natural starting point for Finite
Volume (FV) methods. These ideas apply to FV methods as well as to Finite Element
(FE) ones.

Both FV and FE discretizations are based on amesh triangulation, that is on the par-
titioning of the computational domainΩ, in some basic geometrical entities (usually
called cells, elements or control volumes), such as triangles, quadrilaterals in 2-D,
or tetrahedrons, prisms, in 3-D. Managing such entities may be trivial in simple sit-
uations, for instance when one deals with a structured rectangular mesh on a simple
domain (such as a square), but it is not at all evident when an unstructured mesh on a
general shaped domain is considered.

A PDE solver must be capable to handle all the topological and geometrical informa-
tion required by the numerical algorithm. Such a solver generally manages information
whose nature depends on both the applications and the numerics. The main difference
in the implementation of different algorithms relies in thedata structuresinvolved and
the way these latter ones aremanipulated.

Basically, all relevant information, such as geometrical quantities, physical unknowns
and auxiliary dependent variables, can be logically associated to different geometri-

4 FE and FV Programming

cal entities, which intuitively correspond in the 2-D case to aVertex, anEdge, or a
Polygon in the mesh. More complex mesh-based data structures can be built as the
completion of a set of suitably parameterized geometric containers and the mesh itself
is a container for instances of these data structures.

In this framework, the design of a PDE solver requires the careful specification of
the basic data types and their functionalities. At the highest level of abstraction, a
very general solution approach is truly independent of the details of the problem to be
solved and of the discretization method to be applied.

For example, one considers a geometrical type such as anEdge, and wants to extend
it into a more complex data type, in such a way that certain basic properties of the
basic type continue to hold for the extended type. The application-dependent extended
Edge will transparently manage the underlying geometric mesh and will contain all
the data and functionalities required by the problem and the approximation algorithm
under consideration.

In this respect, OOP techniques turn out to be quite effective. Actually, in a procedural
programming model, the data structures are manipulated by external procedures that
take them as input/output arguments. Instead, in non-procedural OOP models the
different functionalities which operate upon different data are themselves part of the
data specification, see [7].

OOP techniques are versatile in the description of data containers and help to isolate
the data structure design from the implementation of the application program.

This work mainly deals with the following issue of scientific programming:

“how to design a PDE solver for unstructured mesh computation in terms
of generic parameterized containers for mesh-based data structures
and related functionalities”.

The parameterization of a container is mainly achievable by these three strategies:

1. encapsulationof the user defined data;

2. inheritancefrom abstract base containers;

3. direct parameterization.

The latter one makes possible very effective implementations, because it dramatically
reduces the number of pointer dereferences and the function-call overheads. Remark,

FE and FV discretizations 5

also, that the first technique is supported by any procedural language and the second
one, which needs the mechanism of inheritance, is present in almost all object-oriented
languages. Direct parameterization, instead, is the most recent developed technique
and just few programming languages support it (e.g.ADA, C++ andEIFFEL).

2 FE and FV discretizations

The exact solution of the problems stated in equations (1-2) is usually unknown and
impossible to obtain in very general situations by analytical methods. Hence, these
problems must be reformulated in a suitablediscreteform, which allows computations.

The section illustrates some basic features of the Finite Element and Finite Volume
methods, focusing on those computational aspects related to the management of data
structures in a numerical solver.

2.1 Basic ideas of Finite Element Methods

In literature there are many papers and textbooks devoted to the presentation of the
theoretical aspects of the finite element methods, which discuss the properties of the
above formulations, show the way to construct suitable discrete approximations and
analyze convergence in terms of error estimates. A general but also detailed presenta-
tion of these issues can be found, for example, in [1].

The present section reviews some essential issues on FE methods by an application to
the homogeneous Laplace equation. The problem

{−∆u = f, in Ω
u = 0, on∂Ω

can be considered in the framework of (2) withU = u, F(u) = −∇u andQ = f .
The starting point of every FE method is the “variational formulation” of the problem.

{
Findu in a space of admissible functionsV such that

a(u, v) = L(v) for all v ∈ V,
(3)

6 FE and FV Programming

whereu ∈ V is the weak solution. In the particular case of the homogeneous Laplace
problem, V = H1

0 (Ω) indicates the standard Sobolev space of square-integrable
functions with null trace on the boundary and whose first derivatives are all square-
integrable functions. The bilinear forma(·, ·) : V × V → R and the linear functional
L(·) : V → R are

a(u, v) =
∫

Ω
∇u · ∇v, L(v) =

∫

Ω
f v. (4)

The discrete form of the variational formulation derived from (3) and suitable for com-
putation is formally given by

{
Finduh in a space of admissible functionsVh such that

ah(uh, vh) = Lh(vh) for all vh ∈ Vh,
(5)

whereuh is the approximation ofu in the finite-dimensional spaceVh, which is, in
the case of conforming finite elements, a subspace of the Hilbert spaceV . The bilin-
ear formah(·, ·) : Vh × Vh → R and the functionalLh(·) : Vh → R are suitable
approximations of the bilinear forma(·, ·) and the linear functionalL(·) introduced
in (4), respectively. The simplest choice isah(·, ·) = a(·, ·) andLh(·) = L(·), but
more complex ones are also possible, depending on different choices forVh and also
involving approximations by suitable quadrature rules of the integrals in equation (5).

Roughly speaking, a FE method requires the definition of a finite-dimensional sub-
spaceVh which should be convenient from both a theoretical viewpoint, because it
preserves some useful properties of the exact solution spaceV , and from a computa-
tional viewpoint, because it allows an easy estimation of the discrete approximation
uh ∈ Vh to u.

The finite-dimensional space of admissible functionsVh is essentially built by piece-
wise polynomials defined on ameshor triangulation, usually denoted byTh, of the
domainΩh, which is an approximation of the domainΩ. A triangulation is a union of
a suitable set ofelementsK and is generally demanded to satisfy some regularity con-
straints, which affect both the more practical implementation aspects and the eventual
underlying theoretical analysis.

The spaceVh usually consists in functions whose restriction to any elementK ∈ Th

is a polynomial of an assigned order. Some regularity conditions are usually satisfied
by the functions inVh, and sometimes also by their derivatives, such as the global
continuity on the closure of the domainΩh).

FE and FV discretizations 7

The key point in the construction of the spaceVh is that there exists a set of basis func-
tions{vi} having a small support. This fact enormously simplifies the computation of
the integrals inah(·, ·) andLh(·). Thus, the approximate solutionuh is given by the
linear combination of the functions{vi}, that is

uh =
N∑

i=1

uivi. (6)

The N termsu = {ui} are generally called the “degrees of freedom”. They are
computed by solving the linear system that arises from relation (5) for all the basis
functions{vi}.
A particular choice of the basis functions{vi} strongly affects the meaning of the
degrees of freedom; for example, in Lagrange-type finite elements, the degrees of
freedom approximate the values of the solution at a given set of nodes within the
element; in Hermite-type finite elements the degrees of freedom approximate also the
values of the directional derivatives at some given locations inK.

Thus, a finite element method formally implies a suitable choice for the triplet
(K, ΣK , PK), whereΣK is the set of degrees of freedom andPK the space of poly-
nomials defined on the generic geometrical elementK. Different choices of this triplet
correspond to different finite element methods and are equivalent to the specification
of Vh once a triangulationTh has been given.

Finally, substitution of (6) in (5) yields the linear algebraic problem

Au = b,

where the matrixA is usually called the “stiffness matrix” and the right-hand-side
b the “load vector” (the terminology comes from elasticity problems). In a standard
implementation, the stiffness matrix and the load vector are assembled from local con-
tributions estimated on every mesh element, i.e.

Ai,j =
∑

K∈Th

A(K)
i,j , bi =

∑

K∈Th

b(K)
i .

A typical implementation is based on a loop over all the elements of the triangulation.
Hence, it is very natural to utilize element-based data structures and access their val-
ues for the current element instance and its neighbors. Essential boundary condition,

8 FE and FV Programming

dependent on the physical problem and the variational formulation, are usually consid-
ered at this stage. Finally, a library solver for linear problems is invoked, the degrees
of freedom ofui are computed and the approximate solutionuh can be post-processed.

2.2 Basic ideas of Finite Volume Methods

The FV method basically consists in producing an appropriate discretization of a set of
conservation laws expressing, in an equivalent integral way, the original problem (1-2).

Methods based upon the FV spatial discretization have become very popular during
the last two decades, mainly because they present some advantages on FE methods in
the case of large transport terms. In particular, they are very suitable for systems of
conservation laws. With respect to FE methods, where the integrals of the stiffness ma-
trix are usually calculated by a transformation onto a reference element, the advantage
of FV methods is that they are able to solve the equations directly in the computa-
tional domain. Since all the costs associated with the evaluation of the jacobian of the
transformation matrix are removed, an important reduction of computational costs can
occur. For the sake of exposition, the discussion in the section is restricted to time-
dependent problems. The considerations presented hereafter apply also to stationary
problems.

FV methods are based on a suitablemeshpartitioning of the computational domainΩ,
which can be given as a set of “control volumes”K, also called “finite volumes”, or
more simply “cells”. Contrary to the case of FE methods, the set of volumes{K} is
not necessarily identified withTh. Indeed, the FV methods referred to in literature for
unstructured grid computations may actually deal with two different kinds of meshes:
theprimal mesh, that isTh, and itsdual mesh. The relation betweenTh and its dual
is based on the association between the vertices, the edges and the centroids of two
meshes. Since this association is not unique, more than one dual mesh can be specified
from a given primal mesh.

For the sake of exposition and without pretending of being exhaustive, the FV methods
are regrouped into the two following families, depending on which mesh the control
volumes are considered:

• a cell centeredFV method takes the control volumes as elements of the primal
mesh;

FE and FV discretizations 9

• acell vertexFV method takes the control volumes as elements of a dual mesh.

Since a number of dual meshes are possible, many variants of the cell vertex FV meth-
ods exist and are documented in literature.

The integration of equation (1) on the mesh control volumes yields the following set
of integral conservation laws

∂

∂t

∫

K
U +

∫

K
∇ · F =

∫

K
Q , for everyK (7)

The derivative with respect tot has been taken outside the first integral under the
assumption that the control volumes do not change in time. The final form, which is
the most suitable for the FV discretization, is then achieved by introducing in the first
integral the quantityUK , which is the average value of the unknownU on the control
volumeK,

UK =
1
|K|

∫

K
U,

and by applying the divergence theorem to the second integral. Equations (7), then,
become

dUK

dt
+

1
|K|

∫

∂K
nK · F =

1
|K|

∫

K
Q , for everyK (8)

where∂K is the boundary of control volumeK andnK is its outward normal vec-
tor. The discrete FV method is given by introducing the unknowns{UK(tn)} which
approximates at time levelt the cell-averaged valueUK over the control volumeK.
A common approach consists in separating the discretization in time and space by
treating them independently. This approach is historically known in literature asthe
method of lines.

Finite differences in time are usually adopted for the time derivative (first term in
(8)), which produce in the simplest case1-st order explicit or implicit time-marching
schemes. Higher-order accurate and more complex approximations are produced by
“predictor-corrector” and Runge-Kutta schemes.

As far as space discretization is concerned, the crucial point is that the evolution in time
of the cell-averaged quantities{UK} depends only upon the distribution of the flux
densityn·F on the cell interface boundaries{∂K}. Furthermore, the flux integral term

10 FE and FV Programming

depends on the (pointwise) value that the solutionU – and sometimes its gradient –
takes on the control volume boundary. However, only the approximation{UK} of the
cell-averaged values{UK} are available during the solution process, which demands
for a “recovering” step from the averages to the pointwise values.

The simplest procedure consists in taking the cell-average values as the approximation
to the solution values at the centroids of the control volumes. The resulting scheme is
1-st order accurate-in-space. Higher-order accurate spatial representations are based
on higher-order polynomialreconstructionprocedures. Spurious numerical oscilla-
tions may appear when discontinuities are present. This is typical of non-linear prob-
lems but it may happen also in the simpler case of a rigid advection of an initially
discontinuous solution. Numerical oscillations are avoided by requiring that some ad-
ditional monotonicity constraints are satisfied by the discretization.system

No special assumptions are usually given on the regularity of the approximated solu-
tion, such as global continuity on̄Ω, as is the case of conforming FE methods. Thus,
the solution which is locally reconstructed within any control volumeK is generally
discontinuous across control volume boundaries. Flux integral computation must be
performed via a suitable numerical flux model, which takes into account the contribu-
tions from both sides of any internal edge and the boundary conditions set on boundary
edges.

Assuming, for simplicity, that the physical flux depends only on the solutionU, the
second term in equation (8) can be modelled by

∫

∂K
nK · F(U) ≈

∑

K̃∈N (K)

Φ(UK ,UK̃ ,nKK̃),

whereN (K) is the set of control volumes adjacent to the control volumeK,
nKK̃ is the average normal along the edge shared byK and K̃ ∈ N (K), and
Φ(UK ,UK̃ ;nKK̃) is the numerical flux.

An extensive number of numerical fluxes has been proposed in literature. We men-
tion the family of central fluxes eventually corrected by an artificial dissipation term,
the one of upwind fluxes, based on the (exact or approximate) solution of Riemann
problems, and the one of flux-vector splitting-based fluxes.

In this framework, once one has identified the FV control volumes with the cells of
the primal or the dual mesh, both the integral formulation of the original differential
problem (1) and its discrete FV counterpart basically remain the same. Nevertheless,
the program design and its implementation substantially differ.

A FE solver for the Poisson problem 11

In fact, when an explicit time-marching scheme is coupled with an FV method, at any
time step (or any internal stage for explicit Runge-Kutta or multistage schemes) the
two following operations must be performed:

• for any (primal or dual mesh) edge, the estimation of the contribution of the
numerical flux to the residual of the control volumes sharing that edge;

• for any (primal or dual mesh) control volume, the updating of the cell-averaged
solution.

In a cell center FV method, the control volumes are the primal mesh cells. Hence, the
solver implementation may demand for a first loop on the edges and a second loop
on the cells of the primal mesh. In a cell vertex FV method, the control volumes are
the dual cells associated to the primal mesh vertices. Hence, the solver implementation
may demand for a first loop on the primal mesh cells closed to the primal mesh vertices,
and a second loop on the primal mesh vertices.

In the former situation, the program must be capable to retrieve efficiently the infor-
mation stored in objects of type, say,edgeandcell; in the latter one, in objects of type
cell andvertex. Other totally different implementations could be possible, of course;
the ones proposed, even if rather common, just exemplify the basic ideas. Special care
should also be devised to the treatment of the boundary conditions, but this issue will
no be addressed for the time being.

3 A FE solver for the Poisson problem

Here we introduce the reader to the facilities provided by thep2 mesh software li-
brary. Since the best way to learnP2MESHis to use it by writing programs, some
examples, commented line-by-line, will describeP2MESHin action. Two FE different
solvers are given for the Poisson problem with non-homogeneous boundary condi-
tions, by using conformingP2 andQ2 Lagrangian elements. Two different FV solvers
are also given for the compressible Euler equations by using a cell center and a cell
vertex scheme. The reader is assumed to be familiar with both theoretical and nu-
merical issues related to these problems, since the attention in the presentation will
be focused just on the implementation details concerning the usage ofP2MESH. In all
these applications, theP2MESHclasses, which contain a complete representation of

12 FE and FV Programming

the mesh, are inherited to define the mesh-based application classes. Due to the tuto-
rial nature of the examples, no particular effort to produce a “good” implementation
is spent in issues other than the grid representation and the mesh-based representation
of the numerical algorithm and the solution. For instance, in the case of the Poisson
problem, neither the sparsity nor the symmetry of the resulting linear system are at all
exploited. LetΩ = (0, 1) × (0, 1) be the computational domain; then, the Poisson
problem with non-homogeneous Dirichlet conditions reads

{ −∆u = f in Ω,
u = g on∂Ω.

The resulting algorithm follows the line described in paragraph 2.1.

4 A P2 conforming solution

This section describes the program contained in the filep2 solver.cc in the direc-
tory examples of theP2MESHdistribution package.

Include the library

1 # include "p2mesh.hh"

Analysis Line 1 includes the header file ofp2mesh.hh .

Declare the user-defined class names

2 class Vertex ;
3 class Edge ;
4 class Triangle ;
5 class Mesh ;
6 class Elliptic_Solver ;

A P2 conforming solution 13

7 typedef double (*pFun)(double const & x, double const & y) ;

Analysis Lines2–6 declare the names of all the mesh-based project classes. A function pointer
type is also declared in line7. Declarations in lines2–5 are mandatory by the mech-
anism of inheritance, while the one in line6 could be omitted. TheP2MESHlibrary
does neither require nor enforce any particular choice for the project class names. In
this and following examples the namesVertex , Edge, Triangle , andMesh are
conventionally adopted for the project classes. The nameCommonis used for the
common project class.

Define the class Common

8 class Common : public p2_common<Vertex,Edge,Triangle,Mesh> {
9 protected:

10 static unsigned const degree_of_freedom = 6 ;

11 static void shape(unsigned const,
12 double const &,
13 double const &,
14 double &) ;

15 static void shape_grad(unsigned const,
16 double const &,
17 double const &,
18 double [2]) ;
19 } ;

Analysis The classCommonis publicly inherited from the library template classp2 common.
This latter one is parameterized in line8 by the project class names introduced in
lines2–5.

The classCommon is a container for information, such asenum, static or
typedef definitions, to be shared by different instances of different project classes.
In very simple situations the class might also be empty. In the present case it contains
the prototypes of the static functionsshape andshape_grad , which are theP2

polynomial basis functions and their gradients.

14 FE and FV Programming

Define the classes Vertex, Edge and Triangle

20 class Vertex : public p2_vertex<Common> {
21 public:
22 unsigned EqNumber (Mesh const &) const ;
23 bool IsOnBoundary(Mesh const &) const ;
24 } ;

25 class Edge : public p2_edge<Common> {
26 public:
27 unsigned EqNumber (Mesh const &) const ;
28 bool IsOnBoundary(Mesh const &) const ;
29 } ;

30 class Triangle : public p2_poly<Common> {
31 public:
32 void eval_JJT(double[2][2], double &) const ;
33 double eval_int_f(unsigned const, pFun, double const &) const ;
34 double eval_int_grad(unsigned const, unsigned const,
35 double const [2][2], double const &) const ;

36 unsigned EqNumber (Mesh const &, Unsigned const) const ;
37 bool IsOnBoundary(Mesh const &, Unsigned const) const ;
38 } ;

Analysis The code fragment in lines20–38 defines the project classesVertex , Edge and
Triangle . The mechanism of inheritance from the base classesp2 vertex ,
p2 edge andp2 poly ensures each project class the access to the underlying mesh
data representation inP2MESH. The base classes are moreover parameterized by the
project classCommon, in such a way that they contain also the common information
of the project.

When P2 basis polynomials are used, theN degrees of freedom of the FE dis-
cretization may be logically assigned to mesh vertices or edge midpoints. Notice
that N = Nvertex + Nedge. The degrees of freedom are globally enumerated (and
of course uniquely identified) by an integer number running through0 to N − 1.
The Vertex , Edge and Triangle types are equipped with the public method
EqNumber, which returns the global identifier.

The public methodsVertex::IsOnBoundary andEdge::IsOnBoundary re-
turn the boolean valuetrue whenever the current instance of aVertex or anEdge

A P2 conforming solution 15

is located on the mesh boundary. The latter method is useful when the boundary con-
ditions must be set up.

Both methodsEqNumber andIsOnBoundary require the reference to the current
Mesh object because the information they return is deduced from the rank of the in-
stance within the mesh the instance belongs to.

The public methodsTriangle::EqNumber andTriangle::IsOnBoundary
take as input arguments also an unsigned integer which is the local identifier of the
degree of freedom within the given triangle instance.

In the classTriangle the prototypes of the following three methods are also de-
clared:

• void eval_int_f(unsigned const i,
pFun func,
double const & detJ)

evaluates by a suitable quadrature rule on the reference element the value of the integral

∫∫

T

f(x, y) vi(x, y) dx dy =
∫∫

T̂

f̂(s, t)v̂i(s, t)|JF | ds dt,

wheref is the source term of the Poisson problem,vi, i = 0, 1, . . . , 5, are the local
basis functions on the triangleT andf̂ andv̂i their counterparts defined on the refer-
ence triangleTref . A non-singular affine mappingF transforms the reference triangle
Tref into the actual triangleT , in such a way that the following relations hold

f = f̂ ◦ F−1

vi = v̂i ◦ F−1, i = 0, 1, . . . , 5

JF is the Jacobian matrix of the mappingF and|JF | its determinant, which is constant
because of the linearity of the transformation.

• double eval_int_grad(unsigned const i,
unsigned const j,
double const JJT[2][2],
double const & detJ) ;

16 FE and FV Programming

computes an approximate value of

∫∫

T

∇vi(x, y) · ∇vj(x, y) dx dy =
∫∫

Tref

∇v̂i(s, t) J−1
F J−T

F ∇v̂j(s, t) |JF | ds dt

• void eval_JJT(double JJT[2][2], double & detJ)

computes

J−1
F J−T

F and |JF |

which are needed in the previous formulae.

Define the class Mesh

39 class Mesh : public p2_mesh<Common> {} ;

Analysis The classMesh inherits the mesh representation from theP2MESHbase class
p2 mesh, which has been parameterized by the project classCommon. No further
specification is required in the current application, and the class functionalities are the
ones inherited fromp2 mesh.

Define the solver class Elliptic Solver

40 class Elliptic_Solver : public Common {

41 private:
42 Mesh mesh ;
43 double **mat ;
44 double *sol, *rhs ;

45 public:
46 Elliptic_Solver(void) {} ;
47 ˜Elliptic_Solver(void) {} ;

A P2 conforming solution 17

48 void Solve(pFun, pFun, unsigned const, unsigned const) ;
49 void Save_Mtv(void) ;
50 } ;

Analysis The main solver class of the application is calledElliptic_Solver . TheP2MESH
library does not support any specific discretization method; thus, the final user must
explicitly supply its implementation. The class definition is given in lines40–50 . The
solver class contains a private instance ofMesh, see line42 , and the working arrays
required to store the stiffness matrix,mat , the right-hand-side vector,rhs , and the
solution vectorsol , see lines43–44 . The stiffness matrix is implemented in a rather
usual style inC andC++, that is, by an array of pointers to the array of double storing
the matrix rows. The statements in lines48–49 declare the prototype of the public
methodsSolve andSave_Mtv . The former one implements the FE method while
the latter one dumps out the approximated solution in a rather common graphic format
(MTV). Solve takes four arguments in input: two function pointers to the functionsf
andg, whose type is globally declared in line7, and two integersnx andny , which are
used to specify the partitioning in the directionsx andy of the domainΩ. The method
actually builds the mesh data set, performs some local computations and assembles the
global right-hand-side vector and stiffness matrix. Then, it computes the approximate
solution, which is finally stored insol , by solving the resulting linear system by a
standard (and rather inefficient) factorization technique.

The methodSave_Mtv saves the solution for graphical post-processing by using the
“MTV” data format in a file which can be immediately visualized by the program
plotmtv 1.

The methods of the class Common

51 void
52 Common::shape(unsigned const nb,
53 double const & s, double const & t,
54 double & res) {
55 switch (nb) {
56 case 0: res = (1-2*(s+t))*(1-(s+t)) ; break ;
57 case 1: res = 4*s*(1-(s+t)) ; break ;

1Theplotmtv program

18 FE and FV Programming

58 case 2: res = s*(2*s-1) ; break ;
59 case 3: res = 4*s*t ; break ;
60 case 4: res = (2*t-1)*t ; break ;
61 case 5: res = 4*(1-(s+t))*t ; break ;
62 }
63 }

Analysis The source fragment defines the local basis functions for the conformingP2 polynomi-
als in the reference triangleTref . Tref is the simplex{(s, t) | s, t ≥ 0; s+ t ≤ 1}. The
value of thenb-th local basis function at the position(s, t) is returned by the method
shape in the arrayres . The degrees of freedom within the reference triangleTref

are enumerated as shown in figure 1.

64 // values of gradients of bases function
65 void
66 Common::shape_grad(unsigned const nb,
67 double const & s,
68 double const & t,
69 double g[2]) {
70 switch (nb) {
71 case 0: g[0] = 4*(s+t)-3 ; g[1] = 4*(s+t)-3 ; break ;
72 case 1: g[0] = 4 - 8*s - 4*t ; g[1] = -4*s ; break ;
73 case 2: g[0] = 4*s-1 ; g[1] = 0 ; break ;
74 case 3: g[0] = 4*t ; g[1] = 4*s ; break ;
75 case 4: g[0] = 0 ; g[1] = 4*t-1 ; break ;
76 case 5: g[0] = -4*t ; g[1] = 4 - 4*s - 8*t ; break ;
77 }
78 }

Analysis The source fragment defines the functionshape_grad , which returns in the array
g[2] the two components of the gradient of thenb-th local basis function at the point
(s, t) in the reference triangle.

The methods of the class Vertex and Edge

79 inline
80 unsigned

A P2 conforming solution 19

0 1 2

3

4

5

Figure 1:

81 Vertex::EqNumber(Mesh const & m) const
82 { return m . local_number(*this); }

83 inline
84 bool
85 Vertex::IsOnBoundary(Mesh const & m) const
86 { return m . local_number(*this) < m . n_bvertex() ; }

87 inline
88 unsigned
89 Edge::EqNumber(Mesh const & m) const
90 { return m . n_vertex() + m . local_number(*this) ; }

91 inline
92 bool
93 Edge::IsOnBoundary(Mesh const & m) const
94 { return m . local_number(*this) < m . n_bedge() ; }

Analysis The source fragment defines the implementation of the methodsEqNumber and
IsOnBoundary for Vertex andEdge type objects. Both methods make usage
of the internal numbering of vertices and edges, which is returned by the function
local_number . WhenEqNumber is invoked by aVertex object, it returns the
rank in the mesh of the current vertex instance; instead, whenEqNumber is invoked

20 FE and FV Programming

by anEdge object, it returns the rank of the current edge instance, augmented by the
total number ofVertex instances in the mesh. The degrees of freedom associated
to the edges of the mesh are in this way enumerated after the ones associated to the
vertices. Finally, since all the boundary objects are ordered before the internal ones
in the underlying mesh representation, a simple test on the rank distinguishes internal
vertices and edges from the boundary ones.

The methods of the class Triangle

95 void
96 Triangle::eval_JJT(double JJT[2][2], double & detJ) const {
97 double iJ[2][2] ;
98 inverse_jacobian(0.0, 0.0, iJ) ;
99 JJT[0][0] = iJ[0][0]*iJ[0][0] + iJ[0][1]*iJ[0][1] ;

100 JJT[0][1] =
101 JJT[1][0] = iJ[0][0]*iJ[1][0] + iJ[0][1]*iJ[1][1] ;
102 JJT[1][1] = iJ[1][0]*iJ[1][0] + iJ[1][1]*iJ[1][1] ;

103 detJ = 1/(iJ[0][0] * iJ[1][1] - iJ[1][0] * iJ[0][1]) ;
104 }

Analysis The method in lines95–104 computes the entries of the matrixJ−1
F J−T

F and the de-
terminant|JF | of the affine mappingF . In the current implementation, theP2MESH
library methodinverse_jacobian is first invoked, which returns the Jacobian
matrix J−1

F . ThenJ−1
F J−T

F and|JF | are directly evaluated. The first two arguments
in inverse_jacobian would specify the local position(s, t) on the reference tri-
angle whereJ−1

F must be calculated. However, the Jacobian matrix of a linear trans-
formation defined on the reference triangle is constant. Thus, these arguments are not
really used, and are conventionally set to zero.

105 double
106 Triangle::eval_int_f(unsigned const i,
107 pFun func,
108 double const & detJ) const {

109 static double s[] = { 0.5, 0.5, 0.0 } ;
110 static double t[] = { 0.0, 0.5, 0.5 } ;

A P2 conforming solution 21

111 double b ;
112 double res = 0 ;
113 for (unsigned k = 0 ; k < 3 ; ++k) {
114 shape(i, s[k], t[k], b) ;
115 res += func(xm(k), ym(k)) * b ;
116 }
117 return detJ * res / 6 ;
118 }

Analysis This source fragment approximates the integral

|JF |
∫∫

Tref

f̂(s, t)v̂i(s, t) ds dt

by the edge midpoint quadrature rule:

|JF |
6

[
f̂(0.5, 0) v̂i(0.5, 0) + f̂(0.5, 0.5) v̂i(0.5, 0.5) + f̂(0, 0.5) v̂i(0, 0.5)

]

119 double
120 Triangle::eval_int_grad(unsigned const i,
121 unsigned const j,
122 double const JJT[2][2],
123 double const & detJ) const {

124 static double s[] = { 0.5, 0.5, 0.0 } ;
125 static double t[] = { 0.0, 0.5, 0.5 } ;

126 double gi[2], gj[2] ;

127 double res = 0 ;
128 for (unsigned k = 0 ; k < 3 ; ++k) {
129 shape_grad(i, s[k], t[k], gi) ;
130 shape_grad(j, s[k], t[k], gj) ;
131 res += JJT[0][0] * gi[0] * gj[0] +
132 JJT[0][1] * gi[0] * gj[1] +
133 JJT[1][0] * gi[1] * gj[0] +
134 JJT[1][1] * gi[1] * gj[1] ;
135 }
136 return detJ * res / 6 ;
137 }

22 FE and FV Programming

Analysis This source fragment approximates the integral

|JF |
∫∫

Tref

∇v̂i(s, t)T (J−1
F J−T

F)∇v̂j(s, t) ds dt

by the edge midpoint quadrature formula:

|JF |
6

[
∇v̂i(0.5, 0)T (J−1

F J−T
F)∇v̂j(0.5, 0) +∇v̂i(0.5, 0.5)T (J−1

F J−T
F)∇v̂j(0.5, 0.5) +

∇v̂i(0, 0.5)T (J−1
F J−T

F)∇v̂j(0, 0.5)
]

138 unsigned
139 Triangle::EqNumber(Mesh const & m, Unsigned const loc) const {
140 if (loc % 2 == 1) return edge(loc/2) . EqNumber(m) ;
141 else return vertex(loc/2) . EqNumber(m) ;
142 }

143 bool
144 Triangle::IsOnBoundary(Mesh const & m, const Unsigned loc) const {
145 if (loc % 2 == 1) return edge(loc/2) . IsOnBoundary(m) ;
146 else return vertex(loc/2) . IsOnBoundary(m) ;
147 }

Analysis The methodsEqNumber in lines138–142 andIsOnBoundary in lines143–147
takes in input the reference to the current instance of the mesh and the local (within the
triangle) number of a degree of freedom. The first method returns the global number
within the program application of the degree of freedom. The local numbering of the
degrees of freedom is counterclockwise ordered, running through0 to 5 and starting
from a vertex, see Figure 1. In this case, the degrees of freedom associated to triangle
vertices are given even local numbers, the ones associated to the triangle edges are
given odd local numbers. The second method, instead, returns the booleantrue
whenever the input local number specifies a degree of freedom associated to a vertex
or an edge on the boundary of the computational domain.

A P2 conforming solution 23

The solver code

148 void
149 Elliptic_Solver::Solve(pFun f, pFun g,
150 unsigned const nx, unsigned const ny) {
151 unsigned i, j, k ;

152 // build the mesh
153 mesh . std_tensor_mesh(nx, ny, NULL, NULL, NULL) ;

154 // allocate memory
155 unsigned neq = mesh . n_vertex() + mesh . n_edge() ;
156 unsigned nnum = 2*neq + neq * neq ;
157 sol = new double [nnum] ;
158 mat = new double * [neq] ;
159 if (sol == NULL || mat == NULL)
160 { cerr << "not enought memory" << endl ; exit(0) ; }
161 rhs = sol + neq ;
162 mat[0] = rhs + neq ;
163 for (i = 1 ; i < neq ; ++i) mat[i] = mat[i-1] + neq ;

164 // clean up memory
165 for (i = 0 ; i < nnum ; ++i) sol[i] = 0 ;

166 // build the linear system
167 Iterator<Triangle> triangle(mesh) ;
168 foreach(triangle) {
169 double detJ, JJT[2][2] ;
170 triangle -> eval_JJT(JJT, detJ) ;

171 for (i = 0 ; i < degree_of_freedom ; ++i) {
172 if (triangle -> IsOnBoundary(mesh,i)) continue ;
173 unsigned ig = triangle -> EqNumber(mesh,i) ;
174 rhs[ig] += triangle -> eval_int_f(i,f,detJ) ;
175 for (j = 0 ; j < degree_of_freedom ; ++j) {
176 unsigned jg = triangle -> EqNumber(mesh,j) ;
177 mat[ig][jg] += triangle -> eval_int_grad(i, j, JJT, detJ) ;
178 }
179 }
180 }

181 // setup boundary conditions
182 Iterator<Vertex> vertex(mesh,1) ;
183 foreach(vertex) {
184 unsigned ig = vertex -> EqNumber(mesh) ;

24 FE and FV Programming

185 mat[ig][ig] = 1 ;
186 rhs[ig] = g(vertex -> x(), vertex -> y()) ;
187 }

188 Iterator<Edge> edge(mesh,1) ;
189 foreach(edge) {
190 unsigned ig = edge -> EqNumber(mesh) ;
191 mat[ig][ig] = 1 ;
192 rhs[ig] = g(edge -> xm(), edge -> ym()) ;
193 }

194 // copy rhs to the solution vector
195 for (i = 0 ; i < neq ; ++i) sol[i] = rhs[i] ;

196 // solve the linear system by modified Gaussian Elimination
197 // without pivoting.
198 cout << "Solving a " << neq << "x" << neq << " linear system"
199 << endl ;
200 for (i = 0 ; i < neq ; ++i) {
201 for (k = 0 ; k < neq ; ++k) {
202 if (k != i) {
203 double bf = mat[k][i]/mat[i][i] ;
204 sol[k] -= bf * sol[i] ;
205 for (j = i+1 ; j < neq ; ++j)
206 mat[k][j] -= bf * mat[i][j] ;
207 }
208 }
209 }
210 for (i = 0 ; i < neq ; ++i) sol[i] /= mat[i][i] ;
211 }

Analysis The source fragment in lines148–211 implements the methodSolve , which is ac-
tually the computational core of the application program. This part of the program is
very close to a “procedural” routine, because of the sequential nature of the computa-
tions to be performed.

The resolution process can be schematically depicted in several steps as follows.

Mesh
construction

In line 153 , theP2MESHsoftware system methodstd_tensor_mesh is invoked
in order to build an unstructured mesh by a regular triangulation of the domainΩ =
(0, 1)× (0, 1). The mesh is composed by2 ·nx ·ny triangles. The threeNULLentries
in the statement indicates that no particular treatment is required for boundaries. In

A P2 conforming solution 25

a different application, suitable boundary conditions requiring some special treatment
could be required. The simplest way to manage the situation is by the assignment
of markers, whose conventional meaning is decided by the user. These entries may
be given pointers to three user-defined functions, respectively for vertices, edges, and
triangles, which take care of correctly specifying the boundary treatments.

Memory
allocation

and
initialization

The source fragment in lines154–163 allocates and initializes the arrays used in the
construction and resolution of the linear system. In line155–156 the total memory
occupation in terms of double floating point numbers is determined, and then allocated
in line 157 . In line 158 the memory required by the matrix row pointers is allocated.
In line 161–162 the pointers to the arraysrhs andmat are initialized. In line163
the pointers to the matrix rows are initialized, and finally in line165 all the initial
matrix and vectors values are set up to0.

Stiffness
matrix and
right-hand-
side vector
assembling

This part of the program basically implements the standard way the stiffness matrix
and the r.h.s. vector are built. That is, a loop is performed on all the triangles of
the mesh, and the local contribution to the stiffness matrix and the r.h.s. vector are
first evaluated and then assembled into the global arrays. Boundary conditions are
taken into account by a direct modification of the final global arrays. In line167 the
source code instantiates an iterator, calledtriangle , to be used for looping on all
the triangles within the mesh. In line168 the macroforeach implements a loop on
the mesh triangles by using the iterator just introduced. Within the loop, the current
triangle is given by the reference returned by the iteratortriangle . In line 170 the
methodtriangle->eval_JJT returns the values of

J−1
F J−T

F and |JF |

which are stored in the matrixJJF and in the scalardetJ .

Thefor statement in lines171 and175 loops on the local degrees of freedom of the
current triangle. The integersig andjg store the global number corresponding to the
local degree of freedom respectively indicated byi and j . If a degree of freedom is
associated to a boundary vertex or edge, the loop is skipped because the corresponding
boundary condition will be set in a subsequent part of the program.

26 FE and FV Programming

In line 174 the local contribution to the r.h.s. vector from the integral

|JF |
∫∫

Tref

f̂(s, t)v̂i(s, t) ds dt

is estimated and added to the arrayrhs .

In line 177 the components of the local stiffness matrix given by the integral

|JF |
∫∫

Tref

∇v̂i(s, t)T (J−1
F J−T

F)∇v̂j(s, t) ds dt

are evaluated and added to the global stiffness matrixmat .

Boundary
condition set

up

The source fragment in lines182–193 modifies the stiffness matrix and the r.h.s vec-
tor in order to take into account the boundary conditions on boundary vertices and
edges.

The iteratorvertex is first instantiated in line182 and initialized to perform loops
on boundary vertices. Within this loop, implemented in line183 by using the macro
foreach , the integer identifierig is set to the degrees of freedom associated to the
current boundary vertex. In lines185–186 the stiffness matrix and the r.h.s. vector are
modified in correspondence of theig –th row in accord with the boundary conditions
given by the functiong.

The boundary condition for the degree of freedom associated to a boundary edge is
set up in a similar way. The iteratoredge is instantiated and initialized to loop on
the boundary edges in line188 , and then utilized within the macroforeach in 189
to implement the loop. In lines190–192 the identifierig is set to the degree of
freedom associated to the current boundary edge, and theig –th row of the stiffness
matrix and the r.h.s vector are modified in accord with the boundary conditions given
by the functiong.

Linear
system

resolution

A modified Gaussian elimination algorithm [2] is implemented in lines200–210 for
the resolution of the linear system. The final solution is stored in the arraysol .

A P2 conforming solution 27

Saving the computed solution

212 void
213 Elliptic_Solver::Save_Mtv(void) {
214 cout << "saving data file..." ;
215 cout . flush() ;
216 ofstream file("p2.mtv") ;
217 file << "$ DATA=CONTCURVE\n%contstyle=2 meshplot=true" << endl ;
218 Iterator<Triangle> ip(mesh) ;
219 foreach (ip) {
220 for (unsigned nv = 0 ; nv < 3 ; ++nv) {
221 Vertex & V = ip -> vertex(nv) ;
222 unsigned i = mesh . local_number(V) ;
223 file << V . x() << " " << V . y() << " " << sol[i] << endl ;
224 }
225 file << endl ;
226 }
227 file << "$ END" << endl ;
228 file . close() ;
229 cout << "saved" << endl ;
230 }

Analysis The final solution stored in the arraysol is saved on disk in “MTV” format.

The driving program

231 static
232 double
233 f(double const &, double const &)
234 { return -4 ; }

235 static
236 double
237 g(double const & x, double const & y)
238 { return x*x+y*y ; }

239 int
240 main() {
241 Elliptic_Solver es ;
242 es . Solve(f, g, 8, 8) ;

28 FE and FV Programming

243 es . Save_Mtv() ;
244 }

Analysis The driving program defines as static functions the right-hand-side termf , see lines
231–234 , and the boundary condition termg, see lines235–238 . Then, it invokes
the methodsSolve andSave_Mtv .

In Figure 2, the final solution computed by the program is shown.

0 1
0

1

P2

X−Axis

Y
−

A
xi

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2: Linear triangle-based FE solution of the Poisson problem.

5 A Q2 conforming solution

This section describes the program contained in the fileq2 solver.cc in the direc-
tory examples of theP2MESHdistribution package.

A Q2 conforming solution 29

Include the
library

1 # include "p2mesh.hh"

Analysis The source fragment in line1 includes the header file ofP2MESH.

Declare
user-defined
class names 2 class Vertex ;

3 class Edge ;
4 class Quad ;
5 class Mesh ;
6 class Elliptic_Solver ;

7 typedef double (*pFun)(double const &, double const &) ;

Analysis See the comment given for the earlier example with conformingP2 polynomials. No-
tice also that in line4 the class nameQuad takes the place ofTriangle .

Define the
class

Common 8 class Common : public p2_common<Vertex,Edge,Quad,Mesh,4> {
9 static double p0(double const &) ;

10 static double p1(double const &) ;
11 static double p2(double const &) ;

12 static double dp0(double const &) ;
13 static double dp1(double const &) ;
14 static double dp2(double const &) ;
15 protected:
16 static unsigned const degree_of_freedom = 9 ;

17 static void shape(unsigned const,
18 double const &,
19 double const &,
20 double &) ;

21 static void shape_grad(unsigned const,
22 double const &,
23 double const &,

30 FE and FV Programming

24 double [2]) ;
25 } ;

Analysis The classCommonis defined by inheritance from the library classp2 common,
which, on its turn, is parameterized in line8 by using the class names declared in
lines 2–5. The general considerations given for the example using theP2 polyno-
mials hold here. However, notice that the value4 is explicitly assigned to the5-th
argument in the template argument list of the classp2 common in order to build a
quadrilateral-based mesh. Since the default value of this entry, which is3, specifies
a triangle-based mesh, it was not explicitly indicated in the analogous definition of
the project classCommonfor the conformingP2 polynomials. The classCommon
contains in this case the prototype of the static functionsshape andshape_grad
for the basisQ2 polynomial functions and their gradients, and of six other “auxiliary”
functionsp0 , p1 , p2 , dp0 , dp1 , dp2 which are useful in computing the values of
the basis functionsshape andshape_grad . It also contains the static integer con-
stantdegree_of_freedom , which stores the number of degrees of freedom per
quadrilateral element.

Define the
classes

Vertex, Edge
and Quad

26 class Vertex : public p2_vertex<Common> {
27 public:
28 unsigned EqNumber (Mesh const &) const ;
29 bool IsOnBoundary(Mesh const &) const ;
30 } ;

31 class Edge : public p2_edge<Common> {
32 public:
33 unsigned EqNumber (Mesh const &) const ;
34 bool IsOnBoundary(Mesh const &) const ;
35 } ;

36 class Quad : public p2_poly<Common> {
37 static double detJ[2][2] ;
38 static double JJT[2][2][2][2] ;
39 static double st[2] ;
40 public:
41 void eval_JJT(void) const ;
42 double eval_int_f(unsigned const, pFun) const ;
43 double eval_int_grad(unsigned const, unsigned const) const ;

A Q2 conforming solution 31

44 unsigned EqNumber (Mesh const &, Unsigned const) const ;
45 bool IsOnBoundary(Mesh const &, Unsigned const) const ;
46 } ;

Analysis The code fragment in lines26–46 defines the project classesVertex , Edge and
Quad of the application. The mechanism of inheritance from the corresponding
P2MESHbase classesp2 vertex , p2 edge andp2 poly provides the application
classes with a complete mesh representation. The base classes are moreover parame-
terized by the project classCommon, in such a way that they contain also the common
information of the project.

WhenQ2 base polynomials are used, theN unknowns (or degrees of freedom) of
the FE discretization may be logically assigned to mesh vertices, edge midpoints or
quadrilateral centroids. In this case, we have thatN = Nvertex + Nedge + Nquads.

The same considerations given for theP2 case about EqNumber and
IsOnBoundary also hold here.

In the project classQuad, the static arraysdetJ and JJT store the values of the
Jacobian at the four vertices and of the matrixJ−1

F J−T
F at the quadrature points, while

the static arrayst stores the local coordinates of the quadrature nodes in the reference
quadrilateral element. These arrays are implemented as static ones and consequently
are shared by all the instances of the classQuad. This programming choice limits the
memory occupation, but these arrays must be recomputed by the current quadrilateral
instance before usage.

In theQuad class the prototypes of the following methods are also declared:

• void eval_int_f(unsigned const i, pFun func)

evaluates by a suitable quadrature rule on the reference element the value of the integral

∫∫

Q

f(x, y) vi(x, y) dx dy =
∫∫

Qref

f̂(s, t) v̂i(s, t)|JF | ds dt

wheref is the source term of the Poisson problem,vi, i = 0, 1, . . . 8, are the local
basis functions on the quadrilateralQ and f̂ and v̂i their counterparts defined on the
reference quadrilateralQref . A non-singular affine mappingF transforms the refer-
ence quadrilateralQref into the actual quadrilateralQ, in such a way that the following

32 FE and FV Programming

relations hold

f = f̂ ◦ F−1,

vi = v̂i ◦ F−1, i = 0, 1, . . . 8.

JF is the Jacobian matrix of the mappingF and|JF | is its determinant. Contrary to
the triangular case,|JF | is NOT constant.

• double eval_int_grad(unsigned const i, unsigned const j)

evaluates an approximate value of the integral

∫∫

T

∇vi(x, y)T∇vj(x, y) dx dy =

∫∫

Qref

∇v̂i(s, t)T (J−1
F J−T

F)∇v̂j(s, t) |JF | ds dt

• void eval_JJT(void) ;

evaluates at the quadrature points the terms

J−1
F J−T

F and |JF |,

and stores them in the corresponding arrays.

Define the
class Mesh

47 class Mesh : public p2_mesh<Common> {} ;

Analysis As for theP2 example program, the project classMesh does not require any partic-
ular specification other than the public derivation from the template classp2 mesh
parametrized by the project classCommon. All the class functionalities are the ones
inherited fromp2 mesh.

A Q2 conforming solution 33

Define the
solver class

Ellip-
tic Solver

48 class Elliptic_Solver : public Common {
49 private:
50 Mesh mesh ;
51 double **mat ;
52 double *sol, *rhs ;

53 public:
54 Elliptic_Solver(void) {} ;
55 ˜Elliptic_Solver(void) {} ;

56 void Solve(pFun, pFun, unsigned const, unsigned const) ;
57 void Save_Mtv(void) ;
58 } ;

Analysis This class definition is identical to the one of the example withP2 basis polynomi-
als and the considerations given there apply equally well in this case. However, the
methods have a different implementation, because the numerical algorithm is different.
This issue is a practical example of how the encapsulation paradigm works.

The methods
of the class

Common 59 inline double Common::p0(double const & x) { return 0.5*(x-1)*x ; }
60 inline double Common::p1(double const & x) { return (1-x)*(1+x) ; }
61 inline double Common::p2(double const & x) { return 0.5*(x+1)*x ; }

62 inline double Common::dp0(double const & x) { return x-0.5 ; }
63 inline double Common::dp1(double const & x) { return -2*x ; }
64 inline double Common::dp2(double const & x) { return x+0.5 ; }

Analysis The source fragment defines some simple polynomials which are quite useful in the
definition of the conformingQ2 basis functions.

65 void
66 Common::shape(unsigned const nb,
67 double const & s, double const & t,
68 double & res) {
69 switch (nb) {
70 case 0: res = p0(s)*p0(t) ; break ;

34 FE and FV Programming

71 case 1: res = p1(s)*p0(t) ; break ;
72 case 2: res = p2(s)*p0(t) ; break ;
73 case 3: res = p2(s)*p1(t) ; break ;
74 case 4: res = p2(s)*p2(t) ; break ;
75 case 5: res = p1(s)*p2(t) ; break ;
76 case 6: res = p0(s)*p2(t) ; break ;
77 case 7: res = p0(s)*p1(t) ; break ;
78 case 8: res = p1(s)*p1(t) ; break ;
79 }
80 }

Analysis The source fragment defines the local basis functions for the conformingQ2 polyno-
mials in the reference quadrilateralQref ≡ {(s, t) | − 1 ≤ s, t ≤ 1}. The value of
thenb-th local basis function at the position given by the reference coordinates(s, t)
is returned inres by invoking the methodshape with suitablenb , s andt entries.
The degrees of freedom within the reference quadrilateral are enumerated as shown in
figure 3.

81 // values of gradients of bases function
82 void
83 Common::shape_grad(unsigned const nb,
84 double const & s,
85 double const & t,
86 double g[2]) {
87 switch (nb) {
88 case 0: g[0] = dp0(s)*p0(t) ; g[1] = p0(s)*dp0(t) ; break ;
89 case 1: g[0] = dp1(s)*p0(t) ; g[1] = p1(s)*dp0(t) ; break ;
90 case 2: g[0] = dp2(s)*p0(t) ; g[1] = p2(s)*dp0(t) ; break ;
91 case 3: g[0] = dp2(s)*p1(t) ; g[1] = p2(s)*dp1(t) ; break ;
92 case 4: g[0] = dp2(s)*p2(t) ; g[1] = p2(s)*dp2(t) ; break ;
93 case 5: g[0] = dp1(s)*p2(t) ; g[1] = p1(s)*dp2(t) ; break ;
94 case 6: g[0] = dp0(s)*p2(t) ; g[1] = p0(s)*dp2(t) ; break ;
95 case 7: g[0] = dp0(s)*p1(t) ; g[1] = p0(s)*dp1(t) ; break ;
96 case 8: g[0] = dp1(s)*p1(t) ; g[1] = p1(s)*dp1(t) ; break ;
97 }
98 }

Analysis The source fragment defines the functionshape_grad , which returns in the array
g[2] the two components of the gradient of thenb-th local basis function at the point
(s, t) in the reference quadrilateral.

A Q2 conforming solution 35

0 1 2

3

456

7 8

Figure 3:

The methods
of the class
Vertex and

Edge
99 inline

100 unsigned
101 Vertex::EqNumber(Mesh const & m) const
102 { return m . local_number(*this) ; }

103 inline
104 bool
105 Vertex::IsOnBoundary(Mesh const & m) const
106 { return m . local_number(*this) < m . n_bvertex() ; }

107 inline
108 unsigned
109 Edge::EqNumber(Mesh const & m) const
110 { return m . n_vertex() + m . local_number(*this) ; }

111 inline
112 bool
113 Edge::IsOnBoundary(Mesh const & m) const
114 { return m . local_number(*this) < m . n_bedge() ; }

Analysis See the comments given for the triangular case.

36 FE and FV Programming

The methods
of the class

Quad
115 void
116 Quad::eval_JJT() const {

117 for (unsigned i = 0 ; i < 2 ; ++i) {
118 for (unsigned j = 0 ; j < 2 ; ++j) {
119 double iJ[2][2] ;
120 inverse_jacobian(st[i],st[j], iJ) ;
121 JJT[i][j][0][0] = iJ[0][0]*iJ[0][0] + iJ[0][1]*iJ[0][1] ;
122 JJT[i][j][0][1] =
123 JJT[i][j][1][0] = iJ[0][0]*iJ[1][0] + iJ[0][1]*iJ[1][1] ;
124 JJT[i][j][1][1] = iJ[1][0]*iJ[1][0] + iJ[1][1]*iJ[1][1] ;

125 detJ[i][j] = 1/(iJ[0][0] * iJ[1][1] - iJ[1][0] * iJ[0][1]) ;
126 }
127 }
128 }

Analysis This source fragment is rather similar to the one of the triangular case. However, since
the Jacobian matrix and its inverse matrix are no more constant over the reference
element, the library methodinverse_jacobian is invoked with the first two ar-
guments equal tost[i],st[j] , which store the local coordinates of the quadrature
nodes.

129 double
130 Quad::eval_int_f(unsigned const i, pFun func) const {

131 double x, y, b, res = 0 ;
132 for (unsigned ii = 0 ; ii < 2 ; ++ii) {
133 for (unsigned jj = 0 ; jj < 2 ; ++jj) {
134 shape(i, st[ii], st[jj], b) ;
135 st_to_xy(st[ii], st[jj], x, y) ;
136 res += detJ[ii][jj] * func(x,y) * b ;
137 }
138 }
139 return res ;
140 }

A Q2 conforming solution 37

Analysis The source fragment approximates the integral
∫∫

Qref

|JF (s, t)|f̂(s, t)v̂i(s, t) ds dt

by the quadrature rule
∑

i,j=0,1

ωiωj |JF (ξi, ξj)|f̂(ξi, ξj)

where(ξi, ξj) andωi are the local coordinates of thei–th quadrature point and its
correspondent weight. It should be noticed that the termsωi in the quadrature for-
mula here implemented are all equal to one, and thus do not explicitly appear in the
implementation. Higher order formulae would have non-trivial weight values.

141 double
142 Quad::eval_int_grad(unsigned const i, unsigned const j) const {
143 double gi[2], gj[2], res = 0 ;
144 for (unsigned ii = 0 ; ii < 2 ; ++ii) {
145 for (unsigned jj = 0 ; jj < 2 ; ++jj) {
146 shape_grad(i, st[ii], st[jj], gi) ;
147 shape_grad(j, st[ii], st[jj], gj) ;
148 res += detJ[ii][jj] *
149 (JJT[ii][jj][0][0] * gi[0] * gj[0] +
150 JJT[ii][jj][0][1] * gi[0] * gj[1] +
151 JJT[ii][jj][1][0] * gi[1] * gj[0] +
152 JJT[ii][jj][1][1] * gi[1] * gj[1]) ;
153 }
154 }
155 return res ;
156 }

Analysis The source fragment approximates the integral
∫∫

Qref

|JF (s, t)|∇v̂i(s, t)T (J−1
F J−T

F)∇v̂j(s, t) ds dt

by the quadrature rule
∑

i,j=0,1

ωiωj |JF (ξi, ξj)|∇v̂i(ξi, ξj)T (J−1
F (ξi, ξj)J−T

F (ξi, ξj))∇v̂j(ξi, ξj)

38 FE and FV Programming

157 unsigned
158 Quad::EqNumber(Mesh const & m, Unsigned const loc) const {
159 if (loc == 8) {
160 return m . n_vertex() + m . n_edge() + m . local_number(*this) ;
161 } else {
162 if (loc % 2 == 1) return edge(loc/2) . EqNumber(m) ;
163 else return vertex(loc/2) . EqNumber(m) ;
164 }
165 }

166 bool
167 Quad::IsOnBoundary(Mesh const & m, const Unsigned loc) const {
168 if (loc == 8) {
169 return false ;
170 } else {
171 if (loc % 2 == 1) return edge(loc/2) . IsOnBoundary(m) ;
172 else return vertex(loc/2) . IsOnBoundary(m) ;
173 }
174 }

Analysis The source fragment implements the public methodsQuad::EqNumber and
Quad::IsOnBoundary , see also the comments given for the same methods in the
classQuad for theQ2 case. The degrees of freedom are locally enumerated in a coun-
terclockwise order, starting from0 (a vertex), see Figure 3. The last degree of freedom,
identified by8, is logically associated to the centroid of the quadrilateral element.

The solver
code

175 void
176 Elliptic_Solver::Solve(pFun f, pFun g,
177 unsigned const nx, unsigned const ny) {
178 unsigned i, j, k ;

179 // build the mesh
180 mesh . std_tensor_mesh(nx, ny, NULL, NULL, NULL) ;

181 // allocate memory
182 unsigned neq = mesh.n_vertex() + mesh.n_edge() + mesh.n_poly() ;
183 unsigned nnum = 2*neq + neq * neq ;
184 sol = new double [nnum] ;
185 mat = new double * [neq] ;

A Q2 conforming solution 39

186 if (sol == NULL || mat == NULL) {
187 cerr << "not enought memory" << endl ;
188 exit(0) ;
189 }
190 rhs = sol + neq ;
191 mat[0] = rhs + neq ;
192 for (i = 1 ; i < neq ; ++i) mat[i] = mat[i-1] + neq ;

193 // clean up memory
194 for (i = 0 ; i < nnum ; ++i) sol[i] = 0 ;

195 // build the linear system
196 Iterator<Quad> quad(mesh) ;
197 foreach(quad) {
198 quad -> eval_JJT() ;

199 for (i = 0 ; i < degree_of_freedom ; ++i) {
200 if (quad -> IsOnBoundary(mesh,i)) continue ;
201 unsigned ig = quad -> EqNumber(mesh,i) ;
202 rhs[ig] += quad -> eval_int_f(i,f) ;

203 for (j = 0 ; j < degree_of_freedom ; ++j) {
204 unsigned jg = quad -> EqNumber(mesh,j) ;
205 mat[ig][jg] += quad -> eval_int_grad(i, j) ;
206 }
207 }
208 }

209 // setup boundary conditions
210 Iterator<Vertex> vertex(mesh,1) ;
211 foreach(vertex) {
212 unsigned ig = vertex -> EqNumber(mesh) ;
213 mat[ig][ig] = 1 ;
214 rhs[ig] = g(vertex -> x(), vertex -> y()) ;
215 }

216 Iterator<Edge> edge(mesh,1) ;
217 foreach(edge) {
218 unsigned ig = edge -> EqNumber(mesh) ;
219 mat[ig][ig] = 1 ;
220 rhs[ig] = g(edge -> xm(), edge -> ym()) ;
221 }

222 // copy rhs to the solution vector
223 for (i = 0 ; i < neq ; ++i) sol[i] = rhs[i] ;

40 FE and FV Programming

224 // solve the linear system by modified Gaussian Elimination
225 // without pivoting.
226 cout << "Solving a " << neq << "x" << neq << " linear system"
227 << endl ;
228 for (i = 0 ; i < neq ; ++i) {
229 for (k = 0 ; k < neq ; ++k) {
230 if (k != i) {
231 double bf = mat[k][i]/mat[i][i] ;
232 sol[k] -= bf * sol[i] ;
233 for (j = i+1 ; j < neq ; ++j)
234 mat[k][j] -= bf * mat[i][j] ;
235 }
236 }
237 }
238 for (i = 0 ; i < neq ; ++i) sol[i] /= mat[i][i] ;
239 }

Analysis The source fragment implements the methodSolve . This method is very similar to
the one implemented for the triangular case. However, for the sake of clarity, line-by-
line comments are repeated. The resolution process can be schematically depicted as
follows.

Mesh
construction

A regular unstructured triangulation ofnx · ny quadrilaterals over the computa-
tional domainΩ = (0, 1) × (0, 1) is built by invoking theP2MESHlibrary method
std_tensor_mesh . About theNULLentries and how the boundary markers work,
see the comments for theP2 case.

Memory
allocation

and
initialization

The source fragment in lines175–239 allocates and initializes the arrays used in the
construction and resolution of the linear system. In line182–183 the total memory
occupation in terms of double floating point numbers is determined, and then allocated
in line 184 . In line 185 the memory required by the matrix row pointers is allocated.
In line 190–192 the pointers to the arraysrhs andmat are initialized and the array
values are set up to0 in line 194 .

A Q2 conforming solution 41

Stiffness
matrix and
right-hand-
side vector
assembling

This part of the program basically implements in a standard way the construction of the
stiffness matrix and the r.h.s. vector. That is, a loop is performed on all the elements of
the mesh, and the local contribution to the stiffness matrix and the r.h.s. vector are first
evaluated and then assembled into the global arrays. Boundary conditions are taken
into account by a direct modification of the final global arrays.

In line 196 the source code instantiates an iterator, calledquad , to be used for looping
on all the quadrilaterals within the mesh. In lines197–208 the macroforeach
implements a loop on the mesh cells by using the iterator just introduced. Within the
loop, the current quadrilateral is given by the reference returned by the iteratorquad .
In line 198 the methodquad->eval_JJT returns the values of

J−1
F J−T

F and |JF |
which are stored in the matrixJJF and in the scalardetJ .

Thefor statement in lines199 and203 loops on the local degrees of freedom of the
current quadrilateral. The integersig andjg store the global number corresponding to
the local degree of freedom respectively indicated byi andj . If a degree of freedom is
associated to a boundary vertex or edge, the loop is skipped because the corresponding
boundary condition is set up in a subsequent part of the program.

In line 202 the local contribution to the r.h.s. vector from the integral
∫∫

Qref

|JF |f̂(s, t)v̂i(s, t) ds dt

is estimated and added to the arrayrhs .

In line 205 the components of the local stiffness matrix given by the integral
∫∫

Qref

|JF |∇v̂i(s, t)T (J−1
F J−T

F)∇v̂j(s, t) ds dt

are evaluated and added to the global stiffness matrixmat .

This part is the hard core of the solver.
Line 216 declares and initializes the iteratorquad to loop over all the mesh quadri-
laterals and line217 uses it within the macroforeach . The methodeval_JJT in
line 198 is used to evaluate

J−1
F J−T

F and |JF |

42 FE and FV Programming

on the current quadrilateral at the quadrature points. The values are stored in the static
part of theQuad class. The source fragment in lines210–221 modifies the stiffness
matrix and the r.h.s vector in order to take into account the boundary conditions on
boundary vertices and edges.

The iteratorvertex is first instantiated in line210 and initialized to loop on the
boundary vertices. Within this loop, implemented in lines211–215 by using the
macroforeach , the integer identifierig is set to the degree of freedom associated
to the current boundary vertex. In lines213–214 the stiffness matrix and the r.h.s.
vector are modified in correspondence of theig –th row in line212 in agree with the
boundary conditions given by the functiong.

The boundary conditions for the degree of freedom associated to boundary edges are
set up in a similar way. The iteratoredge is instantiated and initialized to loop on
the boundary edges in line216 , and then utilized within the macroforeach in lines
217–221 to implement the loop. In lines218–220 the identifierig is set to the
degree of freedom associated to the current boundary edge, and theig –th row of the
stiffness matrix and the r.h.s vector are modified in accord with the boundary condi-
tions given by the functiong.

Linear
system

resolution

A modified Gaussian elimination algorithm is implemented in lines223–238 for the
resolution of the linear system. The final solution is stored in the arraysol .

Saving the
computed

solution 240 void
241 Elliptic_Solver::Save_Mtv(void) {
242 cout << "saving data file..." ;
243 cout . flush() ;
244 ofstream file("q2.mtv") ;
245 file << "$ DATA=CONTCURVE" << endl
246 << "%contstyle=2 meshplot=true topLabel=Q2" << endl ;
247 Iterator<Quad> ip(mesh) ;
248 foreach (ip) {
249 for (unsigned nv = 0 ; nv < 4 ; ++nv) {
250 Vertex & V = ip -> vertex(nv) ;
251 unsigned i = mesh . local_number(V) ;
252 file << V . x() << " " << V . y() << " " << sol[i] << endl ;
253 }
254 file << endl ;
255 }

A Q2 conforming solution 43

256 file << "$ END" << endl ;
257 file . close() ;
258 cout << "saved" << endl ;
259 }

Analysis The final solution stored in the arraysol is saved on disk in “MTV” format.

The main
program

260 double Quad::detJ[2][2] ;
261 double Quad::JJT[2][2][2][2] ;
262 double Quad::st[2] = { -0.577350269189626, +0.577350269189626 } ;

Analysis The source fragment allocates the static part of theQuad class and initialize the vector
st with the nodal values of the quadrature rule.

263 static
264 double
265 f(double const &, double const &)
266 { return -4 ; }

267 static
268 double
269 g(double const & x, double const & y)
270 { return x*x+y*y ; }

271 int
272 main() {
273 Elliptic_Solver es ;
274 es . Solve(f, g, 8, 8) ;
275 es . Save_Mtv() ;
276 }

Analysis The driving program defines as static functions the right-hand-side termf , see lines
263–266 , and the boundary condition termg, see lines267–270 . Then, it invokes
the methodsSolve andSave_Mtv .

In Figure 4, the final solution computed by the application program is shown.

44 FE and FV Programming

0 1
0

1

Q2

X−Axis

Y
−

A
xi

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4: Linear Quadrilateral-based FE Solution of the Poisson problem

6 A FV solver for the compressible Euler
equation

In this section two different implementations of a FV solver are presented. The first
one implements a cell center method, while the second one a vertex center method.
For the sake of simplicity, both schemes are considered only in their simplest version,
which is1-st order accurate in space. A two stages2-nd order accurate Runge-Kutta
time-marching scheme advances the solution in time.

The system of compressible Euler equation in 2-D are

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)
∂x

= 0

A cell centered finite volume solution 45

with the conventional notations

U =

ρ

ρu

ρv

ρE

 , F(U) =

ρ u

ρ u2 + p

ρ u v

ρ u H

 , G(U) =

ρ v

ρ u v

ρ v2 + p

ρ v H

 .

andp = (γ − 1)ρ(E − (u2 + v2)/2) andH = E + p/ρ.

A detailed description of solution algorithms for cell center schemes can be found
in [4] and for cell vertex schemes in [5] the numerical flux is estimated by using the
exact Riemann solver [8].

7 A cell centered finite volume solution

This section describes the program contained in the filecc solver.cc in the direc-
tory examples of theP2MESHdistribution package.

Include the
library

1 # include "p2mesh.hh"
2 # include <math.h>

Analysis The statement in line1 includes the header filep2mesh.hh . The pre-processor state-
ment in line2 includes the header filemath.h for the standard mathematical function
prototypes and definitions.

Declare the
project class

names 3 typedef double Real ;

4 class Vertex ;
5 class Edge ;
6 class Triangle ;
7 class Mesh ;

46 FE and FV Programming

8 class Common ;
9 class Solver ;

Analysis See the comments given for the FE examples. Notice also that thetypedef statement
in line 3 introduces the alias nameReal for the floating point built-in typedouble .

Define the
class

Common 10 class Common : public p2_common<Vertex,Edge,Triangle,Mesh,
11 3,false,Real> {
12 protected:

13 typedef bool (*PCHECK) (Real const [4]) ;

14 typedef void (*PFLUX) (Real [4],
15 Real [4],
16 Real const [4]) ;

17 typedef void (*PNUMFLUX) (Real [4],
18 Real const [4],
19 Real const [4],
20 Real const &,
21 Real const &) ;

22 typedef void (*PCFL) (Real &,
23 Real const &,
24 Real const &,
25 Real const [4]) ;

26 typedef enum {
27 BC_INTERNAL=0,
28 BC_SUPERSONIC_INLET,
29 BC_SOLID,
30 BC_FREE
31 } BC ;

32 } ;

Analysis The piece of source in lines13–25 contains thetypedef s of four function pointer
types. They are

A cell centered finite volume solution 47

• PCHECK: function pointer type to functions that perform tests about the numerical and
physical consistency of the approximated solution (for example, negative pressures) ;

• PFLUX: function pointer type to functions that compute the physical flux in the carte-
sian directions ;

• PNUMFLUX: function pointer type to functions that compute the numerical flux in the
edge normal direction;

• PCFL : function pointer type to functions that compute the CFL number.

The statements in lines26–31 define theenum typeBC, which is inherited by all the
application classes. The BC values are used throughout the application program to
discriminate the boundary conditions. Their names are self explanatory.

Define the
class Vertex

33 class Vertex : public p2_vertex<Common> {} ;

Define the
class Edge

34 class Edge : public p2_edge<Common> {
35 friend class Triangle ;
36 friend class Solver ;
37 private:
38 BC ibc ;
39 Real num_flux[4] ;
40 public:
41 void InternalNumFlux(PNUMFLUX) ;
42 void BoundaryNumFlux(PNUMFLUX, Real const [4]) ;
43 } ;

Analysis The private attributes of the classEdge listed in lines38–39 are the variableibc
of typeBCand a four-element array of typeReal , namednum_flux . The variable
ibc distinguishes whether the edge is an internal or a boundary item, and in the latter
case specifies its boundary condition.

48 FE and FV Programming

The arraynum_flux is assigned the numerical flux along the edge normal direction.
Recall that edges have a conventional orientation in the underlying mesh representation
provided byP2MESHlibrary. The orthogonal direction along which the numerical flux
is evaluated is oriented “from left to right” with respect to the orientation of the current
edge instance.

The public methodsInternalNumFlux and BoundaryNumFlux respectively
evaluate the numerical flux on internal and on boundary edges.

Define the
class Triangle

44 class Triangle : public p2_poly<Common> {
45 friend class Edge ;
46 friend class Solver ;
47 private:
48 Real hxy, _area, sol[4], sol0[4] ;
49 public:
50 void Init(Real const [4]) ;
51 Real const & area(void) const { return _area ; }
52 void RK_Setsol(void) ;
53 void RK_Update(Real const &, Unsigned const) ;
54 } ;

Analysis The private attributes of the classTriangle declared in line39 are

• hxy : it is the characteristic size of the triangular cell used in the estimation of the
CFL number;

• _area : it stores the area of the cell in order to reduce the CPU costs, because the
facility provided byP2MESHcomputes the area of the cell each time it is invoked;

• sol[4] : it stores the approximate solution at intermediate and final time steps of the
Runge-Kutta time marching scheme;

• sol0[4] : it stores the initial solution of any Runge-Kutta time step.

The public methods declared in lines50–53 are

A cell centered finite volume solution 49

• Init : it initializes the class and in particular, the value of the area of the current
triangle;

• area : it returns the value of the private attribute_area ; this method overrides the
homonymous one inherited fromP2MESH;

• RK_Setsol : it initializes a Runge-Kutta time step;

• RK_Update : it performs the solution update in an intermediate Runge-Kutta time
step.

Define the
class Mesh

55 class Mesh : public p2_mesh<Common> {} ;

Define the
class Solver

56 class Solver : public Common {
57 private:
58 static void mark_edge(Edge & E, Unsigned const & marker) ;

59 Mesh mesh ;
60 Iterator<Edge> iedge, bedge ;
61 Iterator<Triangle> triangle ;

62 Unsigned max_iter ;
63 Real CFL_run, Tend, time, dt ;

64 PCHECK ok_State ;
65 PNUMFLUX NumFlux ;
66 PFLUX Flux ;
67 PCFL CFLxy ;

68 Real inlet_state[4], init_state[4] ;

69 public:
70 Solver(PFLUX, PNUMFLUX, PCHECK, PCFL) ;
71 void SetUp(char const *) ;
72 void SetTimeStep(bool &, Unsigned const);
73 void TimeStep(void) ;

50 FE and FV Programming

74 void Save_Mtv(void) ;
75 } ;

Analysis The definition of the class Solver is given in lines56–75 .

As part of the class definition, a private instance of the classMesh is contained, see
line 59 .

The statements in lines60–61 define as private attributes the edge and triangle iter-
atorsiedge , bedge and triangle . These iterators are initialized in such a way
that

• iedge performs loops on the internal edges;

• bedge performs loops on the boundary edges;

• triangle performs loops on all the mesh triangles.

The variables defined in lines62–63 are used during the computation of an interme-
diate Runge-Kutta step:

• max_iter : it is the maximum allowable number of time steps;

• CFL_run : it is the advancing time step expressed as a fraction of the CFL number;

• Tend : it is the final time at which the computation terminates;

• time : it is the current time;

• dt : it is the current time step.

The statements in lines64–67 declare the names of the functions which defines the
problem. The two four-element sized arrays declared in line68 are used to store the
inflow boundary state (a supersonic inlet) and the initial state of the computation.

The class Solver also contains in lines70–74 the public methods:

A cell centered finite volume solution 51

• Solver : the constructor links the application program the (externally defined) func-
tions for consistency check, for both the physical and numerical flux calculation, and
for the estimation of the CFL number.

• SetUp : it reads from an external file the mesh description (in the output format
of the mesh generator Triangle), the inlet and the initial state and initialize the mesh
representation ofP2MESHlibrary and some other variables;

• SetTimeStep : it computes the new time stepdt ;

• TimeStep : it advances the solution of a time stepdt ;

• Save_Mtv : it saves on disk the final solution in MTV format.

The methods
of the class

Edge 76 void
77 Edge::InternalNumFlux(PNUMFLUX NumFlux) {
78 Real len = length() ;
79 Real nnx = nx() / len ;
80 Real nny = ny() / len ;
81 NumFlux(num_flux, poly(0).sol, poly(1).sol, nnx, nny) ;
82 }

Analysis The statements in lines78–80 computes the two components of the normalized vec-
tor nnx, nny orthogonal to the edge. The functionnum_flux called in line81
evaluates the numerical flux across the edge. The left and right solution states are
assigned the solution states at the center of the left and the right triangles (1-st order
accurate-in-space scheme).

83 void
84 Edge::BoundaryNumFlux(PNUMFLUX NumFlux, Real const inlet[4]) {
85 Real len = length() ;
86 Real nnx = nx() / len ;
87 Real nny = ny() / len ;
88 Real rsol[4] ;

89 switch (ibc) {
90 case BC_FREE:

52 FE and FV Programming

91 copy(poly(0).sol, poly(0).sol+4, rsol) ;
92 break ;
93 case BC_SUPERSONIC_INLET:
94 copy(inlet, inlet+4, rsol) ;
95 break ;
96 case BC_SOLID:
97 {
98 Real qt = -poly(0).sol[1] * nny + poly(0).sol[2] * nnx ;
99 Real qn = 0 ;

100 rsol[0] = poly(0).sol[0] ;
101 rsol[1] = qn * nnx - qt * nny ;
102 rsol[2] = qn * nny + qt * nnx ;
103 rsol[3] = poly(0).sol[3] ;
104 }
105 break ;
106 default:
107 cerr << "bad boundary " << (int)ibc << endl ;
108 exit(0) ;
109 }

110 NumFlux(num_flux, poly(0).sol, rsol, nnx, nny) ;
111 }

Analysis The statements in lines85–87 computes the two components of the normalized vector
nnx, nny orthogonal to the edge. Then, the statements in lines89–109 set up
the right state which corresponds to solution “outside” the computational domain, by
taking care of the boundary condition specified by the value of theBCvariableibc .
The functioncopy belongs to the Standard Template Library [3, 6].

Finally, the functionnum_flux called in line110 evaluates the numerical flux across
the edge. The left solution state is the one assigned to the center of the (unique) left
triangle adjacent to the boundary edge (1-st order accurate-in-space scheme).

The methods
of the class

Triangle 112 inline
113 void
114 Triangle::Init(Real const state[4]) {
115 copy(state, state+4, sol) ;
116 _area = p2_poly<Common>::area() ;
117 hxy = 2*_area/edge(0) . length() ;
118 hxy = min(hxy,2*_area/edge(1) . length()) ;

A cell centered finite volume solution 53

119 hxy = min(hxy,2*_area/edge(2) . length()) ;
120 }

Analysis Lines 112–120 initialize the current triangle instance. The initial solution state is
copied from the input array. The private attribute_area is set up by using the in-
herited functionarea , and the private attributehxy is estimated as the “minimum
height” of the triangle.

121 inline
122 void
123 Triangle::RK_Setsol(void) {
124 copy(sol, sol+4, sol0) ;
125 }

Analysis Lines121–125 copy the actual state in the buffer variablesol0 .

126 void
127 Triangle::RK_Update(Real const & dt, Unsigned const irk) {
128 // residual
129 Real res[4] ;
130 res[0] = res[1] = res[2] = res[3] = 0 ;
131 for (Unsigned ie = 0 ; ie < n_edge() ; ++ie) {
132 Edge & E = edge(ie) ;
133 Real len = ok_oriented(ie) ? E.length() : -E.length() ;
134 res[0] += len * E.num_flux[0] ;
135 res[1] += len * E.num_flux[1] ;
136 res[2] += len * E.num_flux[2] ;
137 res[3] += len * E.num_flux[3] ;
138 }

139 // update
140 static Real crk0[2] = {1, 0.5} ;
141 static Real crk1[2] = {0, 0.5} ;
142 static Real CRKR[2] = {1, 0.5} ;
143 Real crkr = CRKR[irk]*dt/area() ;

144 sol[0] = crk0[irk] * sol0[0] + crk1[irk] * sol[0] - crkr * res[0] ;
145 sol[1] = crk0[irk] * sol0[1] + crk1[irk] * sol[1] - crkr * res[1] ;
146 sol[2] = crk0[irk] * sol0[2] + crk1[irk] * sol[2] - crkr * res[2] ;
147 sol[3] = crk0[irk] * sol0[3] + crk1[irk] * sol[3] - crkr * res[3] ;
148 }

54 FE and FV Programming

Analysis The approximate solution within each triangular cell is advanced in time by applying
a two-stage2-nd order accurate Runge-Kutta scheme also known as the Heun scheme.
The approximate solution of the initial ODE problem

du

dt
= F (u) ,

F (0) = F0 ,

satisfies the explicit scheme

ηk+1 = uk + ∆tF (uk),

uk+1 = uk +
∆t

2
(F (uk) + F (ηk+1).

When applied to the semi-discrete formulation of the cell center FV method

|K| dUK

dt
= −

∑

e∈∂K

Φe ,

the Runge-Kutta scheme results in the source fragment implemented in the public
methodRK_Update . The local residual

−
∑

e∈∂K

Φe

is estimated in lines114–121 , while lines144–149 advance the solution to the next
step.

The solver
code

149 Solver::Solver(PFLUX Flux_,
150 PNUMFLUX NumFlux_,
151 PCHECK ok_State_,
152 PCFL Cfl_) {
153 Flux = Flux_ ;
154 NumFlux = NumFlux_ ;
155 ok_State = ok_State_ ;
156 CFLxy = Cfl_ ;
157 }

A cell centered finite volume solution 55

Analysis The method assigns the pointers of the functions used in the application program the
address of the corresponding (externally defined) functions.

158 void
159 Solver::mark_edge(Edge & E, Unsigned const & marker) {
160 switch (marker) {
161 case 0 : E.ibc = BC_INTERNAL ; break ;
162 case 1 : E.ibc = BC_SUPERSONIC_INLET ; break ;
163 case 2 : E.ibc = BC_SOLID ; break ;
164 case 3 : E.ibc = BC_FREE ; break ;
165 default:
166 cerr << "mark_edge(E, "<< marker
167 << ") bad boundary condition" << endl ;
168 exit(0) ;
169 }
170 }

Analysis The methodmark_edge processes the markers read in the input file and assigns the
variableibc its correct boundary condition. The input file is generated by the mesh
generatortriangle .

In the current example, the input markers correspond to the following situations:

0 internal edge;

1 supersonic inlet edge;

2 solid wall edge;

3 free outlet edge;

171 void
172 Solver::SetUp(char const * file) {

173 char file_par[1024] ;
174 strcpy(file_par,file) ;
175 strcat(file_par,".inp") ;
176 ifstream file_input(file_par) ;

177 if (! file_input . good()) {

56 FE and FV Programming

178 cerr << "error in opening file: " << file_par << endl ;
179 exit(0) ;
180 }

181 time = 0 ;
182 file_input
183 >> dt
184 >> Tend
185 >> max_iter
186 >> CFL_run
187 >> inlet_state[0]
188 >> inlet_state[1]
189 >> inlet_state[2]
190 >> inlet_state[3]
191 >> init_state[0]
192 >> init_state[1]
193 >> init_state[2]
194 >> init_state[3] ;

195 cout
196 << "Parameters" << endl
197 << "dt = " << dt << endl
198 << "Tend = " << Tend << endl
199 << "max_iter = " << max_iter << endl
200 << "CFL_run = " << CFL_run << endl
201 << endl
202 << "Input state:"
203 << " r = " << setw(5) << inlet_state[0]
204 << " u = " << setw(5) << inlet_state[1]
205 << " v = " << setw(5) << inlet_state[2]
206 << " E = " << setw(5) << inlet_state[3]
207 << endl
208 << "Initial state:"
209 << " r = " << setw(5) << init_state[0]
210 << " u = " << setw(5) << init_state[1]
211 << " v = " << setw(5) << init_state[2]
212 << " E = " << setw(5) << init_state[3]
213 << endl << endl ;

214 file_input . close() ;

215 // initialize
216 mesh . read_mesh(file, NULL, mark_edge, NULL, 1) ;
217 bedge . set_loop(mesh,1) ;
218 iedge . set_loop(mesh,2) ;
219 triangle . set_loop(mesh) ;

A cell centered finite volume solution 57

220 foreach (triangle) triangle -> Init(init_state) ;
221 }

Analysis The method initializes the run. The string variablefile stores the basename for
the external files containing the initial mesh description, the initial and the inlet flow
conditions.

The source fragment in lines173–176 opens the file with the extension “.inp ”. The
statements in lines181–194 read all the parameters of the run.

The statements in lines195–213 dump on the standard output the input parameters.

Finally, the statements in lines216–220 initialize the mesh (all the work is done by
the functionread_mesh inherited from the classp2 mesh), initialize the private it-
erators of the solver, and loop on all the triangles to invoke their initialization function.

222 void
223 Solver::SetTimeStep(bool & continue_loop, Unsigned const iter) {
224 Real CFL_curr = 0 ;
225 foreach(triangle)
226 CFLxy(CFL_curr, dt, triangle -> hxy, triangle -> sol) ;

227 Real rapp = min(1.2, CFL_run / CFL_curr) ;
228 dt *= rapp ;
229 CFL_curr *= rapp ;

230 // chek time step
231 Real new_time = time+dt ;
232 if (new_time > Tend) {
233 continue_loop = false ;
234 dt = Tend - time ;
235 time = Tend ;
236 } else {
237 time = new_time ;
238 continue_loop = continue_loop && iter < max_iter ;
239 }

240 cout
241 << " iter=" << setw(4) << iter
242 << " time (n+1)=" << setw(8) << time
243 << " CFL=" << setw(8) << CFL_curr
244 << " dt=" << setw(8) << dt
245 << endl ;

58 FE and FV Programming

246 }

Analysis The method computes the new time step. The statements in lines224–226 compute
the current CFL number (and store it in the variableCFL_curr). The time step is
modified in lines227–239 as follows:

• if CFL_curr is less thanCFL_run , dt is increased of at most the 20% of its current
value;

• if CFL_curr is greater than CFL_run , dt is reduced of the ratio
CFL_run / CFL_curr ;

In lines231–239 the program checks if the run terminates at the current iteration. The
boolean variablecontinue_loop is set up consequently. Finally, the statements in
lines240–245 print on standard output some useful information.

247 void
248 Solver::TimeStep(void) {
249 foreach(triangle) triangle -> RK_Setsol() ;
250 for(Unsigned irk = 0 ; irk < 2 ; ++irk) {
251 foreach(iedge) iedge -> InternalNumFlux(NumFlux) ;
252 foreach(bedge) bedge -> BoundaryNumFlux(NumFlux,inlet_state) ;
253 foreach(triangle) {
254 triangle -> RK_Update(dt,irk) ;
255 if (!ok_State(triangle -> sol)) {
256 cerr << "POSITIVITY_CHECK: negative pressure found" ;
257 exit(0) ;
258 }
259 }
260 }
261 }

Analysis This piece of code advances the solution to the next step. In line249 the Runge-Kutta
scheme is initialized. Lines251–252 compute the numerical flux of internal and
boundary edges. Line254 performs theirk -th stage of the Runge-Kutta stepping
scheme.

A cell centered finite volume solution 59

Saving the
computed

solution 262 void
263 Solver::Save_Mtv(void) {
264 ofstream file("cc.mtv") ;
265 if (! file . good()) {
266 cerr << "Cannot open for write file: ‘‘cc.mtv’’" << endl ;
267 exit(0) ;
268 }

269 file << "$ DATA=CONTCURVE\n%contstyle=2 topLabel=mass"
270 << endl ;
271 foreach (triangle) {
272 Real fun = triangle -> sol[0] ;
273 file << triangle->x(0) << " " << triangle->y(0) << " " << fun
274 << endl
275 << triangle->x(1) << " " << triangle->y(1) << " " << fun
276 << endl
277 << triangle->x(2) << " " << triangle->y(2) << " " << fun
278 << endl << endl ;
279 }

280 file << "$ END" << endl ;
281 file . close() ;
282 }

Analysis The method saves the solution in MTV format.

The main
program

283 # include "eu.hh"

284 int
285 main() {

286 Solver solver(Euler::Flux,
287 Euler::Godunov,
288 Euler::ok_State,
289 Euler::CFL) ;

290 // set input data
291 solver . SetUp("ramp") ;

60 FE and FV Programming

292 // advancing loop
293 bool continue_loop = true ;
294 for (unsigned iter = 1 ; continue_loop ; ++iter) {
295 solver.SetTimeStep(continue_loop, iter) ; // variable time step dt
296 solver.TimeStep() ; // update one time step
297 } ;

298 solver . Save_Mtv() ;
299 cout << "End of Program" << endl ;

300 }

Analysis Line 283 includes the header fileeu.hh . This file contains the implementation of
the physical flux of the Euler equations and the Godunov and Lax-Friedrics numerical
fluxes. The statements in lines286–289 instantiate and initialize an object of the
classSolver . Notice that the constructor takes in input the addresses of the functions
defined in the classEuler .

Figure 5 shows the final solution computed by this application program.

−0.01 0 0.01 0.03 0.05 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

mass

X−Axis

Y
−

A
xi

s

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 5: Double Mach reflection solution produced by the cell center FV Euler solver

A vertex centered finite volume solution 61

8 A vertex centered finite volume solution

This section describes the program contained in the filecc solver.cc in the direc-
tory examples of theP2MESHdistribution package.

Include the
library

1 # include "p2mesh.hh"
2 # include <math.h>

Analysis The source fragment includes the library header filep2mesh.hh and the standard
C++ header filemath.h for the mathematical function prototypes and definitions.

Declare
user-defined
class names 3 typedef double Real ;

4 class Vertex ;
5 class Edge ;
6 class Triangle ;
7 class Mesh ;
8 class Common ;
9 class Solver ;

Analysis See the comments given for the earlier example.

Define the
class

Common 10 class Common : public p2_common<Vertex,Edge,Triangle,Mesh,
11 3,true,Real> {
12 protected:

13 typedef bool (*PCHECK) (Real const [4]) ;

14 typedef void (*PFLUX) (Real [4],
15 Real [4],
16 Real const [4]) ;

62 FE and FV Programming

17 typedef void (*PNUMFLUX) (Real [4],
18 Real const [4],
19 Real const [4],
20 Real const &,
21 Real const &) ;

22 typedef void (*PCFL) (Real &,
23 Real const &,
24 Real const &,
25 Real const [4]) ;

26 typedef enum {
27 BC_INTERNAL=0,
28 BC_SUPERSONIC_INLET,
29 BC_SOLID,
30 BC_FREE
31 } BC ;

32 } ;

Analysis The actual implementation makes usage of the topological lists of the vertices, edges
and triangles incident on a given vertex.P2MESHautomatically initializes such lists
when we setLIST = true in the template argument list ofp2 common in lines
10–11 .

Define the
class Vertex

33 class Vertex : public p2_vertex<Common> {
34 private:
35 friend class Edge ;
36 friend class Solver ;
37 Real _area, hxy, sol[4], sol0[4] ;
38 public:
39 void Init(Real const[4]) ;
40 Real const & area(void) const { return _area ; }
41 void RK_Setsol(void) ;
42 void RK_Update(Real const &, Unsigned const) ;
43 } ;

Analysis The classVertex contains in line37 the following private attributes

A vertex centered finite volume solution 63

• hxy : it is the characteristic size of the vertex control volume on the dual mesh used
to estimate the CFL number;

• _area : it stores the area of the control volume to reduce the CPU costs of area
calculations;

• sol[4] : it stores the approximate solution at any intermediate and final time step of
the Runge-Kutta time marching scheme;

• sol0[4] : (work array) it stores the initial solution of any Runge-Kutta time step;

and the following public methods

• Init : it initializes the class; in particular, compute the the value of the area of the
control volume of the current vertex instance;

• area : it returns the value of the private attribute_area ;

• RK_Setsol : it initializes a Runge-Kutta time step;

• RK_Update : it performs the solution update in an intermediate Runge-Kutta time
step.

Notice that in a cell vertex scheme the application unknowns are logically associated
to the vertices, which naturally implies this very rich definition of the vertex data
structure. Compare this definition with the one given for the previous cell center im-
plementation.

Define the
class Edge

44 class Edge : public p2_edge<Common> {
45 private:
46 friend class Vertex ;
47 friend class Solver ;
48 BC ibc ;
49 Real num_flux[2][4], nx[2], ny[2], len[2] ;
50 public:
51 void Init(void) ;

64 FE and FV Programming

52 void InternalNumFlux(PNUMFLUX) ;
53 void BoundaryNumFlux(PNUMFLUX, Real const [4]) ;
54 } ;

Analysis The private attribute of the classEdge are the variableibc of typeBC, and four arrays
of typeReal , num_flux , nx , ny , andlen :

• ibc : it distinguishes the nature of the current edge instance, (internal or on the bound-
ary), and eventually specifies a boundary condition;

• nx : it stores the first component of the two non-normalized vectors orthogonal to the
medians from the left (0) and right (1) adjacent triangles;

• ny : it stores the second component of the two non-normalized vectors orthogonal to
the medians from the left (0) and right (1) adjacent triangles;

• len : it stores the two length of the segment joining the edge midpoint with the
centroid of the left (0) and right (1) adjacent triangles; notice thatlen[i] =
nx[i] 2 + ny[i] 2, wherei=0 ,1;

• num_flux : it contains the numerical flux across the two segments joining the edge
midpoint with the centroid of the left (0) and right (1) adjacent triangles;

Notice that whenever the current edge is located on the boundary of the computational
domain, half of the edge coincides with a portion of the control volume boundary. In
this case, (nx[1] , ny[1]) defines a vector whose direction is outward oriented and
orthogonal to the edge and whose lengthlen is half of the edge length.

The public methods of the classEdge are

• Init : it computesnx , ny , andlen ;

• InternalNumFlux : it computes the numerical flux of internal edges;

• BoundaryNumFlux : it computes the numerical flux of boundary edges.

A vertex centered finite volume solution 65

Figure 6:

Define the
class Triangle

55 class Triangle : public p2_poly<Common> {} ;

Analysis The body of the classTriangle is empty as a consequence of the cell vertex nature
of the numerical algorithm. Compare this definition with the one given for the cell
center scheme implementation.

Define the
class Mesh

56 class Mesh : public p2_mesh<Common> {} ;

Define the
main solver

class 57 class Solver : public Common {
58 private:
59 static void mark_edge(Edge &, Unsigned const &) ;

60 Mesh mesh ;
61 Iterator<Vertex> vertex ;
62 Iterator<Edge> edge, iedge, bedge ;

66 FE and FV Programming

63 Iterator<Triangle> triangle ;

64 Unsigned max_iter ;
65 Real CFL_run, Tend, time, dt ;

66 PCHECK ok_State ;
67 PNUMFLUX NumFlux ;
68 PFLUX Flux ;
69 PCFL CFLxy ;

70 Real inlet_state[4], init_state[4] ;

71 public:
72 Solver(PFLUX, PNUMFLUX, PCHECK, PCFL);
73 void SetUp(char const *) ;
74 void SetTimeStep(bool &, Unsigned const);
75 void TimeStep(void) ;
76 void Save_Mtv(void) ;
77 } ;

Analysis The definition of the class Solver is given in lines57–77 .

As part of the class definition, a private instance of the classMesh is contained, see
line 60 .

The private attributes in lines61–63 are the iteratorsvertex , iedge , bedge and
triangle . The iterators are initialized in such a way that

• vertex : it performs loops on all the vertices;

• edge : it performs loops on all the edges;

• iedge : it performs loops on the internal edges;

• bedge : it performs loops on the boundary edges;

• triangle : it performs loops on all the triangles.

The variables defined in lines64–65 are used during the computation of an interme-
diate Runge-Kutta step:

A vertex centered finite volume solution 67

• max_iter : it is the maximum allowable number of time steps;

• CFL_run : it is the time step size expressed as a fraction of the CFL number;

• Tend : it is the final time at which the computation terminates;

• time : it is the current time;

• dt : it is the current time step.

The statements in lines66–69 declare the names of the functions that define the prob-
lem. The two arrays in line70 store the inflow boundary state (a supersonic inlet) and
the initial state of the computation.

The class Solver contains in lines72–76 the following public methods:

• Solver : the constructor links the application program the (externally defined) func-
tions for consistency check, for both physical and numerical flux calculation, and for
the estimation of the CFL number.

• SetUp : it reads from an external file the mesh description (in the output format
of the mesh generator Triangle), the inlet and the initial state and initialize the mesh
representation ofP2MESHlibrary and some other variables;

• SetTimeStep : it computes the new time stepdt ;

• TimeStep : it advances the solution of a time stepdt ;

• Save_Mtv : it saves on disk the final solution in MTV format.

The methods
of the class

Vertex 78 inline
79 void
80 Vertex::Init(Real const state[4]) {
81 copy(state, state+4, sol) ;
82 unsigned i ;
83 _area = 0 ;

68 FE and FV Programming

84 for (i = 0 ; i < n_poly() ; ++i)
85 _area += poly(i).area() ;
86 _area /= 3 ;

87 hxy = edge(0) . length() ;
88 for (i = 1 ; i < n_edge() ; ++i)
89 hxy = min(hxy, edge(i) . length()) ;

90 }

Analysis The method initializes the classVertex . The area of the control volume associated
to the current vertex is evaluated and assigned to the variable_area . The method
also initializes the value ofhxy , which is given by the minimum length of the internal
edges of the control volume, needed in the estimation of the CFL.

91 inline
92 void
93 Vertex::RK_Setsol(void) {
94 copy(sol, sol+4, sol0) ;
95 }

Analysis See the comment given in the cell center example.

96 void
97 Vertex::RK_Update(Real const & dt, Unsigned const irk) {

98 // compute residual
99 Real res[4] ;

100 res[0] = res[1] = res[2] = res[3] = 0 ;
101 for (Unsigned ie = 0 ; ie < n_edge() ; ++ie) {
102 Edge & E = edge(ie) ;
103 bool ok_dir = this == &E.vertex(0) ;
104 Real len = ok_dir ? E.len[0] : -E.len[0] ;
105 res[0] += len * E.num_flux[0][0] ;
106 res[1] += len * E.num_flux[0][1] ;
107 res[2] += len * E.num_flux[0][2] ;
108 res[3] += len * E.num_flux[0][3] ;

109 len = (ok_dir || E.ibc != BC_INTERNAL) ? E.len[1] : -E.len[1] ;
110 res[0] += len * E.num_flux[1][0] ;

A vertex centered finite volume solution 69

111 res[1] += len * E.num_flux[1][1] ;
112 res[2] += len * E.num_flux[1][2] ;
113 res[3] += len * E.num_flux[1][3] ;
114 }

115 // update
116 static Real crk0[2] = {1, 0.5} ;
117 static Real crk1[2] = {0, 0.5} ;
118 static Real CRKR[2] = {1, 0.5} ;
119 Real crkr = CRKR[irk]*dt/area() ;

120 sol[0] = crk0[irk] * sol0[0] + crk1[irk] * sol[0] - crkr * res[0] ;
121 sol[1] = crk0[irk] * sol0[1] + crk1[irk] * sol[1] - crkr * res[1] ;
122 sol[2] = crk0[irk] * sol0[2] + crk1[irk] * sol[2] - crkr * res[2] ;
123 sol[3] = crk0[irk] * sol0[3] + crk1[irk] * sol[3] - crkr * res[3] ;

124 }

Analysis The method computes in lines99–114 the residual

−
∑

e∈∂K

Φe

associated to the control volume of the vertex, which is then used in lines120–123
to advance the solution to the next Runge-Kutta stage.

The methods
of the class

Edge 125 void
126 Edge::Init(void) {
127 nx[0] = poly(0).yc() - ym() ;
128 ny[0] = xm() - poly(0).xc() ;

129 if (ok_poly(1)) {
130 nx[1] = ym() - poly(1).yc() ;
131 ny[1] = poly(1).xc() - xm() ;
132 } else {
133 nx[1] = p2_edge<Common>::nx()/2 ;
134 ny[1] = p2_edge<Common>::ny()/2 ;
135 }

136 for (Unsigned i = 0 ; i < 2 ; ++i) {

70 FE and FV Programming

137 len[i] = sqrt(nx[i]*nx[i] + ny[i]*ny[i]) ;
138 nx[i] /= len[i] ;
139 ny[i] /= len[i] ;
140 }
141 }

Analysis The method computes (nx[0] ,ny[0]) and (nx[1] ,ny[1]). These two vectors are
orthogonal to the segment which joins the edge midpoint and the two centroids of
the left and right triangles. It also computes the length of the segments, since the
two orthogonal vectors are non-normalized. The test on line129 discriminates the
boundary edges.

142 void
143 Edge::InternalNumFlux(PNUMFLUX NumFlux) {
144 Vertex & VA = vertex(0) ;
145 Vertex & VB = vertex(1) ;
146 NumFlux(num_flux[0], VA.sol, VB.sol, nx[0], ny[0]) ;
147 NumFlux(num_flux[1], VA.sol, VB.sol, nx[1], ny[1]) ;
148 }

Analysis The statements in lines146–147 invoke the functionNumFlux , which computes
the numerical fluxes across the left and right portion of the control volume boundary
associated to the current edge instance.

149 void
150 Edge::BoundaryNumFlux(PNUMFLUX NumFlux, Real const inlet[4]) {
151 Vertex & VA = vertex(0) ;
152 Vertex & VB = vertex(1) ;

153 NumFlux(num_flux[0], VA.sol, VB.sol, nx[0], ny[0]) ;

154 Real lsol[4], rsol[4] ;
155 lsol[0] = 0.5*(VA.sol[0] + VB.sol[0]) ;
156 lsol[1] = 0.5*(VA.sol[1] + VB.sol[1]) ;
157 lsol[2] = 0.5*(VA.sol[2] + VB.sol[2]) ;
158 lsol[3] = 0.5*(VA.sol[3] + VB.sol[3]) ;

159 switch (ibc) {
160 case BC_FREE:
161 copy(lsol, lsol+4, rsol) ;

A vertex centered finite volume solution 71

162 break ;
163 case BC_SUPERSONIC_INLET:
164 copy(inlet, inlet+4, rsol) ;
165 break ;
166 case BC_SOLID:
167 {
168 Real qt = -lsol[1] * ny[1] + lsol[2] * nx[1] ;
169 Real qn = 0 ;
170 rsol[0] = lsol[0] ;
171 rsol[1] = qn * nx[1] - qt * ny[1] ;
172 rsol[2] = qn * ny[1] + qt * nx[1] ;
173 rsol[3] = lsol[3] ;
174 }
175 break ;
176 default:
177 cerr << "bad boundary " << (int)ibc << endl ;
178 exit(0) ;
179 }

180 NumFlux(num_flux[1], lsol, rsol, nx[1], ny[1]) ;
181 }

Analysis As for the cell center scheme, the numerical flux in the case of a boundary edges is
given by a different method, which takes into account the boundary conditions.

The solver
code

182 Solver::Solver(PFLUX Flux_,
183 PNUMFLUX NumFlux_,
184 PCHECK ok_State_,
185 PCFL Cfl_) {
186 Flux = Flux_ ;
187 NumFlux = NumFlux_ ;
188 ok_State = ok_State_ ;
189 CFLxy = Cfl_ ;
190 }

Analysis See the comments given for the cell center case.

191 void Solver::mark_edge(Edge & E, Unsigned const & marker) {
192 switch (marker) {

72 FE and FV Programming

193 case 0 : E.ibc = BC_INTERNAL ; break ;
194 case 1 : E.ibc = BC_SUPERSONIC_INLET ; break ;
195 case 2 : E.ibc = BC_SOLID ; break ;
196 case 3 : E.ibc = BC_FREE ; break ;
197 default:
198 cerr << "mark_edge(E, " << marker
199 << ") bad boundary condition" << endl ;
200 exit(0) ;
201 }
202 }

Analysis See the comments given for the cell center case.

203 void Solver::SetUp(char const * file) {

204 char file_par[1024] ;
205 strcpy(file_par,file) ;
206 strcat(file_par,".inp") ;

207 ifstream file_input(file_par) ;

208 if (! file_input . good()) {
209 cerr << "error in opening file: " << file_par << endl ;
210 exit(0) ;
211 }

212 time = 0 ;
213 file_input
214 >> dt
215 >> Tend
216 >> max_iter
217 >> CFL_run
218 >> inlet_state[0]
219 >> inlet_state[1]
220 >> inlet_state[2]
221 >> inlet_state[3]
222 >> init_state[0]
223 >> init_state[1]
224 >> init_state[2]
225 >> init_state[3] ;

226 cout
227 << "Parameters" << endl
228 << "dt = " << dt << endl

A vertex centered finite volume solution 73

229 << "Tend = " << Tend << endl
230 << "max_iter = " << max_iter << endl
231 << "CFL_run = " << CFL_run << endl
232 << endl
233 << "Input state:"
234 << " r = " << setw(5) << inlet_state[0]
235 << " u = " << setw(5) << inlet_state[1]
236 << " v = " << setw(5) << inlet_state[2]
237 << " E = " << setw(5) << inlet_state[3]
238 << endl
239 << "Initial state:"
240 << " r = " << setw(5) << init_state[0]
241 << " u = " << setw(5) << init_state[1]
242 << " v = " << setw(5) << init_state[2]
243 << " E = " << setw(5) << init_state[3]
244 << endl << endl ;

245 file_input . close() ;

246 // initialize
247 mesh . read_mesh(file, NULL, mark_edge, NULL, 1) ;
248 vertex . set_loop(mesh) ;
249 edge . set_loop(mesh) ;
250 bedge . set_loop(mesh,1) ;
251 iedge . set_loop(mesh,2) ;
252 triangle . set_loop(mesh) ;

253 foreach (vertex) vertex -> Init(init_state) ;
254 foreach (edge) edge -> Init() ;

255 }

Analysis This source fragment is similar to the corresponding one of the cell center case. The
main difference is in the initialization phase performed on the vertices and not on the
triangles.

256 void
257 Solver::SetTimeStep(bool & continue_loop, Unsigned const iter) {
258 Real CFL_curr = 0 ;
259 foreach(vertex)
260 CFLxy(CFL_curr, dt, vertex -> hxy, vertex -> sol) ;

261 Real rapp = min(1.2, CFL_run / CFL_curr) ;

74 FE and FV Programming

262 dt *= rapp ;
263 CFL_curr *= rapp ;

264 // chek time step
265 Real new_time = time+dt ;
266 if (new_time > Tend) {
267 continue_loop = false ;
268 dt = Tend - time ;
269 time = Tend ;
270 } else {
271 time = new_time ;
272 continue_loop = continue_loop && iter < max_iter ;
273 }

274 cout
275 << " iter=" << setw(4) << iter
276 << " time (n+1)=" << setw(8) << time
277 << " CFL=" << setw(8) << CFL_curr
278 << " dt=" << setw(8) << dt
279 << endl ;

280 }

Analysis The method computes the new time step by looping on all the vertices. Since this is the
only difference with respect to the cell center case, see the comments given therein.

281 void
282 Solver::TimeStep(void) {
283 foreach(vertex) vertex -> RK_Setsol() ;
284 for(Unsigned irk = 0 ; irk < 2 ; ++irk) {
285 foreach(iedge) iedge -> InternalNumFlux(NumFlux) ;
286 foreach(bedge) bedge -> BoundaryNumFlux(NumFlux,inlet_state) ;
287 foreach(vertex) {
288 vertex -> RK_Update(dt,irk) ;
289 if (!ok_State(vertex -> sol)) {
290 cerr << "POSITIVITY_CHECK: negative pressure found" ;
291 exit(0) ;
292 }
293 }
294 }
295 }

A vertex centered finite volume solution 75

Analysis This source fragment is almost identical to the one given for the cell center case. The
only difference is in the loop which is performed on vertices instead of on triangles.

Saving the
computed

solution 296 void
297 Solver::Save_Mtv(void) {
298 ofstream file("cv.mtv") ;
299 if (! file . good()) {
300 cerr << "Cannot open for write file: ‘‘cv.mtv’’" << endl ;
301 exit(0) ;
302 }

303 file << "$ DATA=CONTCURVE\n%contstyle=2 topLabel=mass"
304 << endl ;
305 foreach (triangle) {
306 for (Unsigned nv = 0 ; nv < triangle -> n_vertex() ; ++nv) {
307 Vertex & V = triangle -> vertex(nv) ;
308 file << V.x() << " " << V.y() << " " << V.sol[0] << endl ;
309 }
310 file << endl ;
311 }

312 file << "$ END" << endl ;
313 file . close() ;
314 }

Analysis The method saves the computed solution in a MTV format file.

The main
program

315 # include "eu.hh"

316 int
317 main() {

318 Solver solver(Euler::Flux,
319 Euler::Godunov,
320 Euler::ok_State,
321 Euler::CFL) ;

322 solver . SetUp("ramp") ;

76 FE and FV Programming

323 bool continue_loop = true ;
324 for (unsigned iter = 1 ; continue_loop ; ++iter) {
325 solver.SetTimeStep(continue_loop, iter) ; // variable time step dt
326 solver.TimeStep() ; // update one time step
327 } ;

328 solver . Save_Mtv() ;
329 cout << "End of Program" << endl ;

330 }

Analysis In line 315 the header fileeu.hh is included. This file contains the implementations
of the physical flux for the Euler equations and of the Godunov and Lax-Friedrics
numerical fluxes. The statements in lines318–321 instantiate and initialize an object
of the classSolver . Notice that the constructor takes in input the addresses of the
functions defined in the classEuler .

Figure 7 shows the final solution computed by this application program.

−0.01 0 0.01 0.03 0.05 0.07
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

mass

X−Axis

Y
−

A
xi

s

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 7: Solution produced by the double Mach reflection vertex-center FV solver

The file “eu.hh” 77

A The file “eu.hh”

class Euler {
public:

typedef double Real ;

private:
// private internal stuff

public:
static void CFL(Real &,

Real const &, Real const &, Real const &,
Real const [4]) ;

static bool ok_State(Real const [4]) ;

static void Flux(Real [4], Real [4], Real const [4]) ;

static void LF(Real [4], Real const [4], Real const [4],
Real const & , Real const &) ;

static void Godunov(Real [4], Real const [4], Real const [4],
Real const &, Real const &) ;

} ;

B The file “eu.cc”

include "eu.hh"

include <iostream>
include <math.h>

typedef Euler::Real Real ;

inline Real abs(Real const & a)
{ return a > 0 ? a : -a ; }

inline Real max(Real const & a, Real const & b)
{ return a > b ? a : b ; }

78 FE and FV Programming

inline Real min(Real const & a, Real const & b)
{ return a < b ? a : b ; }

static Real const GAMMA = 1.4 ;
static Real const G1 = (GAMMA - 1) / (2 * GAMMA) ;
static Real const G2 = (GAMMA + 1) / (2 * GAMMA) ;
static Real const G3 = 2 * GAMMA / (GAMMA - 1) ;
static Real const G4 = 2 / (GAMMA - 1) ;
static Real const G5 = 2 / (GAMMA + 1) ;
static Real const G6 = (GAMMA - 1) / (GAMMA + 1) ;
static Real const G7 = (GAMMA - 1) / 2 ;
static Real const G8 = 1 / GAMMA ;
static Real const G9 = GAMMA - 1 ;

Real Euler::ec(Real const val[4]) {
return 0.5 * (val[1]*val[1] + val[2]*val[2]) / r(val) ;

}

Real Euler::P(Real const val[4]) {
Real press = G9 * (E(val) - ec(val)) ;
if (press <= 0) {

cerr
<< "Euler::P("
<< val[0] << ","
<< val[1] << ","
<< val[2] << ","
<< val[3] << ") found bad pressure p = "
<< press << endl ;

exit(0) ;
}
return press ;

}

Real Euler::C(Real const val[4]) {
Real C2 = GAMMA * P(val) / r(val) ;
if (C2 <= 0) {

cerr
<< "Euler::C("
<< val[0] << ","
<< val[1] << ","
<< val[2] << ","
<< val[3] << ") found bad speed Cˆ2 = "
<< C2 << endl ;

exit(0) ;
}

The file “eu.cc” 79

return sqrt(C2) ;
}

bool Euler::ok_State(Real const val[4]) {
Real press = G9 * (E(val) - ec(val)) ;
return press > 0 && r(val) > 0 ;

}

void Euler::CFL(Real & CFL,
Real const & dt,
Real const & h,
Real const val[4]) {

Real c = C(val) ;
Real u = U(val) ; if (u < 0) u = -u ;
Real v = V(val) ; if (v < 0) v = -v ;

CFL = max(dt*(max(u,v)+c)/h, CFL) ;
}

void Euler::Flux(Real fx[4], Real fy[4], Real const val[4]) {

Real u = U(val) ;
Real v = V(val) ;

for (unsigned i = 0 ; i < 4 ; ++i) {
fx[i] = u * val[i] ;
fy[i] = v * val[i] ;

}

Real press = P(val) ;

fx[1] += press ;
fx[3] += press * u ;

fy[2] += press ;
fy[3] += press * v ;

}

void Euler::LF(Real nflux[4],
Real const lsol[4],
Real const rsol[4],
Real const & nx,
Real const & ny) {

Real vl = nx * U(lsol) + ny * V(lsol) ;

80 FE and FV Programming

Real vr = nx * U(rsol) + ny * V(rsol) ;
Real artvisc = max(abs(vl) + C(lsol), abs(vr) + C(rsol)) ;

Real lfx[4], lfy[4], rfx[4], rfy[4] ;

Flux(lfx, lfy, lsol) ;
Flux(rfx, rfy, rsol) ;

for (unsigned i = 0 ; i < 4 ; ++i)
nflux[i] = 0.5 * (nx * (lfx[i]+rfx[i]) + ny * (lfy[i]+rfy[i])

- artvisc * (rsol[i] - lsol[i])) ;
}

void Euler::StateEval(State & s,
Real const S[4],
Real const & nx,
Real const & ny) {

s.r = r(S) ;
s.u = vn(S,nx,ny) ;
s.p = P(S) ;
s.c = GAMMA * s.p / r(S) ;
if (s.c <= 0) {

cerr << "error in StateEval negative sound speed" << endl ;
exit(0) ;

}
s.c = sqrt(s.c) ;

}

//--

void Euler::Godunov(Real nflux[4],
Real const lsol[4],
Real const rsol[4],
Real const & nx,
Real const & ny) {

if (!ok_State(lsol)) {
cerr << "Euler::Godunov bad left state" << endl ;
exit(0) ;

}

if (!ok_State(rsol)) {
cerr << "Euler::Godunov bad right state" << endl ;
exit(0) ;

The file “eu.cc” 81

}

Real const SS = 0 ;
State sl, sr, sm ;
StateEval(sl, lsol, nx, ny) ;
StateEval(sr, rsol, nx, ny) ;

Real PM, UM ;
// LOCAL RIEMANN PROBLEM RP(I,I+1) IS SOLVED EXACTLY
Riemann(PM, UM, sl, sr) ;
// SOLUTION IS SAMPLED AT S=X/T=0 ALONG T-AXIS
Sample(PM, UM, SS, sl, sr, sm) ;

Real qn = sm.u ;
Real qt = qn > 0 ? vt(lsol,nx,ny) : vt(rsol,nx,ny) ;
Real u = qn * nx - qt * ny ;
Real v = qn * ny + qt * nx ;

nflux[0] = qn * sm.r ;
nflux[1] = qn * sm.r * u + sm.p * nx ;
nflux[2] = qn * sm.r * v + sm.p * ny ;
nflux[3] = qn * (sm.p+sm.p/G9 + 0.5*sm.r*(u*u+v*v)) ;

}

//---

void Euler::Riemann(Real & P,
Real & U,
State const & sl,
State const & sr) {

// COMPUTE PRESSURE PM AND PARTICLE VELOCITY UM IN THE MIDDLE
// PM IS FOUND ITERATIVELY BY A NEWTON-RAPHSON METHOD.

// COMPUTE GUESS VALUE FROM PVRS RIEMANN SOLVER
Real PPV = 0.5*(sl.p+sr.p)

- 0.125*(sr.u-sl.u)*(sl.r+sr.r)*(sl.c+sr.c) ;
Real PMIN = min(sl.p, sr.p) ;
Real PMAX = max(sl.p, sr.p) ;
Real QRAT = PMAX / PMIN ;

if (QRAT <= 2.0 && (PMIN <= PPV && PPV <= PMAX)) {
// USE PVRS SOLUTION AS GUESS
P = PPV ;

} else {
if (PPV < PMIN) { // USE TWO-RAREFACTION SOLUTION

Real PNU = sl.c + sr.c - G7 * (sr.u - sl.u) ;

82 FE and FV Programming

Real PDE = sl.c / pow(sl.p, G1) + sr.c / pow(sr.p, G1) ;
P = pow(PNU / PDE, G3) ;

} else { // USE TWO-SHOCK APPROXIMATION WITH PPV AS ESTIMATE
Real GEL = sqrt((G5 / sl.r) / (G6 * sl.p + PPV)) ;
Real GER = sqrt((G5 / sr.r) / (G6 * sr.p + PPV)) ;
P = (GEL*sl.p + GER*sr.p - (sr.u-sl.u)) / (GEL + GER) ;

}
}

Real const TOL = 1e-6 ;
Real FL, FR, FLD, FRD ;
Real P0 = P ;
Real DU = sr.u - sl.u ;
for (unsigned k = 0 ; k < 50 ; ++k) {

Prefun(FL, FLD, P, sl) ;
Prefun(FR, FRD, P, sr) ;
P -= (FL + FR + DU) / (FLD+FRD) ;
if (abs((P - P0) / (P + P0)) <= 0.5 * TOL) goto fine ;
P0 = P > 0 ? P : TOL ;

}
cout << "Euler::Riemann(...)"

<< "DIVERGENCE IN NEWTON-RAPHSON ITERATION" << endl ;

fine:
// COMPUTE U
U = 0.5 * (sl.u + sr.u + FR - FL) ;

}

void Euler::Prefun(Real & F,
Real & FD,
Real const & P,
State const & s) {

if (P <= s.p) { // RAREFACTION WAVE
Real PRAT = P / s.p ;
F = G4 * s.c * (pow(PRAT,G1) - 1) ;
FD = (1.0 / (s.r * s.c)) * pow(PRAT, -G2) ;

} else { // SHOCK WAVE
Real AK = G5 / s.r ;
Real BK = G6 * s.p ;
Real QRT = sqrt(AK / (BK + P)) ;
F = (P - s.p) * QRT ;
FD = (1 - 0.5 * (P - s.p) / (BK + P)) * QRT ;

}
}

void Euler::Sample(Real const & PM,

The file “eu.cc” 83

Real const & UM,
Real const & S,
State const & sl,
State const & sr,
State & sm) {

if (S <= UM) {
// SAMPLE POINT IS TO THE LEFT OF THE CONTACT
if (PM <= sl.p) { // LEFT FAN

Real SHL = sl.u - sl.c ;
if (S <= SHL) { //LEFT DATA STATE

sm.r = sl.r ;
sm.u = sl.u ;
sm.p = sl.p ;
sm.c = sl.c ;

} else {
Real CML = sl.c * pow(PM / sl.p, G1) ;
Real STL = UM - CML ;
if (S > STL) { // MIDDLE LEFT STATE

sm.r = sl.r * pow(PM / sl.p, G8) ;
sm.u = UM ;
sm.p = PM ;
sm.c = sqrt(GAMMA * sm.p / sm.r) ;

} else { // FAN LEFT STATE (INSIDE FAN)
sm.u = G5 * (sl.c + G7 * sl.u + S) ;
sm.c = G5 * (sl.c + G7 * (sl.u - S)) ;
sm.r = sl.r * pow(sm.c / sl.c, G4) ;
sm.p = sl.p * pow(sm.c / sl.c, G3) ;

}
}

} else { // LEFT SHOCK
Real PML = PM / sl.p ;
Real SL = sl.u - sl.c * sqrt(G2 * PML + G1) ;
if (S <= SL) { // LEFT DATA STATE

sm.r = sl.r ;
sm.u = sl.u ;
sm.p = sl.p ;
sm.c = sl.c ;

} else { // MIDDLE LEFT STATE (BEHIND SHOCK)
sm.r = sl.r * (PML + G6) / (PML * G6 + 1.0) ;
sm.u = UM ;
sm.p = PM ;
sm.c = sqrt(GAMMA * sm.p / sm.r) ;

}
}

} else { // RIGHT OF CONTACT
if (PM > sr.p) { // RIGHT SHOCK

84 FE and FV Programming

Real PMR = PM / sr.p ;
Real SR = sr.u + sr.c * sqrt(G2 * PMR + G1) ;
if (S >= SR) { // RIGHT DATA STATE

sm.r = sr.r ;
sm.u = sr.u ;
sm.p = sr.p ;
sm.c = sr.c ;

} else { // MIDDLE RIGHT STATE (BEHIND SHOCK)
sm.r = sr.r * (PMR + G6) / (PMR * G6 + 1.0) ;
sm.u = UM ;
sm.p = PM ;
sm.c = sqrt(GAMMA * sm.p / sm.r) ;

}
} else { // RIGHT FAN

Real SHR = sr.u + sr.c ;
if (S >= SHR) { // RIGHT DATA STATE

sm.r = sr.r ;
sm.u = sr.u ;
sm.p = sr.p ;
sm.c = sr.c ;

} else {
Real CMR = sr.c * pow(PM / sr.p, G1) ;
Real STR = UM + CMR ;
if (S <= STR) { // MIDDLE RIGHT STATE

sm.r = sr.r * pow(PM / sr.p, G8) ;
sm.u = UM ;
sm.p = PM ;
sm.c = sqrt(GAMMA * sm.p / sm.r) ;

} else { // FAN RIGHT STATE (INSIDE FAN)
sm.u = G5 * (- sr.c + G7 * sr.u + S) ;
sm.c = G5 * (sr.c - G7 * (sr.u - S)) ;
sm.r = sr.r * pow(sm.c / sr.c, G4) ;
sm.p = sr.p * pow(sm.c / sr.c, G3) ;

}
}

}
}

}

REFERENCES 85

References

[1] CIARLET, P. The Finite Element Methods for Elliptic Problems. North-Holland,
Amsterdam, 1987.

[2] G.H.GOLUB, AND VAN LOAN, C. Matrix Computations (second edition). Johns
Hopkins University Press, 1990.

[3] GLASS, G., AND SCHUCHERT, B. The STL<Primer>. Prentice Hall PTR, 1995.

[4] HIRSCH, C. Numerical Computation of Internal and External Flows. J. Wiley &
Sons Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD, England, 1990.

[5] MEISTER, A., AND SONAR, T. Finite-volume schemes for compressible fluid
flow. Surv. Math. Ind. 8(1998), 1–36.

[6] MUSSER, D., AND SAINI , A. STL tutorial & reference guide: C++ programming
with the standard template library. Addison-Wesley, 1996.

[7] STROUSTRUP, B. The C++ Programming Language (Third Edition). Addison-
Wesley, 1998.

[8] TORO, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer-Verlag, 1997.

