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Abstract

Thin film based sensor in transient facility permits theoretically to perform very accurate

surface temperature measurement, either because the low intrusivity of the gauge and the

high frequency response. The mayor drawback for its popularuse is the complexity of data

reduction procedure which involves the solution of the heatconduction in solids. Among

different techniques available, numerical discretization are gaining in importance for sev-

eral applications basically because of their flexibility intreating boundary conditions and

the low computational cost compared to other methods. Aftera brief analysis of the heat

transfer evaluation criteria and the description of the sensor, a survey of the existing digital

data processing technique are discussed in the first part of this paper, and some estimate of

the accuracy is presented. The general case of multi-layered geometries of the sensor is an-

alyzed and synthetic expression for the single and double layer features are given. Among

the traditional methods, emphasis was placed on 1-D Finite Elements discretization, and

a code has been developed to handle general heat transfer data reduction with arbitrary

temperature or heat flux boundary conditions. Temperature dependent physical properties

are also implemented. Validation of such a code has been performed by mens known test

functions. Finally several experimental signal having different characteristics have been

processed and the solution of the various methods compared and discussed.

Key words: Thin film, heat transfer, surface temperature measurements, Laplace

Transform, Finite Elements.
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1 Nomenclature

ρ(z) one dimensional mass density of the slab; [kg/m3]

c(z) the heat capacity of the slab; [J/kg · K]

κ(z) the heat conduction of the slab; [W/m · K]

α = κ/ρc thermal diffusivity; [m2/s]

δ metal film thickness; [m]

ℓ total size of the slab; [m]

q̇s(t) impinging convective heat flux rate [W/m2]

q̇b(t) back face convective heat flux rate [W/m2]

u(t) internal density energy stored into the slab [J/m2]

Θ(t, z) temperature distribution of the slab [K]

Θs(t) measured top surface temperature of the slab [K]

Θℓ(t) measured bottom surface temperature of the slab[K]

Θ∞(t) free stream temperature [K]

Fc (t) Fresnel cosine function

Fs (t) Fresnel sine function

DAS Digital Analog System

ODE Ordinary Differential Equation

PDE Partial Differential Equation
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2 Introduction

The evaluation of the heat flux rate impinging on a surface is an important task

in engineering problems. Depending on the knowledge of the physical process in-

volved the existing approaches can be grouped as follows:

(a) Fully analytical approach: this assumes a complete knowledge of the physical

process involved. The heat flux is obtained by solving simultaneously the fully

Navier-Stokes equations, the energy equation, the diffusion equation in solids,

and the constitutive equations of the fluid and the body.

(b) Experimental approach coupled with dimensional analysis: the heat flux rate

is evaluated through direct measurement of physically measurable quantities

such as the boundary layer temperature distribution or the temperature distri-

bution within the body.

(c) Indirect method:it prescribes the measurement of some physical quantities

such as the body surface temperature. The heat flux rate is deduced by the

solution of some auxiliary equations.

Approach(a) although very informative is still in most cases not reliable due to the

complexity of 3-D turbulent modeling of the flow field. In factalso in the simpler

2-D cases large computational resources are needed. Actually, it is applicable for

laminar flows only and for simple geometries. For example simplified equations

describing velocities and boundary layer temperature distribution are available for

the plane surface or for the cylinder in cross flow.

Approaches(b) and(c) require some data reduction procedure to compute the heat

by analytical or numerical techniques. In particular, approach(b) calls for high per-

formance hardware and, a part of the inherent relatively high costs, often it does not

result technically feasible. Obviously approach(c) does not give any information

for the comprehension of the transport phenomena. Yet, it has been in the years

the most widely adopted because it requires limited number of measurements and
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involves only the solution of the diffusion equation in a body.

Short duration facilities have been preferred to the stationary ones for indirect meth-

ods because of the competitive running costs and the good accuracy measurement

achievable. In fact the models have not to be cooled (or heated) in order to estab-

lish the temperature gradient from which the heat transfer is deduced. Consequently

tests durations are shorter and the initial conditions are quickly restored. In net heat

flux evaluation, conductive heat losses are not crucial. Themeasurement technique

involves the measurement of the surface temperature history of a model exposed to

a gas flow (supersonic or sub-sonic) on the basis of an appropriate heat conduction

model.

Despite of the complexity of the data reduction procedure, avariety of techniques

have been implemented and refined according to the type of test and sensor being

used. A basic reference text describing measurement principles and data reduction

techniques can be found in the work of Schultz and Jones (1973).

One of the most common fast response sensors for short duration test is the thin

film resistance thermometer. A large body of literature is available on thin film heat

transfer gauge. Diller (1991) gives an excellent survey of the related measurement

technique. Here just a brief path of the progress in data reduction procedure will be

drawn. Details of the sensors will be given in section 3.

The thin film surface temperature sensor has originally appeared in the early 1950s

for heat transfer measurements in shock tubes. This facility can be operated to sim-

ulate either supersonic or sub-sonic environment depending on the locations of the

throat respect to the working section. A very wide range of temperatures, from

500K to 2000K can be achieved. Depending on the hardware, typical test dura-

tions can range from3ms (the Oxford shock tunnel) to a few seconds. A review is

given in Vidal (1956), Pope & Goin (1965), Lukasiewicz (1973). Direct solution of

the 1-D diffusion equation was initially performed by meansof the electric analogy
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(Meyer; 1960). In the 1960’s some numerical integration techniques for the solu-

tion of the heat diffusion equation was proposed. All these schemes were based on

approximate solution of the associate Laplace transform. The most popular one,

proposed by Cook and Felderman (1966) will be addressed in section 5 and 6.

Starting from 1975 M.G. Dunn and its group in Calspan appliedthe thin film in

order to measure heat flux distribution for gas turbine components. Vane row and

full stage rotating turbine data have been subject of several papers Dunn and Hause

(1981), Dunn et al. (1986), Dunn (1989). The progress in the computational me-

dia has made possible to improve the numerical techniques. The computer imple-

mentation of Fourier and Laplace transforms permitted to optimize the frequency

response and the accuracy of the time-resolved results.

Wide experience on so called “double layer” thin films has been developed from

the group working at the Oxford University initially under the direction of the late

D.L. Schultz and with T.V. Jones, M.L.G. Oldfield, and R.W. Ainsworth.

The attempts to measure the mean heat transfer rate on real gas turbine components

has lead to films instrumented on flexible electrically insulator substrate (kapton

or upilex) to extend the use of this measurement technique to rotatingtest rig

components where flow durations are of the order of a few seconds.

Analogue signal analysis has been used for data reduction onfilms built also with

vitreous enamel substrate considering that the high frequency heat conduction in

the insulating layer can for short times be considered as semi-infinite. An additional

digital processing is moreover needed for the low frequencysignal of the substrate

layer Ainsworth et al. (1989), Doorly and Oldfield (1987), Doorly (1987), Guo et

al. (1995).

At the von Karman Institute single layer thin film using mainly macor as substrate

has now been used for many years on the Mach 6 H-3 blow down windtunnel, the

long shot intermittent wind tunnel, and the CT 3 light pistonfacility. Recently dou-
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ble layer thin film with kapton as substrate has been tested on low speed tunnels

simulating flow conditions in gas turbine blade internal cooling channels. Main re-

sults can be found in Consigny and Richards (1982), Camci andArts (1985), Arts

and Bourguignon (1989), Battisti and Arts (1996) and Pelle and Arts (1997), Ver-

meulen and Simeonides (1992), Marquet and Charbonnier (1998).

The extension of the use of thin films to the evaluation of the fluctuating compo-

nent of the heat transfer and the necessity to account for variable properties of the

substrate has lead to a progressive phase out of the analoguetechnique.

Numerical techniques seemed to have the potential to provide for a powerful solv-

ing tool, up to now some data processing analysis were principally based on trans-

forms such as Laplace or Fourier .

Both analogue and numerical transform based solution methods do present some

limitation which basically are:

(i) the analog hardware necessitates a bandwidth depending on the sampling rate.

An high sampling rate needs an hardware with very high bandwidth.

(ii) the impossibility to model variable thermal properties of the substrate(s) with the

temperature;

(iii) operations are bounded to seminfinite slab assumption;

(iv) solution is computationally expensive with two substrate slab and, when the

number of substrate slab excesses two, it becomes mathematically difficult to

handle.

The best implementation of the aforementioned numerical techniques has complex-

ity growing at least withO(ns log ns) wherens is the number of samples. Only

approach(c) is analyzed and discussed in this paper. In the first part somedata

reduction techniques are reviewed. In the second part a general approach based

on the Finite Elements is presented for fast and efficient heat flux computation.

An economic and robust way is also given to estimate the convective heat transfer
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coefficienth which can be defined as (see fig. 1):

h
def
≡

q̇s(t)

Θ∞(t) − Θs(t)
(1)
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z

Θ∞(t) > Θs(t) > Θℓ(t)

Fig. 1.

In formula (1) the free stream temperatureΘ∞(t) and the surface temperatureΘs(t)

are known from standard measurement devices. The impingingheat flux rateq̇s(t)

can be inferred by an appropriate differential model of the substrate.

It is worth to remind that temperatureΘs(t) is the result of a thermal balance among

different heat fluxes. The principal ones are the convectiveheat fluxq̇s(t), the radia-

tive heat flux, the conductive heat flux and heat flux due to electrical heat generation

of measurements apparatus. In the following discussion it is assumed that the tem-

peratureΘs(t) depends only on the convective heat flux and the conductive heat

flux, neglecting the others sources.

For a proper reconstruction of the signal an appropriate sampling rate must be as-

sured. The limitation in the capacity of the acquisition system sets the maximal test

duration. However the sampled data is usually huge and the postprocess is very

time consuming if a transform based data reduction system isused. The Finite El-

ements based data reduction, proposed in this paper, is veryfast, more flexible but,

depending on the sampling rate, requires the correct setting of the mesh.

The proposed numerical scheme has been validated by using known exact solution

of particular test cases, and by comparison with the classical numerical techniques.
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A processing of three real signals is indeed given. The heat flux rate is deduced from

surface temperature histories sampled on models running ondifferent facilities.

The first signal has been obtained from tests performed with adouble layer thin

films made by the University of Trento in low enthalpy and low speed test (about

q̇ = 1000W/m2, Re = 30000, Ma = 0.02) Battisti and Schmeer (1997). The

second one is a signal sampled in the von Karman Institute CT1tunnel at Mach

number around0.7 (single layer thin film). The last case has been obtained from

a compression ramp in the H3 Mach 6 wind tunnel of the von Karman Institute

(single layer thin film) Marquet and Charbonnier (1998).

The performance of the different solution schemes have beencompared and com-

mented.

3 The thin film surface temperature sensor

There are many different techniques currently available for surface temperatures

measurement. The present paper is focused on the thin film resistance thermometer.

Basically the thin film gauge consists in a very thin conducting metal (platinum

or nickel) deposited on homogeneous or disomogeneous substrate. As the metal

acts as temperature sensor, the substrate serves either as mechanical support and as

thermal heat sink. The most popular features of such devicesare the single and the

double layer thin film. The thermal behavior of these two kindof sensors will be

analyzed forward.
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Fig. 2.

In the first type (see fig. 2a) the metal layer is fired or deposited on a substrate made

of quartz or pyrex or macor. In particular the use of macor (machinable) enables

the desired shape model to be built without surface discontinuities. This makes the

gauge particularly suitable for aerodynamic applicationswhere the integrity of the

boundary layer has to be preserved.

Such solutions are suitable for stationary components due to the limited deforma-

tion of the substrate. The double layer thin film (see fig. 2b) has been developed

for measurement on rotating components. A thin insulating layer insulates electri-

cally the metal film from the (metal) support. Either vitreous enamel is applied as

insulating coating and plastic layer (kapton or upilex) adhesively bounded to the

substrate.

A know constant current is passed through the gauge and the voltage drop across

the film is directly related to the temperature of the gauge. When subjected to a

change in the temperature field, the film acts as a thermometerand under some

assumptions it shows the temperature evolution of the substrate surface. Since the

typical thickness of the film ranges from10−6m to 10−8m and this dimension is

105 times smaller than its typical length or width, the lateral conduction can be

neglected. Therefore the one-dimensional heat conductioncan generally be applied.
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The characteristic timeτ = δ2/α of the film is dramatically small compared to the

inner substrate one.

For the typical thickness given above, characteristic times range from1.6 · 10−3µs

(platinum painted on macor) to 2 ·10−4s (nickel over kapton). For a step function

in surface heat transfer rate, the approximate solution forthe relative error in the

heat transfer rate computation:

tH =
q − q̇s

q̇s
,

as shown in Schultz and Jones 1977 can be estimated as followsfor larget com-

pared toτ :

tH =
1

t1/2

τ 1/2

π1/2

((ρcκ)1)
1/2

((ρcκ)2)
1/2

, (2)

where the index1 refers to the sensor and2 to the supporting substrate. Relation

(2) shows that error due the neglection of sensor presence drops as time increases.

When maximum allowable error is given, relation (2) introduces a critical time in

the initial part of the experiment. FortH ≈ 10−2, this minimal duration takes the

values of about400µs for a typical double layer sensor to about100µs for a single

layer. The reciprocal of this critical time represents the critical frequency over over

which the phenomenon is not accurately reconstructed.

The effect of the finite thickness of the sensible layer on theinsulating substrate is

thus to cause the actual surface temperature to lag the “real” one.

For general applications, other than shock tubes the presence of the film layer can

be neglected if the experiment design is carefully set.

Whatever model being used, the heat flux rate can be generallyevaluated from

considerations about the transient thermal conduction in an inhomogeneous multi-

slab substrate.

The governing equations for a general multi-slab substrateare addressed in the next

section.
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4 Governing equations

The 1-D diffusion equations for the temperature distribution of anm−layer slab

having total sizeℓ (see figure 3), can be modeled by the followingm partial differ-

ential equations of parabolic type:

∂

∂t
(ρi(Θi)ci(Θi)Θi) =

∂

∂z

(

κi(Θi)
∂Θi

∂z

)

, t > 0, zi−1 < z < zi i = 1, 2, . . . , m(3)

whereΘi ≡ Θi(t, z) and zi are the boundaries of the layers. Equations (3) are

coupled with the followingm − 1 interface conditions:

lim
z 7→z

−

i

Θi(t, z) = lim
z 7→z

+

i

Θi+1(t, z),

lim
z 7→z

−

i

κi (Θi(t, z))
∂Θi(t, z)

∂z
= lim

z 7→z
+

i

κi+1 (Θi+1(t, z))
∂Θi+1(t, z)

∂z
,



















(4)

for t > 0 andi = 1, 2, . . . , m − 1. From the compatibility condition (4) a single

functionΘ(t, z) can be used instead of them functionsΘi(t, z):

Θ(t, z) = Θi(t, z), zi−1 ≤ z ≤ zi.

zm = ℓ

z0 = 0

z1

z2

ρ1, c1, κ1

ρ2, c2, κ2

ρm, cm, κm

Fig. 3.

A new function denoted withu(t) is defined

u(t) =
m
∑

i=1

zi
∫

zi−1

ρi(Θ(t, z))ci(Θ(t, z))Θ(t, z) dz, (5)

which is dimensionally[J/m2], and by using (3) and (4) its total time derivative

becomes:

du(t)

dt
= q̇s(t) − q̇b(t), (6)
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where

q̇s(t) = −κ1(Θ(t, 0))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=0

, q̇b(t) = −κm(Θ(t, ℓ))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=ℓ

(7)

andq̇s(t) is theimpinging convective heat flux ratewhile q̇b(t) is thebackface con-

vective heat flux rate.

The differential equation (3) is closed by the initial temperature distributionΘinit(z);

Θ(0, z) = Θinit(z), 0 ≤ z ≤ ℓ

and boundary conditions: at the surface, i.e.z = 0 either temperature or heat flux

rate can be set for allt > 0;

Θ(t, 0) = Θs(t), if Θs(t) is given (8.a)

κ1(Θ(t, 0))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=0

= −q̇s(t), if q̇s(t) is given (8.b)

Analogously on the back surface, i.e.z = ℓ;

Θ(t, ℓ) = Θℓ(t), if Θℓ(t) is given (9.a)

κn(Θ(t, ℓ))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=ℓ

= −q̇b(t), if q̇b(t) is given (9.b)

As a temperature signalΘs(t) is assigned, it is possible to solve the differential

equation (3) with surface boundary condition (8.a) to obtain the body temperature

distributionΘ(t, z) and by heat rate (7)̇qs(t) is thus evaluated. By the solution

Θ(t, z), h can be rewritten as follows

h = −κ1(Θ(t, 0))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=0

(Θ∞(t) − Θ(t, 0))−1 . (10)

Only in few simple casesΘ(t, z) can be computed exactly, and generally it must be

approximated by means of numerical techniques.

It is worth to note that equation (10) do not define a single value forh but it is most

generally a function of the time.

Approximation ofh can be affected from several error sources, among them we

recall:

• errors in the measurements ofΘs(t) andΘ∞(t).
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• errors in the estimation oḟqs(t) due to numerical procedure and accuracy of the

physical model.

Naminghe an estimation of thetrue heat transfer coefficient one of the following

approaches can be used for its evaluation:

A: Direct method. GivenΘs(t) andΘ∞(t) computeΘ(t, z) andH(t) defined as

H(t) = −κ1(Θ(t, 0))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=0

(Θ∞(t) − Θ(t, 0))−1 ,

and using some regression onH(t) estimateh. Some noise reduction procedure

has to be adopted.

B: Indirect method. From (10) the surface boundary condition becomes

−κ1(Θ(t, 0))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=0

= h (Θ∞(t) − Θ(t, 0)) . (11)

For each prescribedh, equation (3) together with equation (11) constitute a func-

tional equation which solutions is a temperature historyΘh(t, z). Among all the

possibleΘh(t, z) the one which “best fits” the measured temperature signal is

finally chosen.

Notice that both approaches need the knowledge of an approximation procedure in

order to estimateΘ(t, z). In the following section the principal ones are recalled.

5 One layer slab

In this case the slab has everywhere constant physical properties so that the indices

in ρ1, c1 andκ1 are omitted. If the test duration is short enough and/or the thickness

of the slab is properly chosen, the finite slab can be modeled by a semi-infinite ones.

Moreover, if the temperature inside the slab do not increasetoo much the following

approximations hold:

ρ(Θ) ≡ ρ, c(Θ) ≡ c, κ(Θ) ≡ κ, (12)



Thin film temperature measurements 15

i.e. their values are assumed constant and evaluated at the initial temperature. This

is the case when the diffusivity of the layer is sufficiently low or the impinged heat

flux is moderate.

The one dimensional semi-infinite slab with (12) can be modeled by the following

linear partial differential equation

ρc
∂Θ(t, z)

∂t
= κ

∂2Θ(t, z)

∂z2
, t > 0, z > 0 (13)

with the following boundary conditions

Θ(t, 0) = Θs(t), lim
z 7→∞

∂Θ(t, z)

∂z
= 0, (14)

for t > 0. The slab is assumed to be in thermal equilibrium att = 0 so that (without

loss of generality) the following initial condition is given as initial condition:

Θ(0, z) = 0, z ≥ 0. (15)

With assumption (12)–(14)–(15) the equation (13) can be easily solved by means

of the Laplace transform as follows: Let∆Θ the Laplace transform respect to time

of Θ, so that equation (13) become

ρcs∆Θ(s, z) = κ
∂2∆Θ(s, z)

∂z2
, lim

z 7→∞

∂∆Θ(s, z)

∂z
= 0,

which has the following solution:

∆Θ(s, z) = ∆Θ(s, 0) exp

(

−z
(

ρcs

κ

)1/2
)

, (16)

and from (16) with the boundary condition (7) it is possible to write

∆q̇s(s) = −κ
∂∆Θ(s, z)

∂z

∣

∣

∣

∣

∣

z=0

= s1/2 (ρcκ)1/2 ∆Θ(s, 0). (17)

Taking the inverse Laplace transform of (17), one can express q̇s(t) in function of

Θ(t, 0) or vice versa by the following equations:

q̇s(t) =
(ρcκ)1/2

π1/2

t
∫

0

∂Θ(t,0)
∂t

∣

∣

∣

t=τ

(t − τ)1/2
dτ, (18.a)

Θ(t, 0) =
1

π1/2 (ρcκ)1/2

t
∫

0

q̇s(τ)

(t − τ)1/2
dτ. (18.b)

Two kind of difficulties arise either for numerical or algebraic approximation of



16 L. Battisti and E. Bertolazzi

equations (18.a)-(18.b):

(1) The surface temperatureΘ(t, 0) is normally known only at discrete timeti

according with the acquisition frequency of the DAS system.

(2) The computation oḟqs(t) for a givenΘ(t, 0) is not straightforward.

5.1 Heaveside like heat flux approximation

In many practical situation the heat signalq̇s(t) shows a sudden increase in a short

initial time (rise time) and thereafter drops with a approximatively a constant slope.

In this situation it is possible to produce, for a given temperature signal, an approx-

imate formula forq̇s(t). Formula (18.b) can be rewritten as

π1/2 (ρcκ)1/2 Θ(t, 0) =

t
∫

0

q̇s(τ) − q̇s(t) + q̇s(t)

(t − τ)1/2
dτ,

=

t
∫

0

q̇s(t)

(t − τ)1/2
dτ +

t
∫

0

q̇s(τ) − q̇s(t)

(t − τ)1/2
dτ,

= 2q̇s(t)t
1/2 + 2t1/2E(t),

where

E(t) =
1

2t1/2

t
∫

0

q̇s(τ) − q̇s(t)

(t − τ)1/2
dτ.

So it is possible to write

q̇s(t) + E(t) =
π1/2 (ρcκ)1/2

2

Θ(t, 0)

t1/2
,

and this relation suggests the following approximation

q̇s(t) ≈
π1/2 (ρcκ)1/2

2

Θ(t, 0)

t1/2
, (19)

whereE(t) becomes the absolute error in this approximation. The applications

of the above solution requires an accurate determination ofthe time origin of the

parabolic temperature time trace.
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The absolute errorE(t) satisfies

|E(t)| =

∣

∣

∣

∣

∣

∣

1

2t1/2

t
∫

0

q̇s(τ) − q̇s(t)

(t − τ)1/2
dτ

∣

∣

∣

∣

∣

∣

,

≤

∣

∣

∣

∣

∣

∣

1

2t1/2

tH
∫

0

q̇s(τ) − q̇s(t)

(t − τ)1/2
dτ

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

1

2t1/2

t
∫

tH

q̇s(τ) − q̇s(t)

(t − τ)1/2
dτ

∣

∣

∣

∣

∣

∣

∣

,

≤ M1

(

tH
t

)1/2

+ M2,

(20)

where

M1 = 2 sup
x∈[0,tH ]

|q̇s(x)| ,

M2 = sup
x,y∈[tH ,t]

|q̇s(x) − q̇s(y)| .

ConstantM1 is of the order of the maximum recorded heat flux, while constant M2

is proportional to the heat fluctuation after the initial raise time. It can be noticed

in formula (20) that fort small the error is dominated byM1 (tH/t)1/2 so that

approximation (19) is apparently good fort ≫ tH and if the rise timetH is short

compared to the total test duration. Formula (20) gives a guide rule design for time

assessment.

5.2 The Cook and Felderman method

The Cook and Felderman (1966) method is based on a piecewise linear approxima-

tion of the surface temperatureΘ(t, 0) introduced to reconstruct temperature signal

known at discrete times. Moreover such an approximation of temperature signal

simplifies the approximate computation of integral (18.a).A linear splineΘL(t)

which interpolatesΘi = Θ(ti, 0) is build as below:

ΘL(τ) =
(τ − ti−1)Θi + (ti − τ)Θi−1

ti − ti−1
, ti−1 ≤ τ ≤ ti. (21)

for i = 1, 2, . . . , ns − 1 wherens is the total number of sampled temperatures with

t0 = 0. Substitution of (21) in formula (18.a) witht = tm produces an approximate

values forq̇s(tm). This approximation is known as the Cook and Felderman method.
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Observe that

dΘL(τ)

dτ
=

Θi − Θi−1

ti − ti−1
, ti−1 < t < ti, (22)

and that (22) is not defined forτ = ti (the nodal points). In order to evaluate the

error of Cook and Felderman approximation the following expression for the error

(simply obtained from Taylor series) of the approximation of the time derivative is

used the following formula

∂Θ(t, 0)

∂t
=

Θi − Θi−1

ti − ti−1
+ Ei(t)(ti − ti−1), ti−1 < t < ti, (23)

where

|Ei(t)| ≤
1

2
max

t∈[ti−1,ti]

∣

∣

∣

∣

∣

∂2Θ(t, 0)

∂t2

∣

∣

∣

∣

∣

. (24)

Substituting (23) in (18.a)

q̇s(tj) =
(ρcκ)1/2

π1/2

j
∑

i=1

ti
∫

ti−1

Θi − Θi−1

ti − ti−1

1

(tj − τ)1/2
dτ

+
(ρcκ)1/2

π1/2

j
∑

i=1

ti
∫

ti−1

Ei(t)(ti − ti−1)

(tj − τ)1/2
dτ,

we have

q̇s(tj) = 2
(ρcκ)1/2

π1/2

j
∑

i=1

Θi − Θi−1

(tj − ti)
1/2 + (tj − ti−1)

1/2
+

(ρcκ)1/2

π1/2
E(tj), (25)

where

|E(tj)| =

∣

∣

∣

∣

∣

∣

∣

j
∑

i=1

ti
∫

ti−1

Ei(t)(ti − ti−1)

(tj − τ)1/2
dτ

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

j
∑

i=1

ti
∫

ti−1

ti − ti−1

(tj − τ)1/2
dτ

∣

∣

∣

∣

∣

∣

∣

1

2
max
t∈[0,tj ]

∣

∣

∣

∣

∣

∂2Θ(t, 0)

∂t2

∣

∣

∣

∣

∣

,

≤ max
t∈[0,tj ]

∣

∣

∣

∣

∣

∂2Θ(t, 0)

∂t2

∣

∣

∣

∣

∣

j
∑

i=1

(ti − ti−1)
2

(tj − ti−1)
1/2 + (tj − ti)

1/2
.

(26)

The Cook and Felderman approximation is obtained from (25) by neglecting the

error termE(tm) so that denoting bẏqsm the approximation oḟqs(tm) it follows

q̇s(tj) ≈ q̇sj = 2
(ρcκ)1/2

π1/2

j
∑

i=1

Θi − Θi−1

(tj − ti)
1/2 + (tj − ti−1)

1/2
. (27)
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This last form is the equation usually implemented in heat transfer data reduction

programs subjected only to the assumption of the one dimensional heat conduction

in a semi-infinite slab with constant thermal properties.

In order to obtain a more simple estimate ofE(tm) the following constant is de-

fined:

∆t = max
i=1,2,..,ns

ti − ti−1,

set from (26) the following estimate holds

|E(tj)| ≤ max
t∈[0,tj ]

∣

∣

∣

∣

∣

∂2Θ(t, 0)

∂t2

∣

∣

∣

∣

∣

j
∑

i=1

(ti − ti−1)
2

ti − ti−1

(

(tj − ti−1)
1/2 − (tj − ti)

1/2
)

,

≤ max
t∈[0,tj ]

∣

∣

∣

∣

∣

∂2Θ(t, 0)

∂t2

∣

∣

∣

∣

∣

∆t
j
∑

i=1

(

(tj − ti−1)
1/2 − (tj − ti)

1/2
)

,

≤ max
t∈[0,tj ]

∣

∣

∣

∣

∣

∂2Θ(t, 0)

∂t2

∣

∣

∣

∣

∣

∆tt
1/2
j ,

From this inequality it is evident that Cook and Felderman isat least a first order

scheme.

Remark 1 From (27)and the following manipulation
j
∑

i=1

Θi − Θi−1

(tj − ti−1)
1/2 + (tj − ti)

1/2

=
j
∑

i=1

Θi − Θi−1

ti − ti−1

(

(tj − ti−1)
1/2 − (tj − ti)

1/2
)

=
j
∑

i=1

Θi − Θi−1

ti − ti−1
(tj − ti−1)

1/2 −
j
∑

i=1

Θi − Θi−1

ti − ti−1
(tj − ti)

1/2

=
j−1
∑

i=0

Θi+1 − Θi

ti+1 − ti
(tj − ti)

1/2 −
j
∑

i=1

Θi − Θi−1

ti − ti−1

(tj − ti)
1/2

=
j−1
∑

i=1

(

Θi+1 − Θi

ti+1 − ti
−

Θi − Θi−1

ti − ti−1

)

(tj − ti)
1/2 +

Θ1 − Θ0

t1 − t0
(tj − t0)

1/2

by settingΘ−1 = Θ0 andt−1 any number less thant0 previous formula becomes

j
∑

i=1

Θi − Θi−1

(tj − ti−1)
1/2 + (tj − ti)

1/2
=

j−1
∑

i=0

(

Θi+1 − Θi

ti+1 − ti
−

Θi − Θi−1

ti − ti−1

)

(tj − ti)
1/2(28)

when sampling rate is constant i.e.ti− ti−1 = ∆t for all i equation(28)substituted
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in (27) reduce to

q̇s(tj) ≈ q̇sj = 2
(ρcκ)1/2

π1/2∆t1/2

j−1
∑

i=0

(Θi+1 − 2Θi + Θi−1) (j − i)1/2

which is the scheme differently deduced from Oldfield et al. (1978).

5.3 Implicit Cook and Felderman

An implicit version of Cook and Felderman is based on a piecewise constant ap-

proximation of the surface heatq̇s(t). A piecewise constant splinėqL(t) is build as

below:

q̇L(τ) = q̇si− 1

2

, ti−1 ≤ τ ≤ ti. (29)

Substitution of (29) in formula (18.b) instead ofq̇s(t) produce fort = tm an ap-

proximate values forΘ(tj , 0).

Θ(tj , 0) ≈
2

π1/2 (ρcκ)1/2

j
∑

i=1

(

(tj − ti−1)
1/2 − (tj − ti)

1/2
)

q̇si− 1

2

, (30)

which for all j > 0 is an implicit linear relation in the unknowṅqsi− 1

2

. Assuming

equality in (30) the following recurrence is produced:

q̇s 1

2

=
π1/2 (ρcκ)1/2 Θ(t1, 0)

2 (t1 − t0)
1/2

...

q̇sk− 1

2

=

π1/2 (ρcκ)1/2 Θ(tk, 0) − 2
k−1
∑

i=1

(

(tk − ti−1)
1/2 − (tk − ti)

1/2
)

q̇si− 1

2

2 (tk − tk−1)
1/2

...

(31)
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5.4 Algebraic method

Algebraic methods assumeh constant. The free stream temperature behaves as fol-

lows

Θ∞(t) =







0 if t < 0

Θ∞ if t ≥ 0
(32)

Such an assumption implies a sudden change in the fluid dynamic and thermal

characteristics of the flow.

From equation (13) with conditions (12)–(14)–(15)–(32) itfollows

q̇s(t) = h (Θ∞(t) − Θ(t, 0)) . (33)

and by taking the Laplace transform of (33) together with (17) the following equal-

ity can be written

s1/2 (ρcκ)1/2 ∆Θ(s, 0) = h
(

Θ∞

s
− ∆Θ(s, 0)

)

,

so that

∆Θ(s, 0) =
Θ∞

s

(

1 + s1/2
(

ρcκ

h

)1/2
)−1

. (34)

Taking the inverse Laplace transform of (34) it follows

Θ(t, 0) = Θ∞φ(tβ), β =
h2

ρcκ
, (35)

where

φ(x) = 1 − exp(x) erfc
(

x1/2
)

,

erfc(x) = 1 − erf(x) ,

erf(x) =
2

π1/2

x
∫

−∞

exp
(

−ω2
)

dω.

Equation (35) models the temperature rise on the surface of the slab under the

assumption that the heat transfer coefficient is aconstant. Equation (35) defines a

functions family parameterized byh. Within such a family one get the best fit of

the measured signalΘs(ti) with i = 0, 1, . . . , m. A possible way to selecth is the
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following: set

g(β) =
m
∑

i=0

Θs(ti)δti −
m
∑

i=1

Θ(ti, 0)δti

=
m
∑

i=0

Θs(ti)δti − Θ∞

m
∑

i=0

φ(tiβ)δti

where

δti =
1

2



























t1 − t0 if i = 0

ti+1 − ti−1 if 0 < i < m

tm − tm−1 if i = m

The value ofβ such thatg(β) = 0 corresponds to the temperature distribution

which generates the same amount of heat as produced by the real temperature signal

estimated by trapezoidal quadrature rule. Observing now that

g′(β) = −Θ∞

m
∑

i=0

φ′(tiβ)tiδti, φ′(x) =
1

πx1/2
− exp(x) erfc

(

x1/2
)

,

andφ′(x) > 0 for x > 0 it results thatg(β) is a monotone decreasing function of

β, moreover

g(0) =
m
∑

i=0

Θs(ti)δti > 0, g(+∞) = −∞

so that there is a uniqueβ such thatg(β) = 0. Becauseg(x) < 0 for all x > 0

Newton-Raphson scheme, for example, can be used to approximateβ and conse-

quentlyh.

6 Two layer slab

If the test duration is short enough and/or the thickness of the slab is properly

chosen the finite size second layer, can be approximated by a semi-infinite ones.

According with the consideration in section 5 if the temperature inside the slab do

not increase too much the following assumption can be done

ρi(Θ) ≡ ρi, ci(Θ) ≡ ci, κi(Θ) ≡ κi, i = 1, 2 (36)
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i.e. their values are assumed constant and evaluated at the initial temperature.

The one dimensional semi-infinite slab with (36) can be modeled by the following

partial differential equations

ρ1c1
∂Θ(t, z)

∂t
= κ1

∂2Θ(t, z)

∂z2
, t > 0, 0 < z < z1

ρ2c2
∂Θ(t, z)

∂t
= κ2

∂2Θ(t, z)

∂z2
, t > 0, z > z1

(37)

beingΘ(t, z) a continuous function with the following internal condition

κ1 lim
z 7→z

−

1

∂Θ(t, z)

∂z
= κ2 lim

z 7→z
+

1

∂Θ(t, z)

∂z
, t > 0 (38)

and the following boundary conditions

Θ(t, 0) = Θs(t), lim
z 7→∞

∂Θ(t, z)

∂z
= 0, t > 0 (39)

The slab is assumed to be in thermal equilibrium at timet = 0, so that (without

loss of generality) the following initial condition arises:

Θ(0, z) = 0, z ≥ 0 (40)

With assumption (36)-(38)-(39)-(40) the equations (37) are linear and can be solved

by means of the Laplace transform and∆q̇s(s) can be correlated with∆Θ(s, 0) as

follows

∆q̇s(s) = ∆Θ(s, 0) (ρ1c1κ1)
1/2 s1/2

1 − A exp
(

−2s1/2τ
1/2
1

)

1 + A exp
(

−2s1/2τ
1/2
1

) , (41)

being

A =
(ρ1c1κ1)

1/2 − (ρ2c2κ2)
1/2

(ρ1c1κ1)
1/2 + (ρ2c2κ2)

1/2
, τ1 = z 2

1

ρ1c1

κ1

=
z 2
1

α1

.

Observing that

1 + σ exp
(

−2s1/2τ
1/2
1

)

1 − σ exp
(

−2s1/2τ
1/2
1

) = 1 + 2
∞
∑

n=1

σnexp
(

−2ns1/2τ
1/2
1

)

,
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it is possible to invert the Laplace transform for (41) obtaining q̇s(t) as a function

of Θ(t, 0) or Θ(t, 0) in function of q̇s(t) respectively as follows

q̇s(t) =
(ρ1c1κ1)

1/2

π1/2

t
∫

0

∂Θ(t, 0)

∂t

∣

∣

∣

∣

∣

t=τ

Ω (−A, t − τ)

(t − τ)1/2
dτ, (42.a)

Θ(t, 0) =
1

π1/2 (ρ1c1κ1)
1/2

t
∫

0

q̇s(τ)
Ω (A, t − τ)

(t − τ)1/2
dτ, (42.b)

where

Ω (σ, x) = 1 + 2
∞
∑

n=1

σnexp

(

−
n2τ1

x

)

.

Notice that in the caseσ = 0 the functionΩ (σ, x) is identically equal to1. Observe

that whenA = 0 the two layer slab behaves as a single layer. This is the case when

the two layers are made of the same materials or when they havethe same thermal

product.

6.1 Heaveside like heat flux approximation for two layer slab

When a sudden change of the thermo-fluid dynamic characteristics of the free

stream occurs it is possible to produce, for a given temperature signal, an approxi-

mate formula forq̇s(t). Formula (42.b) can be rewritten as

π1/2 (ρ1c1κ1)
1/2 Θ(t, 0) =

t
∫

0

q̇s(τ) − q̇s(t) + q̇s(t)

(t − τ)1/2
Ω (A, t − τ) dτ,

=

t
∫

0

q̇s(t)

(t − τ)1/2
Ω (A, t − τ) dτ +

t
∫

0

q̇s(τ) − q̇s(t)

(t − τ)1/2
Ω (A, t − τ) dτ,

= q̇s(t)

{

2t1/2 + 4
∞
∑

n=1

An
[

t1/2 exp
(

−(nz)2
)

+ nτ
1/2
1 π1/2 erf (nz)

]

}

+2t1/2E(t),

(43)

wherez = τ1/t and

E(t) =
1

2t1/2

t
∫

0

q̇s(τ) − q̇s(t)

(t − τ)1/2
Ω (A, t − τ) dτ.
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Following Pelle and Arts 1997, relation (43) can be roughly approximated by:

q̇s(t) ≈ Θ(t, 0)































[

2t1/2

π1/2 (ρ1c1κ1)
1/2

]−1

for t < t∗

[

2t1/2

π1/2 (ρ2c2κ2)
1/2

+
z1

κ1

(

1 −
ρ1c1κ1

ρ2c2κ2

)]−1

for t > t∗

,

where

t∗ =
π1/2

2

z1

κ1

(ρ1c1κ1)
1/2

(ρ2c2κ2)
1/2

.

6.2 A Cook and Felderman like method

As for the Cook and Felderman method the surface temperatureΘ(t, 0) is approxi-

mated by a linear spline as in (21). Substitution of (21) in formula (42.a) produces

q̇s(tj) =
(ρ1c1κ1)

1/2

π1/2

j
∑

i=1

Θi − Θi−1

ti − ti−1

ti
∫

ti−1

Ω (−A, tj − τ)

(tj − τ)1/2
dτ + E(tj) (44)

where

E(tj) =
(ρ1c1κ1)

1/2

π1/2

j
∑

i=1

ti
∫

ti−1

Ei(t)(ti − ti−1)Ω (−A, tj − τ)

(tj − τ)1/2
dτ,

andEi(t) are defined in (24). The integral in (44) can be computed exactly:

C
j

i− 1

2

=
1

ti − ti−1

ti
∫

ti−1

Ω (−A, tj − τ)

(tj − τ)1/2
dτ = −

D
j
i − D

j
i−1

ti − ti−1

(45)

where

D
j
i = 2 (tj − ti)

1/2

+4
∞
∑

n=1

(−A)n



(tj − ti)
1/2 exp

(

−
n2τ1

tj − ti

)

+ nτ
1/2
1 π1/2 erf



n
τ

1/2
1

(tj − ti)
1/2









Substituting (45) into (44) the following equation is obtained

q̇s(tj) =
j
∑

i=1

C
j

i− 1

2

(Θi − Θi−1) + E(tj) (46)

The Cook and Felderman like approximation is obtained from (46) by neglecting

the error termE(tj) so that denoting bẏqsj the approximation oḟqs(tj) it follows

q̇sj =
j
∑

i=1

C
j

i− 1

2

(Θi − Θi−1) (47)
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The errorE(tj) becomes the absolute error in the previous approximation. As for

the Cook and Felderman method an upper bound of this error canbe estimated as

follows

|E(tj)| ≤
∆t

2
max
t∈[0,tj ]

∣

∣

∣

∣

∣

∂2Θ(t, 0)

∂t2

∣

∣

∣

∣

∣

(ρ1c1κ1)
1/2

π1/2

tj
∫

t0

Ω (−A, tj − τ)

(tj − τ)1/2
dτ,

observe that

D
j
0 =

tj
∫

t0

Ω (−A, tj − τ)

(tj − τ)1/2
dτ ≤ 2t

1/2
j + 4

∞
∑

n=1

|−A|n
(

t
1/2
j + nπ1/2tau

1/2
1

)

= 2

(

1 + |A|

1 − |A|

)

t
1/2
j + 4

|A|

(1 − |A|)2
π1/2τ

1/2
1

and by

1 + |A| =
max

{

(ρ1c1κ1)
1/2 , (ρ2c2κ2)

1/2
}

(ρ1c1κ1)
1/2 + (ρ2c2κ2)

1/2
,

1 − |A| =
min

{

(ρ1c1κ1)
1/2 , (ρ2c2κ2)

1/2
}

(ρ1c1κ1)
1/2 + (ρ2c2κ2)

1/2
,

it follows

|E(tj)| ≤ ∆t
(ρ1c1κ1)

1/2

π1/2



Ct
1/2
j +

π1/2τ
1/2
1

2
(C2 − 1)



 ,

where

C =
max

{

(ρ1c1κ1)
1/2 , (ρ2c2κ2)

1/2
}

min
{

(ρ1c1κ1)
1/2 , (ρ2c2κ2)

1/2
} ,

so it is clear that (47) is at least a first order scheme.

Remark 2 The computation onC j

i− 1

2

is very expensive due the presence of a series

and the error function erf(·). An alternative approach is based on the following

relation based on Lagrange and mean theorem:

C
j

i− 1

2

=

2 + 4
∞
∑

n=1

(−A)n

{(

2n2τ1

x2
+ 1

)

exp

(

−
n2τ1

x2

)

−
2n2τ1

z0z1
exp

(

−
n2τ1

y

)}

(tj − ti)
1/2 + (tj − ti−1)

1/2
(48)

wherezi = (tj − ti)
1/2 andx andy are intermediate points in the interval[zi, zi−1].

If x andy are set to

x = y = zizi−1



Thin film temperature measurements 27

then(48) is not an exact relation but it reduce to

C
j

i− 1

2

≈

2 + 4
∞
∑

n=1

(−A)nexp

(

−
n2τ1

zizi−1

)

z
1/2
i + z

1/2
i−1

,

where fori = 1 becomes

C
j
1

2

≈
2

z
1/2
1

.

6.3 Implicit Cook and Felderman like method

A piecewise constant splinėqL(t) is build as in (29) and by substitution of (29)

in formula (42.b) instead oḟqs(t) produce fort = tj an approximate values for

Θ(tj , 0). The result is the following:

Θ(tj , 0) ≈
j
∑

i=1

(ti − ti−1)I
j

i− 1

2

q̇si− 1

2

,

I
j

i− 1

2

=

2 + 4
∞
∑

n=1

Anexp

(

−
n2τ1

zizi−1

)

z
1/2
i + z

1/2
i−1

,

(49)

which for all j > 0 is an implicit linear relation in the unknowṅqsi− 1

2

. Assuming

equality in (49) the following recurrence is produced:

q̇s 1

2

=
Θ(t1, 0)

(t1 − t0)I 1
1

2

,

...

q̇sk− 1

2

=

Θ(tk, 0) −
k−1
∑

i=1

(ti − ti−1)I
k
i− 1

2

q̇si− 1

2

(tk − tk−1)I k
k− 1

2

,

...

6.4 Algebraic method for two layer slab

Observing that

q̇sj ≈ q̇s(tj) = h (Θ∞(tj) − Θj) , (50)
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and combining (50) with (47) an approximation ofΘj is obtained. Taking this ap-

proximation as an exact value it follows:

Θj =
hΘ∞(tj) +

j−1
∑

i=1
(C j

i+ 1

2

− C
j

i− 1

2

)Θi

h + C
j

j− 1

2

,

this last equation constitutes a recurrence relation that permits to compute the dis-

crete surface temperature historyΘj .

7 Multi layers slab

The methods based on Laplace transform become difficult to handle forn > 2 lay-

ers and are extremely costly forn > 1. Denoting withns the number of temperature

samples, the cost of the Laplace Transform is ofO {n2
s}. This computational cost

can be reduced toO {ns log ns} by using Fast Fourier transform based techniques.

The precision of the approximate solution increases as the number of samples in-

creases and for a large number of samples the excess of precision cannot be nec-

essary. Thus, an alternative approach based on the finite elements approximation is

here proposed which is simple to implement and more flexible.The basic solution

algorithm can be used either to implement the direct or the indirect methods for

anm-Layers finite size slab. Instead of writem differential equations as in (3) for

Θ(t, z) the following functions can be defined

ρ(z, Θ) = ρi(Θ), zi−1 < z < zi, i = 1, 2, . . . , m

c(z, Θ) = ci(Θ), zi−1 < z < zi, i = 1, 2, . . . , m

κ(z, Θ) = κi(Θ), zi−1 < z < zi, i = 1, 2, . . . , m

(51)
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and using equations in (51) it is possible to rewrite both (3)and (4) in weak form

as follows:

ℓ
∫

0

(

ρ (z, Θ(t, z)) c (z, Θ(t, z)) Φ(z)
∂Θ(t, z)

∂t
+ κ (z, Θ(t, z)) Φ′(z)

∂Θ(t, z)

∂z

)

dz

= Φ(ℓ)κ (ℓ, Θ(t, ℓ))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=ℓ

− Φ(0)κ (0, Θ(t, 0))
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=0

(52)

The weak solution is the uniqueΘ(t, z) such that for all functionΦ in an opportune

functional space equation (52) is satisfied.

Due to the weak form of (52) the most natural way to approximate is the finite

elements discretization.

7.1 The Finite Elements numerical scheme

The Finite Elements methods are widely used for the solutions of many kind of PDE

(Zienkiewicz and Taylor; 1989) such as the parabolic ones in(52). This method

is based on the approximation of the solution in a finite dimensional subspace,

typically piecewise polynomials. In the present case the finite dimensional subspace

is constructed as the space of piecewise linear spline in a partition of the interval

[0, ℓ]. The interval[0, ℓ] is partitioned inn subinterval not necessarily of the same

size,

0 = z0 < z1 < z2 < · · · < zn−1 < zn = ℓ. (53)

The partitions (53) is chosen in such a way that inside the intervals[zi−1, zi] the

functionsκ(z, Θ), ρ(z, Θ) andc(z, Θ) are constant respect toz so that the slab can

be considered as composite ofn layers. In generaln > m so that many of the orig-

inal layers are split in others layers. Denoting withρi, ci andκi the corresponding
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function on the layer than

ρ(z, Θ) = ρi(Θ), zi−1 < z < zi, i = 1, 2, . . . , n

c(z, Θ) = ci(Θ), zi−1 < z < zi, i = 1, 2, . . . , n

κ(z, Θ) = κi(Θ), zi−1 < z < zi, i = 1, 2, . . . , n

The temperatureΘ(t, z) is approximated by using

Θ(t, z) ≈
n
∑

i=0

Θi(t)φi(z), (54)

where

φi(z) =



















































0 if z < zi−1

z − zi−1

zi − zi−1
if zi−1 ≤ z ≤ zi

zi+1 − z

zi+1 − zi
if zi ≤ z ≤ zi+1

0 if z > zi+1

,

φ0(z) =











z1 − z

z1 − z0
if z ≤ z1

0 if z < z1

, φn(z) =















0 if z < zn−1

z − zn−1

zn − zn−1

if z ≥ zn−1

,

(55)

using expansion (54) and standard finite elements approximation for (52) with base

(55) and boundary condition (8.a) and (9.b) the following ODE is obtained:

Θ0(t) = Θs(t),

n
∑

i=0

Θ′

i(t)Aij(Θ) +
n
∑

i=0

Θi(t)Bij(Θ) = 0, j = 1, 2, . . . , n.

The coefficientsAij andBij results as following:

Aij(Θ) =

ℓ
∫

0

ρ (z, Θ(t, z)) c (z, Θ(t, z)) φi(z)φj(z) dz,

Bij(Θ) =

ℓ
∫

0

κ (z, Θ(t, z)) φ′

i(z)φ′

j(z) dz.

(56)
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Trapezoidal quadrature rule is used instead of exact integrals for (56). The same

Aij andBij are used to denote such an approximation and takes the values:

Aij(Θ) =







Mi(Θi) if i = j

0 otherwise
,

Bij(Θ) =



























−Mi± 1

2

(Θi, Θi±1) if j = i ± 1

Mi+ 1

2

(Θi, Θi+1)) + Mi− 1

2

(Θi−1, Θi) if j = i

0 otherwise

,

where

M0(Θ0) = ρ0(Θ0)c0(Θ0)(z1 − z0)/2,

Mi(Θi) = (ρi−1(Θi)ci−1(Θi)(zi − zi−1) + ρi(Θi)ci(Θi)(zi+1 − zi)) /2,

Mn(Θn) = ρn−1(Θn)cn−1(Θn)(zn − zn−1)/2,

Mi+ 1

2

(Θi, Θi+1) = (κi(Θi) + κi(Θi+1)) /(2(zi+1 − zi)),

The semi-discrete discretization assume now the compact form:

Θ0(t) = Θs(t)

Mi(Θi)Θ
′

i(t) = Mi+ 1

2

(Θi, Θi+1)(Θi+1(t) − Θi(t))

−Mi− 1

2

(Θi−1, Θi)(Θi(t) − Θi−1(t)),

Mn(Θn)Θ′

n(t) = −Mn− 1

2

(Θn−1, Θn)(Θn(t) − Θn−1(t)),

(57)

Equations (57) is a semi-discrete approximation of equation (52) and constitute a

large system of initial value ordinary differential equations (ODE).

7.2 Time semi-implicit integrator

To solve system (57) any standard scheme for initial value ODE can be used. Con-

sider the following ODE:














dy

dt
= f(t, y),

y(0) = y0

(58)
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A simple scheme to approximate (58) is forward Euler scheme:

yn+1 = yn + ∆tf(tn, y
n),

Explicit schemes suffers of instability and in particular explicit Euler scheme ap-

plied to ODE (57) can produce temperature oscillations. Implicit Euler scheme have

good stability properties

yn+1 − ∆tf(tn+1, y
n+1) = yn, (59)

howeveryn+1 is not explicit and solution of (59) can be very time consuming. A

simple modification of implicit Euler scheme results in a relatively cheap stable

scheme. The resulting scheme by using the following shortcut

• Θj
i the approximation ofΘi(tj);

• M
j
i = Mi(Θ

j
i );

• M
j

i+ 1

2

= Mi+ 1

2

(Θj
i , Θ

j
i+1);

• ∆tj = tj+1 − tj

and applied to (57) is the following

Θj+1
0 = Θs(tj+1)

(

M
j
i

∆tj
+ M

j

i− 1

2

+ M
j

i+ 1

2

)

Θj+1
i − M

j

i− 1

2

Θj+1
i−1 − M

j

i+ 1

2

Θj+1
i+1 =

M
j
i

∆tj
Θj

i ,

M j
n

∆tj
Θj+1

n − M
j

n− 1

2

Θj+1
n−1 =

M j
n

∆tj
Θj

n,

Notice that a fully implicit Euler scheme hasM’s coefficients computed at time

tj+1 while this semi-implicit one hasM’s coefficient computed at timetj . It is easy

to see that the solution step involves the solution of a strictly diagonally dominant

tridiagonal system with positive elements on the diagonal and non negative else-

where. Then the coefficient matrix of the system is an M-matrix (see e.g. Axelsson

(1994) for the definition). It is easy to prove that the discrete solution satisfies the

discrete maximum principle (see Bertolazzi; 1998) so that the scheme is uncondi-

tionally stable. Moreover, if coefficientsM’s are independent of the temperature,

the discrete solution have a discrete analog of conservation law (6). The role on the



Thin film temperature measurements 33

integral (5) is done by the discrete quantity:

n
∑

i=1

ρi−1(Θ
j
i−1)ci−1(Θ

j
i−1) + ρi−1(Θ

j
i )ci−1(Θ

j
i )

2
(zi − zi−1)

which is the trapezoidal approximation of (5). This means that there is no internal

numerical loss or production of heat.

7.3 Algebraic Finite Elements method

According to the discretization procedure addressed in section 7.1 with this new

boundary conditions:

κ(0)
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=0

= −q̇s(t) = −h(Θ∞(t) − Θ(t))

κ(ℓ)
∂Θ(t, z)

∂z

∣

∣

∣

∣

∣

z=ℓ

= 0,

for t > 0, the following ODE is obtained

M0Θ
′

0(t) = M 1

2

(Θ1(t) − Θ0(t)) + h(Θ∞(t) − Θ0(t)),

MiΘ
′

i(t) = Mi+ 1

2

(Θi+1(t) − Θi(t)) − Mi− 1

2

(Θi(t) − Θi−1(t)),

MnΘ′

n(t) = −Mn− 1

2

(Θn(t) − Θn−1(t)),

As in section 7.1 the differential system can be approximated by a semi-implicit

Euler scheme as follows:
(

h +
M

j
0

∆tj

)

Θj+1
0 − M

j
1

2

Θj+1
1 =

M
j
0

∆tj
Θj

0 + hΘ∞(tj+1),

(

M
j
i

∆tj
+ M

j

i− 1

2

+ M
j

i+ 1

2

)

Θj+1
i − M

j

i− 1

2

Θj+1
i−1 − M

j

i+ 1

2

Θj+1
i+1 =

M
j
i

∆tj
Θj

i ,

M j
n

∆tj
Θj+1

n − M
j

n− 1

2

Θj+1
n−1 =

M j
n

∆tj
Θj

n,

(60)

By (60) for a given free stream temperatureΘ∞(t) and a heat transfer coefficienth

a temperature profile is generated. Since the discrete solution is parameterized by

h the discrete temperaturesΘj
i can be considered as function ofh. Moreover the
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derivative
dΘi

0

dh
satisfies

(

h +
M

j
0

∆tj

)

dΘj+1
0

dh
− M

j
1

2

dΘj+1
1

dh
=

M
j
0

∆tj

dΘj
0

dh
+ Θ∞(tj+1) − Θj+1

0 ,

(

M
j
i

∆tj
+ M

j

i− 1

2

+ M
j

i+ 1

2

)

dΘj+1
i

dh
− M

j

i− 1

2

dΘj+1
i−1

dh
− M

j

i+ 1

2

dΘj+1
i+1

dh
=

M
j
i

∆tj

dΘj
i

dh
,

M j
n

∆tj

dΘj+1
n

dh
− M

j

n− 1

2

dΘj+1
n−1

dh
=

M j
n

∆tj

dΘj
n

dh
,

this constitute a tridiagonal linear system in the unknown
dΘj+1

i

dh
, the coefficient

matrix is a diagonally dominant tridiagonal matrix with positive elements on the

main diagonal and non positive elsewhere, thus it is an M-matrix. It is well known

that an M-matrix is a monotone matrix i.e. all the componentsof its inverse are non-

negative. Thus, providing the right hand side is non-negative the solution is non-

negative. Observing that
dΘ0

i

dh
= 0 if Θ∞(tj) ≥ Θj

i (t) by induction it is possible to

prove that
dΘj

i

dh
≥ 0. As for the single layer slab the following function is defined

g(h) =
m
∑

i=0

(

Θs(ti) − Θi
0

)

δti

andh is chosen as the value for whichg(h) = 0. From
dΘj

i

dh
≥ 0 it is easy to

prove thatg(h) is a monotone decreasing function so that a uniqueh which satisfy

g(h) = 0 can be found for example by the secant scheme.

7.4 Choice of the mesh and experiment design

Consider the heat equation for a single layer where physicalparameters are inde-

pendent on the temperature:

∂

∂t
Θ(t, z) =

κ

ρc

∂2

∂z2
Θ(t, z)

the numerical scheme previously introduced is10 order in time and20 order in

space i.e. it has an error of the form:

ES∆t + EM∆z2 (61)
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where∆t = 1/fs beingfs the sampling frequency and∆z is the maximum size

of the Finite Elements cells. From (61) the total error depends on two different

contributions:

• An error due to the sampling frequencyfs; here referred as sampling errorSE =

ES∆t;

• An error due to the spatial discretization∆z; here referred as mesh errorME =

EM∆z2;

Consider the parameter

A =
ES

EM

∆t

∆z2

whenA ≫ 1 it means that the error is dominated by the low sampling rate or by

an excessive fine mesh. WhenA ≪ 1 it means that the error is dominated by the

coarse mesh or by an excessive sampling rate. The parameterA can be used to

optimize the mesh definition respect to the sampling frequency.

Normally the sampling rate is somehow determined by the hardware, so that from

(61) the sampling errorSE bounds the maximum achievable accuracy.

The mesh definition is normally chosen in order to introduce amesh errorME of

the same order of the sampling errorSE. However the sampling error is, in many

practical applications, lower than the error introduced byparameter uncertainty (i.e.

the values of the physical properties of the substrate givenfrom the manufacturer,

temperature measurement and so on). From the point of view ofthe experiment

designer it is evident that mesh can be coarsened according to such an inaccuracy

level.

It is worth to analyze the behavior of the error (61) as the sampling rate goes to∞

and the parameterA is fixed. From this hypothesis and (61) the error becomes

ES

fs

(

1 +
1

A

)
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and

∆z =

(

ES

EM

1

fs

)1/2

,

The cost of each advancing step is proportional the mesh sizewhich is in turn

proportional to1/∆z; being the total number of steps proportional to1/fs the total

cost is proportional tof 3/2
s while the accuracy from (61) is proportional to1/fs.

Because the total number of samplesns ∝ fs the computational cost isO
{

n3/2
s

}

and accuracy isO {1/n2
s} so that although the computational cost is apparently

asintotically high the cost versus accuracy is not so bad.

However we observe that the computational effort is extremely low also in real test

cases wherens ∝ 104 and for them the running time on a small PC is a few tens of

seconds.

Moreover the finite elements approach permits to treat easily also the nonlinear

cases when the temperature dependence of the physical properties cannot be ne-

glected. Such an extension is not straightforward for methods based on transforma-

tions.

8 Numerical Results

8.1 Code validation

In order to validate the presented approach an ideal signal has been used having a

know solution in the case of a semi-infinite slab with constant physical properties.

This signal has been derived from the following expression of the impinging heat

flux (George et al.; 1991)

q̇s(t) =











0 for t < 0

A + B cos 2πfqt + φ for t ≥ 0
(62)
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whereA is the step magnitude,B is the superimposed signal magnitude,fq is the

frequency on the superimposed signal andφ is the phase of the superimposed sig-

nal. The surface temperature history which generates such an heat flux is

π1/2 (ρcκ)1/2 Θs(t) = 2At1/2 +
B

f
1/2
q

cos 2πfqt + φFc

(

2 (fqt)
1/2
)

+
B

f
1/2
q

sin 2πfqt + φFs

(

2 (fqt)
1/2
)

(63)

and is valid with the above mentioned assumptions. Heat flux has been recon-

structed from temperature signal (63) using the two formulations of the Cook and

Felderman methods (implicit and standard one) and the finiteelements code with

various signal frequencyf0 and different sampling ratesfs. Both single and double

layers configurations have been tested according to the approaches of sections 5–6–

7. The test cases are listed in Table 1 Cases form1 to6 are related to the single layer

thin film having macor as substrate. The thickness of the layer was5 mm and the

test duration was1s. Figure 4 shows the solution of test cases1, 2 and3 when tem-

perature signal given in (63) is applied. Step like temperature signal is produced in

the flow stream. Results are presented in terms of non dimensional heat flux (ratio

of actual heat fluxQ by the expected heat fluxA) and non dimensional time scale

(t · fs) for the three test cases. After a short initial time all methods give an ex-

cellent reconstruction. Implicit Cook and Felderman response seems to reconstruct

the heat Heaveside signal better than Finite Elements and standard Cook and Fel-

derman. Initial peak is suppressed. Notice that in the initial part of the signal (step

region) Finite Element code reconstructs better than standard Cook and Felderman

but worse than implicit Cook and Felderman. As higher the sampling frequency as

faster the heat flux traces approach the actual value.

For a given accuracy requirement the size of the Finite Element mesh results fixed

according to the considerations of section 7.4. The computational effort grows

therefore linearly with frequency, while the better implementation of Cook and

Felderman has an higher grow rate. Thus Finite Elements results to be cheaper than

Cook and Felderman when data reduction of large data set is performed.
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Table 1

single layer

test A[W/m2] B[W/m2] fq[Hz] fs[Hz]

1 1000 0 0 10

2 1000 0 0 100

3 1000 0 0 1000

4 1000 500 4 10

5 1000 500 4 100

6 1000 500 4 1000

double layer

test A[W/m2] B[W/m2] fq[Hz] fs[Hz]

7 1000 0 0 10

8 1000 0 0 100

9 1000 0 0 1000

10 1000 500 4 10

11 1000 500 4 100

12 1000 500 4 1000

In Figure 5 (test cases4, 5 and6 of Table 1), solution of (63) is given respectively

for fs/fq = 2.5, 25, 50 andB/A = 0.5. The highest over estimation of the heat flux

is due, analogously to the first3 presented cases to standard Cook and Felderman.

Signal reconstruction is poor forfs/f0 = 2.5 for all methods. The step is perfectly

get from implicit method. Higher the ratiofs/f0, better is the reconstruction of
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oscillating part of the signal, however already atfs/f0 = 25 the reconstruction is

very good in maximum amplitude and phase. Therefore only thefirst part of test

6 is depicted in figure 5c in order to show the signal reconstruction just during the

initial step.

In order to validate the code in the case of double layer feature, the Finite Elements

discretization has been used to computeΘs(t) from (62).q̇s(t) has been afterwards

reevaluated with finite elements and Cook and Felderman methods.

Step like heat functions results (test cases7, 8 and9 of table 1) are given in Figure 6.

A value of

(ρ1c1κ1)
1/2

(ρ2c2κ2)
1/2

≈ 0.04

and (see Figure 2)

a

b − a
≈ 104

for the layers thickness ratio have been adopted. Maximum test duration was1 s.

Standard Cook and Felderman overestimates the actual heat flux. The absence of

peek in the Finite Elements solution is essentially due to the procedure used to ob-

tain the testing signals. On the same frequency base, longertimes are necessary to

approach the expected value of the heat flux compared to single layer cases. Os-

cillating test cases are depicted in Figures 7. Excellent reconstruction is performed

for f0/fs ratio bigger than25. Computational costs saves results to be even more

evident than single layer case when Finite Elements code is adopted.

8.2 Experimental heat flux data reduction

The Finite Elements solution technique was finally used to processes rough data

obtained from experimental facilities tests. In order to assess the performance for

signals having different characteristic, four surface temperature histories have been

selected. The test cases are listed in Table 2. Figure 8 show atypical tempera-
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test Facility – Location

13 Low Speed Tunnel – Trento University, Italy

14 CT2 Light Piston Isentropic Compression Tube – VKI, Belgium

15 H3 Mach 6 wind tunnel – VKI, Belgium

16 H3 wind tunnel – VKI, Belgium

Table 2

ture signal obtained in the short duration low speed tunnel (Mach < 0.1) of the

turbomachinery lab of the University of Trento. upilex layer of75 µm was used

bounded on a plexiglass wall of 15 mm thickness as supporting substrate. The film

was placed on the midpoint of the floor between two consecutive ribs. Further de-

tails are given in Battisti and Schmeer (1997). The samplingfrequency was500Hz.

Because of the very noisy temperature signal, high scatter appears in heat flux re-

duction trace either in Finite Elements and both Cook and Felderman methods. Due

to the summation in equation (27) and (31) these methods takes by for the longest

CPU time for largens.

The second investigated signal is taken from measurements performed in the Light

Piston Isentropic Compression Tube facility (CT2) at the von Karman Institute.

Details of the experimental rig and the sensor are given in Pelle and Arts (1997).

The temperature signal belongs to a single layer thin film (platinum over macor)

placed well down stream of the tripping wire of a flat plate. The sensor was sub-

jected to a0.7 Mach short duration flow stream. The surface temperature history is

depicted in Figure 9a. The three processing methods are reported in Figure 9b-d. A

good agreement results from their comparison.

The third test case was a compression ramp in the H3 Mach 6 windtunnel of the

von Karman Institute. Single layer thin film (platinum over macor) was used. Fig-

ure 10a shows the temperature evolution of the upper and lower faces of a machined
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macor model. Data were sampled at250Hz. The model was injected in the MAch

6 flow having a free stream temperature of about520K. Further details are given

in Marquet and Charbonnier (1998a-b). Right side Figure 10bshows the result

obtained with Finite Element code. Similar solution methodwas used at the von

Karman Institute for data reduction and the two solution (here not reported for seek

of brevity) does not show any consistent difference. The lower pictures 10c-d show

respectively the same temperature signal and the corresponding heat flux solution

but performed when a sampling rate of25Hz instead of the original250Hz are

used. A part of the inherent noise filtration effect, the Finite Element code seems

to perform (as expected from the previous validation results) an accurate heat flux

reconstruction.

When model back surface temperature significantly changes during the test, semi-

infinite assumption is not longer valid and the Cook and Felderman like techniques

cannot be safely used. Moreover if the model body even experiences significant

temperature rise, constant physical properties assumption can introduce further er-

rors in the solution. If the latter is the case either analog and Cook and Felderman

methods are not accurate and numerical discretization are forced. In Figure 11a

a typical example is presented. Temperature histories of the upper and lower sur-

face of the same model of test case15 measured by means of single layer thin

films (platinum over macor). The model was first heated up to550K by infrared

lamps, successively the lamps were switched off and the model was injected in

vacuum. Figure 11b shows the corresponding heat flux signal obtained by using

the Finite Elements code implemented with constant physical properties. Absolute

differences are less then10−3 respect to the solution obtained at the von Karman

Institute. When temperature variable properties are considered, a small difference

between the two solution becomes evident and results in a sligtly overestimation

of the heat flux during the heating phase and under estimationduring the cooling

one (as shown in Figure 11c). The maximum is of about2.5% when an heat flux of

about200000 W/m2 impinges.
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9 Conclusions

Common data reduction procedure heat transfer measurementin short duration

facility by means of single and double layer thin film, have been reviewed and

discussed. A simple Finite Elements discretization has been implemented and its

ability to accurately reconstruct signals of known testingfunctions (as Heaveside

signal with superimposed fluctuations) has been checked. Experimental not filtered

data of various sampling frequency and flow characteristic have been processed.

The implementation of temperature variable physical properties of the body has

been discussed for a typical test case when its influence on accuracy cannot be

neglected. Results seem to confirm the very good performanceof the code which

shows a very accurate signal reconstruction also at very lowsampling frequen-

cies. When semi-infinite slab assumption is not longer the case (i.e. leading edge

of blades) numerical discretization such as Finite Elements approach is not nego-

tiable. Further improvement of the code will be the development of a 2-D scheme

in order to consider problems where lateral conduction effect cannot be neglected,

and the evaluation of the influence of heat flux generated by Joule effect into the

sensor.
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