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Abstract

The impact of a bore on a wall generates hydrodynamic pressure and overturning bending

moment about the base of the wall. The knowledge of the hydrodynamic loading is crucial

in the rational design of protection structures. The aim of the present work is to present a

finite volume element method, combined with a Runge-Kutta scheme for time step advanc-

ing, that is capable of calculating the highly unsteady, incompressible, free surface flow

field due to the collision of a clear water bore on a vertical plane wall. The bore is as-

sumed to be generated as a dam-break wave and to propagate along a dry bed. The impact

phenomenon is modelled in two dimensions by a fully nonlinear potential approach. A dis-

crete formulation is implemented to trace accurately the pathline of the nodes on the free

surface. The experimental physical data were observed to have a poor repeatability in spite

of sharing the same initial conditions. The fact that realistic initial conditions are missing

did not allow a full comparison between the numerical solution and the experimental data;

other likely sources of discrepancies are also discussed. The present numerical approach

proved successfull in obtaining a quantitative evaluationof the physical quantities that are

of interest for civil engineers such as the maximum force acting on the wall. Air entrain-

ment in the bore is well developed; however, it is suggested that the thrust of the bore is not

remarkably changed by air entrainment as long as mean air concentration in the toe is less

than 0.3 .
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NOTATION

C Mean air concentration(/);

hf Bore depth at the impact time(L);

K Total number of nodes(/);

Lo Distance of influence(L);

M Clear water bore momentum flux(ML/T 2);

Mm Air–water bore momentum flux(ML/T 2);

N Number of nodes on the free surface(/);

Q Volumetric flowrate(L3/T );

S = (S1, S2) Parametric form of the free streamline(L);

t Temporal variable(T );

Tr Rise time(T );

u Horizontal component of velocity(L/T );

uo Velocity of the bore toe near the test wall(L/T );

v Vertical component of velocity(L/T );

V = (u, v) Velocity vector(L/T );

x Horizontal co–ordinate (along the flume)(L);

x = (x, y) Coordinate vector(L);

y Vertical co–ordinate (along the wall)(L);

Γs Free surface boundary(L);

Γw Impermeable wall boundary(L);

θ Free surface parametric coordinate(/);

ρ Liquid mass density(M/L3);

φ Potential function along the free surface(L2/T );

Φ Potential function(L2/T );

Ω(t) Time–dependent liquid computational domain(L2).
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1. Introduction

The phenomenon of the collision of a fluid mass with an obstacle has received much

attention in the literature not only for its social relevance, but also because it is of inter-

est to scientists involved in different research topics. Examples are sea–waves or tsunamis

impacting on breakwaters, hydrodynamic pressure on dams due to seismic waves, forma-

tion of glassy metals by a fluid jet and heat transfer from a jetfluid to a surface. A new

topic should be nowadays included in the above list, the impact of mud and debris–flows

on check–dams.

An exhaustive review of structures conceived to control thepropagation of debris–

flows is reported by Okubo et al. [1997]. Due to inertial effects, debris–flow collision does

generate dynamic pressure on structures together with the associated overturning bending

moment about the structure’s base. The knowledge of the dynamic loading is crucial in the

rational design of these transversal structures.

While hydraulic design of such a structures can be verified with reasonable accuracy

by physical modeling [Armanini and Trivellato, 1990], structural design related to dynamic

loading is still founded mostly upon both past experience and field observations.

The motivation of this work is twofold: on the one hand, it is believed that the complex

dynamics of the impact phenomenon can be described by a simple analytical approach.

On the other hand, it is desiderable to obtain wall force predictions that are useful to the

practicing engineer to carry out a rational design of protection structures.

The description of the physical phenomenon is presented in par. 2 while the analytical

problem is formulated in par. 3. Details about the implementation of the numerical scheme

are described in par. 4; results are presented in par. 5, which is followed by a discussion

and the relevant conclusions.

1.1. Literature review

The problem of a liquid mass colliding with a solid body is a broad subject which includes

relevant parts of fluid mechanics. Interest in this topic arose in the early decades of this
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century – see, for instance, the review by Korobkin and Pukhnachov [1988]. The impact of

a steady fluid jet has been studied in depth by many authors under more general hypotheses:

a review is found in Weber and Hureau [1999]. For a comprehensive review of the literature

concerning wave impact pressures, impact of water drops andthe water entry of a solid

wedge, see Cooker and Peregrine [1995]. The impingement of steady circular jets has been

thoroughly studied by Beltaos and Rajaratnam [1974]. The steady impact of a water wedge

which is assumed of infinite extent has been formulated in terms of similarity variables

[Cumberbatch, 1960]. The problem of determining the free surface of a two dimensional

jet of an ideal fluid has been solved by Peng and Parker [1997],while the evaluation of

wall shear stress, involving also compressibility effects, has been tackled by Phares et al.

[2000]. The above theories apply to steady state conditions.

As for unsteady collisions, the review of the literature does not give much assistance

in collecting useful informations to assess the dynamic loading experienced by a wall due

to the collision of a bore propagating on a dry bed, apart fromthe laboratory physical

experiments performed by Scotton [1996], which will be briefly described in par. 2, and

the theoretical approach proposed by Armanini and Scotton [1993] in case of debris–flow

collision.

One possibility for a theoretical approach was prompted by the resemblance that can be

conjectured between bore collision and hydrodynamic pressure on dams due to a horizontal

seismic movement. Considering a vertical rigid surface, Westergaard [1933] stated that the

maximum pressure occurs at the dam base, its maximum value being 0.742ρahf (whereρ

is the water mass density,a is the horizontal seismic acceleration,hf the depth of the liquid

bath), a result confirmed by means of the pressure–impulse theory [Cooker and Peregrine,

1995]. As a first approximation, the pressure due to the bore collision was conceived to be

due basically to the displacement experienced by the structure in the first quarter of the pe-

riod of a fictitious sinusoidal earthquake [Scotton and Trivellato, 1995b], the interest being

in fact only in predicting the maximum value of the dynamic pressure and not in studying

the whole temporal evolution of the wall pressure. According to the seismic model, the
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relevant scales are: the temporal scaleTr (the rise time, i.e. the time the maximum de-

celeration occurs) and the length scalehf . However,hf was demonstrated not to be the

proper length scale and was instead redefined as the maximum run–up height of the jet

after the impact [Scotton and Trivellato, 1995a]. A better interpretation of the experimental

data was then obtained (incidentally, the effects of a typical debris–flow collision could be

roughly compared to an 11 magnitude earthquake, which is beyond the maximum value of

the Richter classification).

Relevant applications of the mathematical model based on the pressure–impulse con-

cept have been proposed by Cooker and Peregrine [1995] in case of breaking sea–waves

striking a vertical rigid surface; by Korobkin and Peregrine [2000] to know the energy

distribution due to the impact of a half-submerged sphere; by Wood et al. [2000] for the

trapping of an air pocket and by Wood and Peregrine [2000] to account for a porous berm.

Among coastal engineers, the formula of Goda [1985] is popular in assessing wave

forces on breakwaters. The experimental results of Ramsdenand Raichlen [1990] are rele-

vant to assess the force experienced by a vertical wall due tothe impact of a bore generated

by a broken solitary wave and propagating over a liquid bath at rest. The presence of wa-

ter in the channel ahead of the surge does affect the shape of the wave tip as well as the

generation of forces [Cross, 1967]. The study of the impulsive motion of a flat plate in

an inviscid, compressible fluid has been carried out by Miles[1953] on the basis of the

acoustic approximation.

As for the numerical solutions, fully nonlinear potential flow computations have been

performed in literature using a large variety of methods forthe treatment of the free surface,

for a review of which see, among others, Beck [1999]. It is well known that locating the

free surface is by far the most demanding task in the analysisof moving free surface flows.

Numerical schemes which are helpful in solving this kind of problems are best classified

as Lagrangian and Eulerian schemes. Volume of Fluid (VOF) method is also popular and it

can be conveniently applied to existing numerical codes [Shin and Lee, 2000]. A numerical

study of the 2–D impact of a plunging wave on a rigid vertical wall, in the contest of
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potential flow, has been performed by Zhang et al. [1996], whoconsidered also the effect

of an air cushion trapped in between the plunger and the wall.Among the most accurate

boundary integral numerical methods, the one developed by Dold and Peregrine [1986] is

based on the Cauchy’s integral. Mohapatra et al. [2000] solved the Euler’s equations for

the impact of a bore propagating over a static liquid bath.

The literature devoted to the many occurrences of the impactphenomenon is large; the

above review shows that exaustive results on water impact have been collected, but none in

the case of a bore generated by a dam–break and propagating along a dry–bed. Further the

phenomenon of air entrainment in the bore rushing downstream has not been addressed.

This last effect can be significant in determing the bore thrust and in jeopardizing the relia-

bility of the extrapolation of the experimental results from the model scale to the prototype

scale.

2. Description of the phenomenon

Physical experiments were conducted at the Hydraulic Laboratory of the University of

Trento (Italy). The experimental tests were originally intended to simulate debris–flow col-

lisions on walls. The description of the experimental apparatus and of the comprehensive

experimental database are detailed in Scotton [1996] and inTrivellato and Scotton [2001].

The experimental apparatus comprised a 6 meter long tiltingflume. Flume slopes varied

from 0◦ through25◦. The flume cross–section was0.5 m wide and0.5 m deep. In the up-

stream part of the flume, a feeding box was arranged where either clear water or a mixture

of granular material and water could be accommodated. The mixture was released into the

flume by an impulsively opened flap–gate to generate a bore. Then the bore advanced in a

dry bed. The downstream part of the flume was made of a transverse wall that was suitably

instrumented with four gauges to measure impact pressures.The diameter of theflush–

to–the–wallpressure membrane was1 cm. A frequency response of250 Hz turned out to

be convenient in recording the unsteady phenomenon. The measured pressures reached
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25 kPa. In spite of the great effort dedicated in performing accurate experiments, a poor

repeatability was detected in the tests: in fact, the difference in pressure intensities among

experiments sharing the same initial conditions was as highas a 5% ÷ 15%. This obser-

vation is consistent with what already claimed by a number ofauthors (see, for instance,

Dold and Peregrine [1986], Zhang et al. [1996]). A significant scatter (which could even

go as high as± 50%) in peak pressures was documented by Kirkgöz [1982]. Poor repeata-

bility was mostly due to the ever–changing evolution of the breaking front, the structure

of which has strong 3-D patterns. As an obvious result, the modes of impact differ in

each experiment. A pure 2–D impact is expected to produce higher pressures than the 3–D

case. The measured duration of the impact was found to be in accordance with known

values of similar phenomena, e.g., plunging waves on vertical sea–walls [Ramsden and

Raichlen, 1990, Zhang et al., 1996]. Toe velocitiesuo and toe depthshf of the bore near

the wall were measured by a video–recording apparatus (SVHSvideo–camera, 25 frames

per second, shuttering time1/1000 s). The measurements ofunsteadytoe velocities were

performed by tracing the location of the most advanced part of the ever–breaking front

rushing downstream; clearly this procedure suffered from 3–D effects.

Due to the rounded geometry of the snout, any definition of thetoe is not satisfactory. In

the laboratory experiments, the undisturbed depthhf of the bore near the wall at the timeTr

(the time the maximum force occurs or, in other words, the time the maximum deceleration

occurs) was chosen as the significant depth. The knowledge ofTr is definitely of interest;

yet its measurement is neither easy nor univocal.

In the physical experiments the surge met the test wall at a normal incidence; according

to Whillock [1987], waves having a slight oblique angle of impact can originate higher

forces than normally incident waves.

As stated by Peregrine and Topliss [1994], the compressibility of pure water does not

play a significant role in this kind of impacts. Owing to air entrainment, the velocity of

sound in air–water mixtures can be even one order of magnitude less than that in pure

water; even so the compressibility of the mixture is expected to be unimportant in actual
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prototype collisions.

As opposed to near–breaking sea waves impacts, there is no trapping of an air pocket

between the surge and the wall. At the very beginning of the collision process, the upward

motion forming at the wall is of the flip–through type, according to the definition given

by Peregrine and Topliss [1994]. The flip–through is the upward jet originated – in a time

scale of milliseconds – by the liquid toe before the main bodyof the surge meets the rigid

surface.

Important secondary circulations are generated at the instant of impact and massive

air entrainment is observed to occur in the liquid toe beforeand after the impact. Due

to the above phenomena, the temporal evolution of the wall pressure was observed to be

pulsating. Typical features worth mentioning are:

(i) an initial sharp peak of pressure of short duration(∼ 10−1 s) due to the toe colli-

sion. High forces are generated from such maximum pressuresand a vertical jet of

remarkable height is formed;

(ii) a pressure of long duration(∼ 1 s), normally decaying with time, whose pulsating

behavior is due both to trapped air and to small scale vortices;

(iii) a peak pressure of short duration(∼ 10−1 s), due to the collapsing of the run–up jet

down onto the incoming surge at the bottom. This final peak hasbeen found to be

less severe than the first one, as opposed to the case of tsunamis and sea bores [Cross,

1967, Ramsden and Raichlen, 1990].

The diagram of the force experienced by the wall behaves basically in the same way

as the pressure evolution. The wall force was computed by integrating the pressure mea-

surements [Trivellato and Scotton, 2001]; the force diagram displays the rise timeTr, i.e.

the time the force attains its maximum. Yet in some instances– typically whenever the

flume slope is horizontal – it is difficult to make the proper choice among several maxima

occurring within a short period of time. So it was suggested thatTr be chosen whenever

one of the maxima of the wall force is in phase with the pressure first maximum of the

gauge whose elevation is nearest to the debris depth [Scotton and Trivellato, 1995a].
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As already claimed by Peregrine and Topliss [1994] in case ofsea waves, the measure-

ments reported in Trivellato and Scotton [2001] confirmed that the maximum wall force

does not occur at the time of maximum run-up height, the thin crest of which contributes

nothing to the force at the wall. The time of the maximum run–up follows the time of the

maximum force.

2.1. Air entrainment

The phenomenon of air entrainment was observed to be one of the major features occur-

ring during the propagation of the dam–break generated physical bore. The phenomenon

is readily visible by video camera frames in the ever–breaking front wave rushing down-

stream, which produces strong agitation in the flow. The entrained air is distributed all over

the rolling front wave and it is controlled by the intensity of the turbulence present in the

flow. In the front region, the air entrainment is extremely developed even for a surge prop-

agating along a horizontal bottom. As the front region contributes the most to the evolution

of the impact force at the wall, it is the most important region to consider.

In the rear region, the flow pattern is definitely more organized and most of the turbu-

lence generated in the toe region is being dissipated, resulting in a less chaotic flow. The

rear flow pattern evolves towards superficial self–aeration, i.e. air is entrained only at the

free surface, with a dramatic reduction of air content as compared to the front region. Self–

aeration occurs as soon as the turbulent velocity fluctuations are capable of overcoming

both the surface tension pressure and the rise velocity component of the entrained bubble.

Considering both of the above effects, Chanson [1993] proposed criteria for air entrain-

ment to occur. Air entrainment is also enhanced by the turbulence that is generated while

the impact is progressing. Air entrainment in the upward flowing jet is highly promoted at

the wall elevationLo, where the pressure along the wall normal is atmospheric.

Effects of air entrapment are flow bulking and the reduction of the bore density which

becomes smaller than that of the pure water. Further, the presence of air within the bound-

ary layers of the bottom and lateral walls causes a reductionof the shear stress and an
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increase of momentum.

Prediction formulae of literature are available only for uniform or gradually varied flows

and cannot be extended meaningfully to the present instanceof unsteady motion either in

the front region (air is entrapped like in a hydraulic jump orlike in breaking sea-wave) or

in the rear region.

It is desiderable for design purpose to have theoretical models to guide the proper scal-

ing of the phenomenon. Since the dominant effects are taken to be those of gravity and

inertia, the most obvious scaling between experiment and prototype is the Froude scaling.

However, air entrainment data measured on physical models cannot be extended straight-

forwardly to the prototype scale if laboratory models are operated according to the Froude’s

law, since the air release mechanism is not properly modelled by this law, apart from fur-

ther considerations regarding the reproduction of the turbulence field. In the prototype, en-

trained air persists both for relatively greater distancesand for longer times. Scaling laws

for model–prototype extrapolation are not fully reliable in case of sea–waves [Führböter,

1986], and the model–prototype extensibility of results isas yet an open problem in the

case of bore impact.

The pressures measured in laboratory physical experimentsshould correspond to

smaller values in the prototype where air entrainment is greater and the density of the

air–water mixture is less than that of the pure water. Peregrine and Thais [1996] found a

large reduction in pressure even for small air content.

In spite of the pressure reduction, the total force acting onthe wall is likely unmodified,

since air entrainment increases bulking even though it decreases the mixture density, so

that the total liquid mass involved in the collision – and thetotal momentum likewise – is

expected to be basically unchanged, at least when a steady state is attained.

The following simplified reasoning can be of help in understanding the constancy of the

momentum. In case of no air entrainment, the momentum flux of the bore as it advances
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along a horizontal bed is written as:

M = ρQuo = ρu2
ohf

The same quantity in case of air entrainment should be intended instead as:

Mm = ρmu2
ohfm

where the subscriptm stands for mixture (of air–water) and where it is assumed in the first

approximation thatuo is not changed by the presence of air. The depthhfm, called the

bulked depth, and the bulk densityρm are given by [Rao and Kobus, 1973]:

hfm =
hf

(1 − C)

ρm = ρ (1 − 1.1 C), 0.2 ≤ C ≤ 0.85

C =
Va

Va + Vw

whereC is the mean air concentration andVa, Vw are the volumes of air and water respec-

tively. Air is assumed to be distributed evenly throughout the flow in the above formulae,

which have been derived for chutes having rectangular crosssections. Both hypotheses are

valid in the present contest. So the ratio between the two momentum equations becomes:

Mm

M
=

1 − 1.1 C

1 − C
0.2 ≤ C ≤ 0.85

The bore thrust is not remarkably affected by air–entrainment as long as air concentration

in the toe is as high as, just to fix the ideas,0.3. Of course the above reasoning is correct

only if applied to steady state conditions but it seems reasonable to extend it in the first

approximation to unsteady motion as well.
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3. Analytical formulation of the problem

A clear water bore hitting upon a rigid, vertical, plane wallis considered herein. The

surge is generated by the dam–break method and propagates over a dry bed. Such a problem

can typically be formulated by assuming that at the initial time t = 0 the liquid mass meets

the wall; at this moment, the wall location, the liquid domain and the flow field are assumed

to be known. Fort > 0 the flow field together with liquid actions on the wall have to be

determined. As the very first consideration, it should be possible to evaluate the global

quantities of interest with reasonable accuracy from rather simplified assumptions of the

collision process, so that the closed form analytical solution of the phenomenon, if ever

attainable, is not important. It is to be reminded that thereseem to be no rigorous results

of general value in non–linear unsteady problems with both afree streamline (a streamline

which separates fluid in motion from fluid at rest) and a contact line. Some simplifying

hypotheses must therefore be formulated.

The first one concerns the compressibility of the fluid that can be safely ignored in

the present contest [Peregrine and Topliss, 1994]. Also, inertia forces are by far dominant

as compared to surface tension, viscosity and gravity forces at almost any stage of the

impact process, except for the last moments. The dynamic interaction of a structure with

a liquid jet should be solved in principle as a unified hydro–elastic system; however, the

elastic response of the structure would pose additional complexities in the computations

and therefore the wall has been regarded as a rigid body in thepresent simulation. After

all, calculated pressures would be on the safety side; in fact, a pressure overestimation of

only3%÷6%, as compared to the more realistic case of elastic wall, was claimed by Zhang

et al. [1996].

Hence, assuming further that the flow is irrotational and time–dependent in a simply

connected domain, bounded by impervious walls and a free streamline, it appears that

the essential features involved in the collision process can be described by a simplified

approach based on the potential flow theory. The velocity potential is basically the pres-
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sure impulse capable of accelerating instantaneously the fluid at rest [Lamb, 1932]. The

pressure–impulse concept can be applied when a body strikesa fluid or viceversa [Cooker

and Peregrine, 1995].

Figure 1: Sketch of the problem and notation

3.1. Domain of computation and boundary conditions

The computational liquid domainΩ(t) is assumed to be simply connected and time depen-

dent (fig. 1). Its boundary, defined as∂Ω(t), is composed by the free surfaceΓs(t) and by

the rigid, impermeable wall boundaryΓw(t):

∂Ω(t) = Γs(t) ∪ Γw(t)

Γs(t) = {S(t, θ) | 0 ≤ θ ≤ 1}

Γw(t) = {(x, 0) | S1(t, 0) ≤ x ≤ 0} ∪ {(0, y) | 0 ≤ y ≤ S2(t, 1)}
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whereS(t, θ), the components of which areS1(t, θ) andS2(t, θ), is the parametric form of

themovingfree streamline;θ is a parameter running in the closed interval[0, 1].

Recalling the considerations developed in the above paragraph, the velocity potential

Φ = Φ(t,x) satisfies Laplace’s equation in the domainΩ(t) at any timet, supplemented

by suitable boundary conditions:



















∇2Φ(t,x) = 0, x in Ω(t) andt ≥ 0

∇Φ(t,x) · n = 0 x onΓw(t) andt ≥ 0

Φ(t,S(t, θ)) = φ(t, θ) θ in [0, 1] andt ≥ 0

(3.1)

where∇2 = ∂2

∂x2 + ∂2

∂y2 , n is the outward normal to the boundary andφ(t, θ) stands for

the potential function along the free surface. The velocityvectorV = (u, v) has horizontal

u = u(t,x) and verticalv = v(t,x) components of velocity, apparently the derivatives of

the potential:

u(t,x) =
∂Φ

∂x
(t,x), v(t,x) =

∂Φ

∂y
(t,x)

3.2. Free surface dynamic conditions

The parametric equations of the free surface evolution can be derived knowing the velocity

field Vs onΓs(t):

∂S

∂t
(t, θ) = Vs(t, θ) (3.2)

The Euler’s equation can be manipulated to obtain the dynamic boundary condition on

the inviscid free surface. By taking advantage of the flow irrotationality and by inserting

the potential function in the Euler’s equation, integrating spatially and imposing that the

pressure acting on the free surface must equal the external ambient pressure (which is

taken as the reference pressure, assumed to be zero), the boundary condition on the free
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streamline is obtained:

∂φ

∂t
(t, θ) =

1

2
‖Vs(t, θ)‖2 (3.3)

where‖Vs‖ =
√

Vs · Vs is the familiar Euclidean norm. Condition (3.3) is known as the

non–linear dynamic condition on the free surface or also as Bernoulli’s equation. Equa-

tion (3.1) is used to computeVs(t, θ).

3.3. Initial condition

At the initial time t = 0 the surge strikes the wall and starts to move upward; the free

surface is therefore deflected up to a distance of influenceLo.

The actual initial condition is not known from the physical experiments. Instead, only

the toe bore velocity was measured, apparently a rough estimate of the bulk velocity.

Nonetheless it was decided to assign the same velocity field(uo, 0) for all x ∈ Ω(0) so

as to provide a test of the numerical scheme. As a result, the initial domain, i.e. the ap-

proaching bore, is a rectangle, since an inviscid liquid jetmust be straight whenever the

speed is the same on both boundaries [Milne-Thompson, 1968]. This is a good approxima-

tion since the physical toe was seen by video camera observations to be mildly elongated

along its direction of propagation. The initial condition provides the starting value of the

potential in the domainΩ(t):

Φ(0,x) = Φ0(x), x in Ω(0)

and on the free surface:

S(0, θ) = S0(θ), θ in [0, 1]

φ(0, θ) = Φ0(S0(θ)), θ in [0, 1]

where the potential of the initial uniform flow field isΦ0(x) = uox.
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4. The solution algorithm

4.1. The spatial discretization of the domain

The domain of definition ofθ is divided intoN − 1 equal intervals:

0 = θ1 < θ2 < · · · < θN = 1

The whole computational domainΩ(t) is approximated byΩh(t), whose closed boundary

∂Ωh(t) is piecewise linear.Ωh(t) is then triangulated by any mesh generator. In the present

work, the mesh generator code TRIANGLE (see Acknowledgements) has been used. TRI-

ANGLE is based on a frontal method and supports the area-constraint option. The code

generates Delaunay unstructured triangulations, giving nodal coordinates and topological

relations.

The nodes of the mesh belonging to the free surface are numbered from1 to N , while

the remaining ones are numbered fromN + 1 to K. N is set at the beginning of the

computation, whileK(n) is a number that is controlled by the partition generated at the

n−th time step.

The set of the generated triangles is assumed regular [Ciarlet, 1980, Zlamal, 1968];Tijk

is the generic triangle whose vertices arei, j andk; C = {Ci}K
i=1

is the set of covolumes

(see figure 2) related to the vertices ofΩh.

Some definitions are also useful for the sake of conciseness:

Si(t) = S(t, θi) φi(t) = φ(t, θi) Vi(t) = Vs(t, θi)

Evaluating (3.2) and (3.3) onθi, the following discrete formulation for the free surface
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location and potential is obtained:

∂Si

∂t
= Vi , i = 1, 2, . . . , N

∂φi

∂t
=

1

2
‖Vi‖2

, i = 1, 2, . . . , N

Figure 2: Internal covolume and boundary covolume

4.2. Time advancing

It is assumed that the free surface locationS
n
i and the potential along the free surfaceφn

i

are known at the timetn. The time marching is performed by the two stage second-order

Runge–Kutta scheme [Heun, 1900]:

4.2.1. Predictor step

• Estimating the free surface at timetn+1:

S
n+∗
i = S

n
i + ∆tVn

i , i = 1, 2, . . . , N

• Estimating the surface potential at timetn+1:

φn+∗
i = φn

i +
∆t

2
‖Vn

i ‖2 , i = 1, 2, . . . , N
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4.2.2. Corrector step

• Correcting the free surface at timetn+1:

S
n+1
i = S

n
i +

∆t

2

(

V
n
i + V

n+∗
i

)

, i = 1, 2, . . . , N

• Correcting the surface potential at timetn+1:

φn+1
i = φn

i +
∆t

4

(

∥

∥V
n
i

∥

∥

2
+
∥

∥V
n+∗
i

∥

∥

2
)

, i = 1, 2, . . . , N

4.3. The computation of V
n
i and V

n+∗
i

The free surface nodal velocitiesVn
i are estimated by solving numerically the prob-

lem (3.1). Likewise forVn+∗
i . Problem (3.1) is solved by a Finite Volume Element (FVE)

scheme after the meshing of the domainΩh(t). The meshing ofΩh(tn) is performed by

TRIANGLE, while the meshing ofΩh(tn+∗) is done by stretching the whole mesh com-

puted at the timetn.

4.4. Discrete Primitive Formulation

The Boundary Element Method (BEM) could have been implemented: however, owing

to the expected extension of the present model involving a heterogeneous computational

domain and more realistic initial conditions for the velocity field, the BEM is clearly not

suitable. For generality’s sake, therefore, a FVE scheme [Cai et al., 1991, Huang and Xi,

1998] has been implemented to solve problem (3.1).

The mesh manager useful to construct the FVE approximation has been performed

by means of P2MESH [Bertolazzi and Manzini, 1999], which is afree software package

conceived for the fast development of Finite Volume and Finite Element codes on 2–D

unstructuredmesh.

FVE schemes are based on a primitive formulation of problem (3.1). Integrating (3.1)

over covolumeCi and by taking advantage of the Gauss–Green formula togetherwith
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Neumann boundary conditions at timet = tn:

∫

∂Ci\∂Ω

∇Φ(tn,x) · n = 0, i = N + 1, 2, . . . , K (4.1)

the discrete formulation is obtained approximatingΦ by means of theP1 finite element

polynomials:

Φ(tn,x) ≈
N
∑

i=1

φn
i Ψn

i (x) +

K
∑

i=N+1

Φn
i Ψn

i (x)

Combining with (4.1):

K
∑

j=N+1

Φn
j

∫

∂Ci\∂Ω

∇Ψn
j (x) · n +

K
∑

j=N+1

φn
j

∫

∂Ci\∂Ω

∇Ψn
j (x) · n = 0, i = N + 1, 2, . . . , K

(4.2)

The result of (4.2) is a linear system ofK − N equations inK − N unknowns; owing to

the constancy of∇Ψn
j (x) over triangles, the system can be written as:

K
∑

j=N+1

A
n
ijΦ

n
j = −

N
∑

j=1

A
n
ijφ

n
j , i = N + 1, 2, . . . , K

where:

A
n
ij =

∑

Tijk∈T

∇Ψn
ijk ·

∫

∂Ci∩Tijk

n. (4.3)

and∇Ψijk is the value of the gradient ofΨi(x) overTijk :

Ψi(x) =
(x − xj)R(xj − xk)

2 |Tijk|
, ∇Ψijk =

R(xj − xk)

2 |Tijk |
, R =

(

0 1

−1 0

)
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The evaluation of the integral in (4.3) yields (fig. 3):

∫

∂Ci∩Tijk

n =
1

2
R(xk − xj),

Then, recalling thatRT
R = I, it is eventually obtained:

∇Ψn
ijk ·

∫

∂Ci∩Tijk

n =
(xk − xi) · (xj − xk)

4 |Tijk |

It is observed that the resulting system matrix is the same astheP1 finite element matrix

[Hackbusch, 1989, Huang and Xi, 1998].

i

j

k
n n1

n2

Figure 3: Sketch of the evaluation of the integral in equation (4.3)

5. Numerical simulations

The laboratory experimental impact chosen to test the numerical model is the clear

water bore detailed by Scotton [1996] and by Trivellato and Scotton [2001].

The quantities that have been assumed as the initial conditions of the numerical model

are uo = 2.77 m/s (toe velocity) andhf = 0.04 m (toe depth). Both quantities are the

picture of an instant of time and are not supposed to be the representative ones of a highly
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unsteady phenomenon. Instantaneous measurements of toe velocities do embody turbulent

streamwise fluctuations, which are believed to be as high as±10% of the average velocity.

In addition, assigning the initial velocity(uo, 0) to all of the nodes of the domain is no

doubt a rough approximation. Hence nothing more than a qualitative agreement should

be expected from the numerical comparison. Air entrainmentand gravity have both been

neglected in the numerical computations.

The upstream length of the rectangular liquid domain was set3 m. By trial and error

a convenient temporal step was found to be2.5 · 10−5 s. The typical number of generated

triangles was1000. The typical CPU time for a complete simulation, involving2 ·104 time

steps, was half an hour in a Digital DEC 1000A/500 machine.

5.1. Grid and free surface.

The highly unsteady evolution of the free surface turned outto be definitely the most diffi-

cult problem to manage. The grid is depicted in Fig. 4 at the times0.1, 0.2 and0.3 s, where

only about 40% of the computed region is shown.

The model predicts the moving free surface while verifying closely the mass conserva-

tion. It has to be pointed out that the accurate modeling of the free surface is not important

as far as the calculation of the wall pressure is concerned; in fact it was observed in the

present numerical simulation that different schematizations of the impacting liquid shape

affect the wall pressure evolution by a small amount. Cookerand Peregrine [1995] found a

relative insensitivity to the shape of the incident free boundary, which is a result of relevant

value in practical circumstances; this implies that even simple schematizations of the free

surface can be effective, since wall pressure is not much affected both by the jet shape and

by the liquid body further away from the rigid surface. Roughly at the time0.2 s a sort

of sawtooth instability starts to develop on the free streamline, but remains limited in size

and does not increase. At the end of the0.5 s simulation the code is still stable The saw-

tooth instability is not new in literature: since Longuet-Higgins and Stewart [1960] it has

been detected in other instances by many investigators. As amatter of fact, computational
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instabilities are known to be inherent in the inviscid, incompressible, free surface model.

Temporal discretization has no effect on the stability of the problem. Instead, spatial dis-

cretization of the domain promotes instabilities wheneverthe mesh is not symmetric, due

to the dispersive nature of the resulting discrete operator. Techniques have been devised to

enforce stability by inhibiting the growth of the sawtooth pattern: removal of high modes,

smoothing techniques and addition of a diffusive term to thekinematic boundary condi-

tion are in this contest among the most popular procedures, areview of which is found

in Robertson and Sherwin [1999]. The treatment of the numerical instabilities of the free

surface has not been pursued in this work, as the experimental free surface profile shows

a huge air entrainment, phenomenon which has not been accounted for in the numerical

simulation (Fig. 5). The computed free streamline evolves towards the steady state solution

(Fig. 6).
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Figure 4: grids at0.1, 0.2 and0.3 s (flow is from left to right)
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Figure 5: Measured and computed free surface (flow is from left to right)
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5.2. The wall pressure

The temporal evolution of wall pressure in two gauges is presented in Fig. 7. The

gauges are located at a distance of0.5 and6.5 cm along the vertical wall, starting from

the bottom floor. Since the gravity force has been neglected in the computation, the wall

pressure does not include the hydrostatic component. The tiny oscillations of the pres-

sure diagram are not physical: they are due to the nodes of themoving mesh (which is

rebuilt at any time step) passing through the gauge’s location. The time history evolves

towards the steady state roughly in a tenth of a second. The pressure is highest in the

lower region, clearly the stagnation region. The numerically computed pressure cannot

in principle be compared straightforwardly to the physically measured pressure due to the

dramatic difference of the initial conditions in the physical and numerical tests; anyway,

the estimate given by the numerical simulation for the wall pressure is approximately twice

the measured pressure for the lowest gauge, while the experimental pressure is fairly well

predicted in the6.5 cm gauge.

The pressure on the wall is illustrated in Fig. 8. There is basically no difference be-

tween the wall pressure from0.1 to 0.3 s. The pressure is most effective in the lower

region, clearly the stagnation region. The distance of influenceLo is the wall distance,

computed from the bottom, where the pressure distribution along the wall normal is hy-

drostatic, as it can be readily obtained by the Euler’s second equation written in streamline

coordinates; as a matter of fact, the free streamline is parallel to the wall fromLo upward,

at least after a time interval – normally tiny indeed – elapsed from the beginning of the

impact. In the experimental database [Trivellato and Scotton, 2001],Lo/hf ranges typ-

ically from 2.5 through 7 and in the present case studyLo/hf = 2.9 ; it can be seen in

Fig. 8 that the pressure is close to zero atLo/hf ∼ 4. Considering further the approxi-

mation involved in the physical measurement ofLo, this result compares favourably with

the solution pertaining to the steady impact [Milne-Thompson, 1968], where the distance

of positive pressures is four times the length scalehf . A pseudosteady state is presented

in Fig. 9 att = 0.3 s, where the symmetry about the bisetrix of the axes has been clearly
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reached by the numerical liquid jet. This symmetry feature is also embodied by the steady

state analytical solution [Milne-Thompson, 1968, Peng andParker, 1997]. The computed

wall pressure evolves towards the steady state (Fig. 10).
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Figure 11: Temporal evolution of the wall force

5.3. The wall force

The knowledge of the wall force is normally a more relevant quantity for design than the

maximum impact pressure. The force acting on the rigid surface is obtained by integrating

the pressure diagrams and its temporal evolution is illustrated in Fig. 11. The maximum

force occurs at the timeTr = 0.003 s. As far as the sea wave impact is concerned, it

is known thatTr is of the order of milliseconds or so [Peregrine and Topliss,1994]. The
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numerical model overestimates the maximum measured force by a factor of 1.4. A check to

the wall force numerical prediction is provided by the theoretical horizontal steady thrust

of the clear water boreM = ρQuo = ρu2
ohf , that is equal to307 N , a result in close

agreement with the asymptotic value of Fig. 11.

6. Conclusions

The numerical modeling of an inviscid dam–break surge as it advances over a dry bed

and strikes a rigid wall is new in literature. The knowledge of the dynamic loading due to

the bore impact is of interest to the civil engineer in a number of practical instances. In

the present study the problem has been tackled in the framework of the potential theory.

The flow is assumed to be irrotational and time–dependent in asimply connected domain,

bounded by impervious walls and a free streamline. In comparison with inertial effects,

the influence of viscosity, surface tension and gravity is supposedly small and has been

neglected. The liquid density is constant. Even if reduced to the potential theory level, the

problem still poses significant challenges due to the highlynon–linear nature of the free

surface boundary conditions. While the present numerical model needs to be thoroughly

corroborated by more realistic initial conditions, however it seems capable of reproducing

with sufficient accuracy the non–linear impact of a dam–break surge.

There seem there are reasons to believe that, at least as far as the wall force and bending

moment are concerned, meaningful predictions for the prototype can be obtained not only

from laboratory tests but also from numerical simulations,considering also the order of

magnitude of the errors involved in the experimental laboratory measurements.

The animation of the impact, based on the present numerical simulation, can be watched

and downloaded at the following URL :

http://www.ing.unitn.it/˜bertolaz
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