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A mathematical model is formulated in the framework of the potential

theory to describe the impact of a bore on a rigid wall. The solution of

the resulting free-interface flow problem is numerically approximated by

a tracking-method of new conception. Basically, the free interface sep-

arating liquid and air is assumed to be a free fluid line. Its shape and

location are tracked in time by numerically solving the evolutive equations

of a set of interface node positions and potentials. The evolutive equa-

tions are derived from the Bernoulli’s law and are integrated by the Crank-

Nicholson method. As the shape of the computational domain evolves in

time, the domain is fully re-meshed at each time step, and a new steady

mixed Dirichlet-Neumann Laplacian problem is formulated and solved by

applying the RT0 mixed finite element method. This potential flow solver

has been validated by simulating the liquid-solid impact of a bore against

a rigid wall and comparing the numerical results with the available exper-

imental measurements.

Key Words: Partial Differential Equation, Potential Flow Model, Mixed Finite Element Method, Front

Tracking Method, Computer Simulation, Free Surface Simulation

1. INTRODUCTION

Liquid–solid impact is a broad subject which includes relevant parts of fluid mechanics; interest in

this topic arose in the early decades of this century – see, for instance, the review in Reference [18].

Examples of such collision phenomena are wave maker problem; sea–waves or tsunami impacting on

breakwaters; hydrodynamic pressure on dams due to seismic waves; formation of glassy metals by

a fluid jet; heat transfer from a jet fluid to a surface and the impact of debris–flows on check–dams.
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These flows have important industrial applications as well as fundamental fluid mechanics in-

terest. Among these many examples, we are concerned with the numerical modeling of the bore

impact of a liquid mass onto a rigid wall. In such a case, we are interested in predicting the

hydrodynamic loading due to the impact of a bore on a wall because this quantity is crucial in

the rational design of protection structures. In particular, we address a new numerical method

that is suitable to describe the time evolution of 2-D free-surface flow configurations. The free

surface is an interface between two fluids with very different physical properties, typically a gas

and a liquid like, for example, air and water. Its shape and location continously evolve in time

and the dynamics is mainly governed by the inertia of the liquid, because of the large difference

in the densities of the two fluids: the ratio for water and air is about 103. Under this assumption,

the gas-liquid interface is not constrained, but freely moving and it makes sense to introduce the

wording of free-surface flows.

As both the interface shape and location can arbitrary change in time, the numerical simulation

of free-surface flows is a challenging problem. In the last decades several approximation methods

have been proposed in the literature to treat numerically free-surface flows. For convenience’s sake,

we can group these methods in the following main families: (i) the Lagrangian grid methods, (ii)

the Eulerian grid methods, and (iii) the hybrid Eulerian-Lagrangian methods.

The Lagrangian grid methods basically define and track a free surface by a grid which is em-

bedded in and moves with the fluid. As grid and fluid move together, the grid automatically

tracks free surfaces. The main limitation of Lagrangian methods is that it is difficult to track

surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to

track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE)

method. References [14, 15] may be consulted for early examples of these approaches. Among the

most pertinent and latest works that are based on the Lagrangian formulation, it is surely worth

mentioning those of References [1, 4, 10, 17], and in particular the one of Reference [33], where an

enhanced-discretization interface-capturing technique is developed for solving unsteady flows with

interface, such as two-fluid and free-surface flows.

A different approach is instead devised by the Eulerian methods. In such methods, the computing

grid is kept fixed and the fluid volumes are tracked in time instead of the free surfaces. The surfaces

may thus appear, merge and disappear as the fluid volumes break apart or coalesce. Among the

most popular methods that follow this approach, it is worth mentioning the Marker-And-Cell

(MAC) method [13] and the Volume-Of-Fluid (VOF) method [22, 23] and all their many variants

and improvements. The fluid volumes are tracked in the MAC method by a set of fluid marker

particles, while a special indicator function, which is the volume fraction field, is used in the VOF

method.

The marker particles of the MAC method have no volume, no mass or other significant physical

properties but move attached to the fluid and identify the grid cells that are filled, those that are

empty, and the “surface cells”. In particular, the latter ones are defined on the basis of a simple rule:

surface cells must contain at least one fluid marker particle and also have at least one neighboring

grid cell that is empty. The set of surface cells operatively defines the boundary of the volumes

filled by the fluid, and a portion of the free surface is assumed to be present within any surface

cell. The marker particles in the MAC methods are usually moved by locally-interpolated fluid

velocities. These velocities are determined by taking into account external free-surface boundary

conditions like the gas pressure and physical constraints like the fluid incompressibility and the

zero surface shear stress.

The volume fraction function of the VOF method is a step function having a value of either one

or zero and is used to locate the position of the fluid on the underlying Eulerian grid. Shape and
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location of surfaces, as well as surface slopes and surface curvatures, are reconstructed by using the

volume fraction of a given cell and the one of its neighbors. Surfaces lie in cells partially filled with

fluid or between filled and empty cells. The volume fraction function is updated by solving a time-

dependent convection equation whose numerical discretization applies standard shock-capturing

techniques to control numerical diffusion and dispersion and preserves the step function nature of

the indicator.

The Level Set method has been originally developed to solve moving interface problems [26] and

then applied to free surface fluid problems [32], particularly to the investigation of the motion of air

and water bubbles. The zero level set of a suitable scalar variable is used to determine the position

of the interface. This variable is continuous, smooth and monotonic in the direction normal to the

interface. Its value is updated in time by solving the advection equation that predicts theoretically

the interface shape evolution. Numerical diffusion can occur due to the discretization, thus resulting

in progressively worse recovery of the zero level set. Several modifications to the original method

have been envisaged recently to overcome this difficulty and improve its effectiveness.

The new method that we address in this paper can be considered as an interface tracking method.

Basically, the method is capable of following the interface position on the computational domain

over a long period of time and determining how interface movement affects the flow configuration.

As the interface equation is derived from the Bernoulli’s law, the numerical scheme relies on the

assumption that the gas-liquid interface be an equipotential surface for the liquid fluid and that the

potential theory apply. Shape and location of the free surface in the computational domain have

been defined operatively by introducing a set of surface nodes. The position of these free-surface

nodes is calculated in time by a special non-linear algorithm. The interface velocity field that must

be properly applied to the free surface nodes to update their position is given by solving a steady

mixed Dirichlet-Neumann Laplacian problem on a domain whose shape is continuously evolving

in time. The numerical approximation of the Laplace’s problem is given by using the lowest order

Raviart-Thomas (RT0) space in the framework of the Mixed Finite Element Method.

It is worth noting that the resulting numerical model can be assimilated to an hybrid Lagrangian-

Eulerian method where a set of special marker points are located at the interface to track explicitly

the free-surface movement. However, despite of the standard Eulerian methods, there is not a fixed

underlying mesh. Instead, the computational domain is re-meshed at any time step to take into

account the position and shape evolution of the free surface. We feel that this latter fact is a

crucial aspect of this new method and for this reason it deserves a thorough discussion.

First, it should be pointed out that the potential formulations and their numerical approxima-

tions have been investigated in the past decades by mainly using the Boundary Element Method

(BEM). The pioneering work of Reference [20] illustrates how an integral equation formulation

can be successful in numerically treating time-dependent non-linear problems. Other early appli-

cations are found in References [11, 12], where a time integration scheme based on a Taylor series

development is proposed. We also cite References [6, 21, 24, 25, 37] among the many more recent

papers using BEMs applied to potential theory-based models. In all these works, the BEM has

proved accurate and computationally efficient. The authors of these papers generally claim that the

computational efficiency is mainly due to the avoidance of regridding the flow region at each time

step during the simulation. Such a regridding is not required in the BEM but is instead needed to

follow the evolution of the free surface in other integration methods such as the Lagrangian ones

cited above.

Nonetheless, it is our experience that the regridding is not so expensive in terms of CPU time as

it might appear at a first glance when compared to the cost of other parts of the numerical scheme,

such as the resolution of the Laplace’s problem involved in the potential theory formulation [3]. We
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wish to point out that the software utilized in our solver implementation is public domain available

and absolutely general purpose; i.e., it has not been specifically designed to treat impact problems

with varying or adaptive meshes. In fact, the generation of the new mesh at each time step is

carried out by calling the mesh generator TRIANGLE, which has been incorporated in our C++

solver as a library sub-function. The mesh generator TRIANGLE is described in References [30,31]

and is distributed on-line at the URL of Reference [29]. All the geometrical and topological data

related to the mesh are obtained by using P2MESH [2], a publicly available collection of C++

classes suited to this purpose. On the basis of our practical experience, the generation of a new

mesh and related data usually takes only some percents of the total CPU time required by a

complete numerical simulation, the great part of the time-consuming calculations being devoted to

the resolution of the Laplace’s problem. Thus, it is our feeling that the method proposed in this

work may be a valid alternative to other numerical techniques (like the BEM) for the numerical

treatment of impact models, even if a comparative assessment of performance is beyond the scope

of the present paper.

The outline of the paper is as follows. In Section 2 we introduce the analytical formulation of

the mathematical model, which is based on the potential theory under the assumptions that the

fluid is incompressible and the flow is irrotational. In Section 3 we present the numerical algorithm

suitable to the time integration of the model equations. In Section 4, typical results of numerical

simulations are discussed to illustrate both the capability of the method in predicting the behavior

of free flow configurations on liquid-solid collision problems. Final remarks and conclusions are

offered in Section 5.

2. THE ANALYTICAL FORMULATION OF THE PROBLEM

In this section, we formulate the mathematical model that describes liquid-solid impact phe-

nomena. The mathematical model is based on the potential theory under the assumptions that

the fluid be incompressible and the flow irrotational.

The theoretical formulation is referred to the computational liquid domain Ω(t), which is a

simply connected and time dependent region of the two-dimensional space, see Figure 1. The

domain boundary is at least piecewise Lipschitz continuous smooth and is defined by

∂Ω(t) = Γs(t) ∪ Γw(t),

by including the moving boundary line

Γs(t) =
{

x | x = xs(t, θ), t ≥ 0, θ ∈ [0, 1]
}

,

and the rigid impermeable wall boundary line

Γw(t) =
{

x | x = xw(t, θ), t ≥ 0, θ ∈ [0, 1]
}

.

Both curves xs(t, θ) and xw(t, θ) are suitably parameterized by the scalar variable θ running in

the closed interval [0, 1]. These two boundary curves intersect at the two distinct moving nodes

S0(t, θ) and S1(t, θ) such that

S0(t, θ) = xs(t, 0) = xw(t, 1),

S1(t, θ) = xw(t, 0) = xs(t, 1).
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FIG. 1. Bore impact on a rigid wall: sketch of the problem and notation.

The fluid motion is described by the velocity potential field Φ = Φ(t,x) and the velocity field

v(t,x), that are the solution of the Laplace’s boundary value problem

∇Φ(t,x) = v(t,x), x ∈ Ω(t),

∇ · v(t,x) = 0, x ∈ Ω(t),
(1)

at any instant t ≥ 0, with mixed Dirichlet and homogeneous Neumann boundary conditions at

respectively Γs(t) and Γw(t)

v(t,x) · n(x) = 0, x ∈ Γw(t),

Φ(t,xs(t, θ)) = φ(t, θ), θ ∈ [0, 1],

where φ(t, θ) is the potential field at Γs(t).

The fluid energy conservation expressed by the Bernoulli’s law for the velocity potential Φ =

Φ(t,x) requires that

∂Φ

∂t
(t,x) +

1

2
|∇Φ(t,x)|

2
+
p(t,x)

ρ
+ gx · ẑ = 0, for x ∈ Ω(t), (2)

where p(t,x) is the fluid pressure field and ρ is the fluid density. Notice that p(t,x) = const when

x ∈ Γs(t) because the streamline xs(t, θ) is an isobaric curve.

Substituting the relation Φ(t,xs(t, θ)) = φ(t, θ) into (2), applying the chain rule of derivation,

and taking p = 0 at Γs(t) yields the final relation implemented in our numerical model, which is

∂φ

∂t
(t, θ) = ∇Φ(t,xs(t, θ)) · vs(t, θ) −

1

2
|∇Φ(t,xs(t, θ))|

2
− gxs(t, θ) · ẑ,

where vs(t, θ) is the velocity of the points at the free moving boundary line Γs(t), g is the scalar

gravity constant and ẑ is the unit vector along the vertical direction taken positive upward. Clearly,
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there holds

∂xs

∂t
(t, θ) = vs(t, θ),

for any t ≥ 0, and θ ∈ [0, 1].

The closure of this model requires the knowledge of vs(t, θ) and ∇Φ(t,x). Assuming that the

curve xs in the definition of Γs is a free streamline and introducing a suitable parameterization

yield the required model equation. Let ξ(t, ω) be the parametric equation of a fluid streamline,

with ω ∈ [0, 1] the scalar parameter running over the curve. Clearly,

∂ξ

∂t
(t, ω) = ∇Φ(t, ξ(t, ω)).

Let us introduce a re-parameterization of the streamline curve of the form

xs(t, θ) = ξ(t, ω(t, θ)).

By applying the chain rule, we have

∂xs

∂t
(t, θ) =

∂ξ

∂t
(t, ω(t, θ)) +

∂ξ

∂ω
(t, ω(t, θ))

∂ω

∂t
,

= ∇Φ(t, ξ(t, ω)) +
∂ξ

∂ω
(t, ω(t, θ))

∂ω

∂t
,

= ∇Φ(t,xs(t, θ)) +
∂ξ

∂ω
(t, ω(t, θ))

∂ω

∂t
.

Finally, by using

∂xs

∂θ
(t, θ) =

∂ξ

∂ω
(t, ω(t, θ))

∂ω

∂θ
(t, θ),

and by introducing the scalar field

s(t, θ) =

[

∂ω

∂θ
(t, θ)

]−1
∂ω

∂t
(t, ω(t, θ))

we get the following model equation

vs(t, θ) = ∇Φ(t,xs(t, θ)) + s(t, θ)
∂xs

∂θ
(t, θ). (3)

The scalar field s(t, θ) in equation (3) is representative of the chosen parameterization, and is

used to control numerical instabilities of the free-boundary line. This purpose has been pursued

in this work by setting

s(t, θ) = ε

∣

∣

∣

∣

∂2xs

∂s2

∣

∣

∣

∣

∣

∣

∣

∣

∂xs

∂θ

∣

∣

∣

∣

−1

(4)

in the evolution equation (3) where s(θ) =

∫ θ

0

|dxs/dθ| dθ is the arc length, and ε a coefficient

which is linearly decreasing with the mesh size (see the beginning of the next section for a more

precise definition). As the initial fluid state is known, we obtain the value of the potential field at

t = 0, that is

Φ(0,x) = Φ0(x), x in Ω(0).
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The initial state of the free boundary line Γs(t) is similarly given by

xs(0, θ) = xs
0(θ), θ in [0, 1],

φ(0, θ) = Φ0(x
s(θ)), θ in [0, 1],

where xs
0(θ) is a suitable parametric form of a free streamline taken at t = 0.

3. THE NUMERICAL MODEL

In this section, we formulate the numerical model suitable to describe the liquid-solid impact of

a bore against a a rigid vertical wall. This numerical model relies on the potential based model

of the previous section. The three next subsections focus on distinct aspects of the numerical

algorithm. In the first subsection, we describe how our numerical method evolves in time the

shape of the free surface separating air and water. In the second subsection, we briefly describe

the mixed finite element solver that computes the approximate flow field within Ω(t). Finally, in

the third subsection, we report some details on the Least Squares-based reconstruction algorithm

that is implemented in the present solver to improve the approximation of the shape of the free

surface.

3.1. The free surface moving algorithm

The domain of definition of θ is divided into N sub-intervals [θi, θi+1], with θi = i/N for

i = 0, . . . , N . For the sake of conciseness, in all the formulae of this section the node index i is

running over the whole node set, i.e. i = 0, . . . , N . These definitions are also useful:

xi(t) = xs(t, θi), xn
i = xs(tn, θi),

φi(t) = φ(t, θi), φn
i = φ(tn, θi),

si(t) = s(t, θi), sn
i = s(tn, θi),

where tn is the n-th time level. The mesh-dependent coefficient in the definition of s(t, θi) given

in (4) is ε =
1

2N
. The node positions and potentials on the free boundary line satisfy the time-

dependent set of discrete equations:

∂xi

∂t
= ∇Φ(t,xi) + si(t)

xi+1(t) − xi−1(t)

θi+1 − θi−1
,

∂φi

∂t
=

1

2
|∇Φ(t,xi)|

2
+ si(t)

xi+1(t) − xi−1(t)

θi+1 − θi−1
· ∇Φ(t,xi) − gxi · ẑ.

It is assumed that the free boundary line location xn
i and the potential along the free boundary

line φn
i are known at time tn. The time marching is performed by the Crank-Nicholson method [9]

by evaluating node positions at the free boundary line and the boundary potentials at time tn+1
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at the node labeled by i:

xn+1
i = xn

i +
∆t

2

[

∇Φ(tn+1,xn+1
i ) + ∇Φ(tn,xn

i )
]

+
∆t

2

[

sn+1
i

xn+1
i+1 − xn+1

i−1

θi+1 − θi−1
+ sn

i

xn
i+1 − xn

i−1

θi+1 − θi−1

]

, (5a)

φn+1
i = φn

i +
∆t

4

[

∣

∣∇Φ(tn+1,xn+1
i )

∣

∣

2
+ |∇Φ(tn,xn

i )|
2
]

+
∆t

2

[

sn+1
i

xn+1
i+1 − xn+1

i−1

θi+1 − θi−1
· ∇Φ(tn+1,xn+1

i ) + sn
i

xn
i+1 − xn

i−1

θi+1 − θi−1
· ∇Φ(tn,xn

i )

]

−g
∆t

2

[

xn+1
i + xn

i

]

· ẑ. (5b)

The implicit nature of the Crank-Nicholson scheme calls for an iterative procedure to be started

up with the initial values x
n+(0)
i = xn

i and φ
n+(0)
i = φn

i . The derivation of this iterative procedure

follows. First, we introduce the compact notation

(

x

φ

)n+1

i

=

(

xn+1
i

φn+1
i

)

and the mapping

F

[

(

x

φ

)n+1

i

]

=























+
∆t

2

[

∇Φ(tn+1,xn+1
i ) + ∇Φ(tn,xn

i )
]

+
∆t

2

[

sn+1
i

xn+1
i+1 − xn+1

i−1

θi+1 − θi−1
+ sn

i

xn
i+1 − xn

i−1

θi+1 − θi−1

]

+
∆t

4

[

∣

∣∇Φ(tn+1,xn+1
i )

∣

∣

2
+ |∇Φ(tn,xn

i )|
2
]

−
∆t

2

[

sn+1
i

xn+1
i+1 − xn+1

i−1

θi+1 − θi−1
· ∇Φ(tn+1,xn+1

i )

+sn
i

xn
i+1 − xn

i−1

θi+1 − θi−1
· ∇Φ(tn,xn

i )
]

− g
∆t

2

[

xn+1
i + xn

i

]

· ẑ.























that allows equations (5a-5b) to be re-written in the more compact form:

(

x

φ

)n+1

i

=

(

x

φ

)n

i

+ F

[

(

x

φ

)n+1

i

]

. (6)

Let us assume that the solution of (6) is known at the iterative step n + ℓ/L. The fixed-point

algorithm is built by applying a two-stage relaxed predictor-corrector method. The predictor-

stage solution labeled by the super-script “n+ (ℓ+ 1)/L, ⋆” is given by

(

x

φ

)n+(ℓ+1)/L,⋆

i

=

(

x

φ

)n

i

+ F

[

(

x

φ

)n+ℓ/L

i

]

.
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The corrector-stage solution is given by introducing the relaxation parameter α and using the

relation

(

x

φ

)n+(ℓ+1)/L

i

=

(

x

φ

)n+ℓ/L

i

+ α

[

(

x

φ

)n+(ℓ+1),⋆

i

−

(

x

φ

)n+ℓ/L

i

]

,

= α

(

x

φ

)n

i

+ (1 − α)

(

x

φ

)n+ℓ/L

i

+ F

[

(

x

φ

)n+ℓ/L

i

]

.

The fixed-point algorithm takes the final form

x
n+(ℓ+1)/L
i = αxn

i + (1 − α)x
n+ℓ/L
i

+α
∆t

2

[

∇Φ(tn+ℓ/L,x
n+ℓ/L
i ) + ∇Φ(tn,xn

i )
]

+α
∆t

2

[

s
n+ℓ/L
i

x
n+ℓ/L
i+1 − x

n+ℓ/L
i−1

θi+1 − θi−1
+ sn

i

xn
i+1 − xn

i−1

θi+1 − θi−1

]

, (7a)

φ
n+(ℓ+1)/L
i = αφn

i + (1 − α)φ
n+ℓ/L
i

+α
∆t

4

[

∣

∣

∣
∇Φ(tn+ℓ/L,x

n+ℓ/L
i )

∣

∣

∣

2

+ |∇Φ(tn,xn
i )|

2

]

+α
∆t

2

[

s
n+ℓ/L
i

x
n+ℓ/L
i+1 − x

n+ℓ/L
i−1

θi+1 − θi−1
· ∇Φ(tn+ℓ/L,x

n+ℓ/L
i )

+sn
i

xn
i+1 − xn

i−1

θi+1 − θi−1
· ∇Φ(tn,xn

i )

]

− αg
∆t

2

[

x
n+ℓ/L
i + xn

i

]

· ẑ. (7b)

where ℓ = 0, 1, . . . , L− 1 is the sub-iteration index at each time step, L is the number of iterations

required to achieve convergence, α = 1/2 is the relaxation parameter, and Φ(tn+ℓ/L,x) is the

solution of the mixed boundary value Laplace’s problem (1), with Dirichlet condition at Γs(tn+ℓ/L)

given by

Φ(tn+ℓ/L,xs(tn+ℓ/L, θi)) = φ
n+ℓ/L
i .

The solution Φ(tn+ℓ/L,x) is numerically approximated at tn+ℓ/L on the mesh triangulation

Ωh(tn+ℓ/L) covering the computational domain Ω(tn+ℓ/L). The number of iterations L that are

needed to achieve convergence in the fixed-point iterative algorithm (7a-7b) generally depends on

the time-step iterative level n. At any time step tn, the complete re-meshing of Ωh(tn) is per-

formed, while the meshing of Ωh(tn+ℓ/L) for ℓ > 0 is done by stretching the whole mesh computed

at the time tn. Convergence is achieved for values of L that are typically less than 10.

3.2. A mixed finite-element method for Laplace’s equation.

The coupled system of equations (1) in the potential Φ and the velocity field v has been approx-

imated by a mixed finite-element approach. In this section, we shortly review some basic ideas

underlying the numerical method, referring to the literature for a detailed exposition.
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The weak formulation of problem (1) for any fixed t > 0 in the domain Ω(t) reads as

Find v ∈ V and Φ ∈ L2(Ω) such that
∫

Ω

v ·w dx +

∫

Ω

Φ∇ · w dx =

∫

Γs

φw · n ds, ∀w ∈ V ,

∫

Ω

(∇ · v)ψ dx = 0, ∀ψ ∈ L2(Ω),

(8)

where the test functions w are taken in the functional space

V = {q |q ∈
(

L2(Ω)
)2
, ∇ · q ∈L2(Ω), q · n|Γw(t) = 0}

and ψ in L2(Ω), which is the usual space of square-integrable functions.

The mixed finite element discretization is given by re-formulating (8) on the lowest-order Raviart-

Thomas space Vh ⊆ V

Vh =

{

w ∈
(

L2(Ω)
)2
, w(x)|T = γx + δ, ∀T ∈ Ωh α ∈ R, δ ∈ R

2,

∫

eij∩Γs(t)

w · n = 0

}

,

and the piecewise-constant space Qh ⊆ L2(Ω)

Qh = {ψ(x) : Ω 7→ R, ψ(x)|T = const, ∀T ∈ Ωh} .

These finite dimensional spaces are defined on a suitable mesh Ωh, that is a collection of disjoint

non-empty and non-overlapping triangles {Tk} whose union for k = 1 . . .NT covers internally Ω(t).

The parameter

h = max
T∈Th

diam(T )

is the mesh size. The sequence of meshes for h 7→ 0 forms a family of triangulations of Ω(t), that is

assumed conformal and regular in the sense of Ciarlet [7, page 132], i.e. triangles do not degenerate

as h 7→ 0. It turns out that the space sequences of Vh and Qh for h 7→ 0 are respectively dense

in V and L2(Ω). We refer to [5] for a detailed presentation of the theoretical properties of this

approximation framework.

Let {ej}j=1,...,Ne
be the set of the edges of T , where we exclude the edges lying on Γw(t). The

basis functions wj ∈ Vh are defined by the relations [5]:

∫

ei

wj · ni ds =

{

1, for i = j

0, for i 6= j

where ni is the unit vector orthogonal to the edge ei. Thus, we have Ne degrees of freedom,

which can be interpreted as the lowest-order momentum of the normal component of v. The basis

functions {ψk}k=1,NT
for Qh are such that ψk = 1 on Tk and ψk = 0 on Ω(t) \Tk. The number of

degrees of freedom of Qh is equal to the number of triangles of the mesh NT .

The mixed finite element approximation results from substituting v(·,x) and Φ(·,x) by the

expressions for vh(x) and Φh(x) as linear combination of the basis function {wj} and of {ψk}:

Φh(x) =

NT
∑

k=1

ζkψk(x), vh(x) =

Ne
∑

j=1

ujwj(x) ,
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where {uj}j=1... Ne
and {ζk}k=1... NT

are the discrete unknown vectors associated with the velocity

and the potential respectively. These unknown vectors are the solution of the augmented linear

system
[

M A

AT 0

] [

{uj}

{ζk}

]

=

[

{qj}

0

]

(9)

where M, A, and q are defined as follows

Mij =

∫

Ω(t)

wi · wj dx,

Aij =

∫

Ω(t)

(∇ · wi)ψj dx,

qj =

∫

Γs(t)

φwj · n ds.

The linear algebraic problem (9) is solved by applying the routine MA57 of the HSL-2000 li-

brary [16].

3.3. Least Square Reconstruction of Boundary Velocities and Potentials

Let us introduce the sets σi and Vi that are respectively the set of the triangular cells incident

the i-th boundary node and of the mesh vertices directly connected to xi. On the mesh patch

∪j∈σi
Tj we locally reconstruct the potential solution by assuming that the linear dependence on

x

φ(t,x) = φi(t) + vi(t) · (x − xi), x ∈ ∪j∈σi
Tj ,

holds when φi(t) and vi(t) are the minimizers of the quadratic functional

E(t) =
∑

j∈σi

|Tj | [φi(t) + vi(t) · (xj − xi) − φj(t)]
2 +

+
∑

k∈Vi

|eik| [(vi(t) − vik(t)) · nik]
2
.

4. NUMERICAL EXPERIMENTS

A clear water bore hitting upon a rigid, vertical, plane wall is considered. The surge is generated

by a dam break and propagates over a dry horizontal bed. This impact phenomenon has been

extensively investigated and experimental results have been collected in References [28, 35]. The

interested reader can also found a classification for bore impact in Reference [34]. Basically, the

aim of this section is to verify whether the new numerical approach based on a mixed finite element

potential flow solver can describe the complex dynamics of the bore impact; and, if so, to what

extent can a potential model be accurate in obtaining the wall pressure behavior, whose knowledge

is crucial in the rational design of transversal structures. Such a liquid-solid impact problem can

be typically formulated by assuming that at the initial time t = 0 the liquid mass meets the wall.

At this precise moment, the wall location, the liquid domain and the flow field are assumed to

be known. Instead, for t > 0 the flow field together with liquid actions on the wall have to be

determined.

The model presented in section 2 to describe mathematically the collision process is true under

some simplifying hypotheses that we discuss below. The first one concerns the compressibility of
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pure water that does not play a significant role in this kind of impact [27]: owing to air entrainment,

the velocity of sound in air–water mixtures can be even one order of magnitude less than that in

pure water; even so the compressibility of the mixture is expected to be unimportant in actual

prototype collisions. Also, at least in the initial stage of the impact, inertia forces are by far

dominant as compared to surface tension, viscosity and gravity forces at almost any stage of the

impact process. The dynamic interaction of a structure with a liquid jet should be solved in

principle as a unified hydro–elastic system; however, the elastic response of the structure would

pose additional complexities in the computations and therefore the wall has been regarded as a

rigid body in the present simulation. After all, calculated pressures would be on the safety side; in

fact, a pressure overestimation of only 3% ÷ 6%, as compared to the more realistic case of elastic

wall, was claimed by [36]. Hence, assuming further that the flow is irrotational and time–dependent

in a simply connected domain, bounded by impervious walls and a free streamline, it is clear that

the essential features involved in the collision process are described by the simplified approach

based on the potential flow theory described in section 2.

The laboratory experimental impact chosen to test the numerical model is the clear water bore,

detailed in References [28] and [35]. The initial condition for the whole flow field is not known from

the physical experiments. Instead, only the toe velocity, which is apparently a rough estimate of

the bulk velocity, was measured, providing a value U = 2.77 m/s. It should be pointed out that the

measured velocity is the picture of an instant of time and can hardly represent a highly unsteady

phenomenon. It is also to be recalled that the measurements of instantaneous toe velocities were

performed by tracing the location of the most advanced part of the ever–breaking front rushing

downstream. Therefore, toe velocities do embody huge turbulent stream-wise fluctuations.

The complete simulation of the dam-break surge, starting from the removal of the gate and

proceeding towards the impact wall, clearly provides a reasonable flow field to start the calculation

of the impact. Such a flow field is calculated by using the freely available Shallow Water flow

solver CLAWPACK, which is run until the bore arrives at the wall. More details on this software

package are available at the URL of Reference [19]. The height field h(x, t) (see Figure 1), which

is obtained by solving the initial Shallow Water problem, also provides a good approximation of

the initial computational domain. As it was observed in the video pictures of the experiments, the

shape of this computational domain has a strong resemblance with the mildly elongated physical

toe when the collision starts to take place.

In order to validate the prediction capability of the physical and numerical model presented in

this paper, we simulated four different experiments that are detailed in References [28] and [35].

The four experiments differs for the height hf of the surge that is initially at rest before the removal

of the gate; see also Figure 1. For hf = 10, 20, 30 and 40, two sets of normalized experimental

measures of the wall force are available and can be used for comparison with the force that is

numerically predicted by the model. By trial and error a convenient temporal step is found to

be 10−4 seconds. The typical number of generated triangles is 1000. The typical CPU time on a

500 Mhz processor computing machine is half an hour for a complete simulation involving about

3.5 · 103 time steps.

Figures 2 and 3 shows the free surface profile evolution every 5 ms and starting from t = 0.

The computer simulations is arrested when the free surface that is detaching from the wall collides

against itself. The last profile is displayed at respectively T = 0.3 s, 0.45 s, 05 s and 0.65 s for the

four simulations for hf = 10, hf = 20, hf = 30 and hf = 40. A comparison between the profiles of

the simulated free surface with the real one generally shows a clear discrepancy. The discrepancy

is likely due to the huge air entrainment, phenomenon which has not been accounted for in this

model.
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Instead, the time-dependent impulsive increasing of the wall force, which is the most relevant

quantity for engineering design, is predicted quite well. This fact is clearly evident in Figures 4

and 5, that illustrate the comparison between the normalized experimental time series and the

numerical predictions. for the same four simulations. In this pictures, the force predicted by the

model has been compared against the experimental force measured in two distinct experiments

and obtained by integrating the pressure diagrams, [35]. It is important to mention that the model

predicts the moving free surface while verifying closely the mass conservation, the maximum error

being well less than 1%. It has also to be pointed out that the accurate modeling of the free surface

is not important as far as the calculation of the wall force is concerned. In fact, it can be observed

in all these numerical simulations that different schematizations of the impacting liquid shape affect

the wall force evolution by a small amount. This result is not new in literature: the authors of

Reference [8] found a relative insensitivity to the shape of the incident free boundary, which is a

result of relevant value in practical circumstances. This implies that even simple schematizations

of the free surface can be effective, since wall pressure is not much affected both by the jet shape

and by the liquid body further away from the rigid surface. Finally, Figures 6-10 shows the detail

near the wall of the time dependent evolution of the computational mesh and the pressure field for

the complete simulation run when hf = 40.

5. CONCLUSIONS

A new numerical procedure has been developed and presented for the analysis of the motion of

free-surface flow configurations in liquid-solid impacts. The method approximates the solution of a

mathematical model that is formulated on the basis of the potential theory. A mixed finite element

scheme using the lowest-order Raviart-Thomas space is implemented for solving the Laplace’s

equation in the potential model. This scheme is non-linearly coupled with an implicit time-stepping

technique for the temporal evolution of the node position at the free surface in accord with the

Bernoulli’s law. A full re-meshing of the computational domain is required at each time-step to

track the motion of free-surface flows. Despite the appearance, the re-meshing step does not cost

excessively, in particular when compared to the cost of the numerical resolution of the algebraic

system of the Laplace’s solver. Thus, the method is actually effective in the problem resolution

and computationally efficient.

Numerical results for the modelization of liquid-solid impacts are presented. In particular, the

discussion is focused about to what extent the impact process of interest is simplified by applying

this model which is based on the potential theory. By conjecturing realistic initial conditions in

bore jet impacts on rigid walls, the present numerical approach proves successful in obtaining a

quantitative evaluation of important physical quantities, such as the maximum force acting on the

wall, so that meaningful predictions can be obtained not only from laboratory tests but also from

numerical simulations.
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FIG. 2. Free surface profiles for hf = 10 and hf = 20 at different time-steps. Profiles are shown every 5 10−2

s from t = 0 up to t = 0.33 s for hf = 10 and t = 0.45 ms for hf = 20.
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FIG. 3. Free surface profiles for hf = 30 and hf = 40 at different time-steps. Profiles are shown every 5 10−2

s from t = 0 up to t = 0.54 ms for hf = 30 and t = 0.67 ms for hf = 40.
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FIG. 4. Normalized time series of the force integrated along the wall for hf = 10 and hf = 20. The numerical
result (circles) is super-imposed to two experimental measures labelled by A and B. The horizontal units are given
in s, the vertical units are adimensional.
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FIG. 5. Normalized time series of the force integrated along the wall for hf = 30 and hf = 40. The numerical
result (circles) is super-imposed to two experimental measures labelled by A and B. The horizontal units are given
in s, the vertical units are adimensional.
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FIG. 6. Mesh and pressure field detail for hf = 40
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FIG. 7. Mesh and pressure field detail for hf = 40
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FIG. 8. Mesh and pressure field detail for hf = 40
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FIG. 9. Mesh and pressure field detail for hf = 40
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FIG. 10. Mesh and pressure field detail for hf = 40


