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Abstract

We propose a general framework for the semi-implicit discretization of multidimensional
hyperbolic systems in conservative (divergence) form on unstructured grids. This approach
is based on the method-of-line strategy, which decouples the discretization in time and
space. The spatial divergence term of the flux function is discretized by an unstructured
Finite Volume (FV) technique and the spatial accuracy is provided by including into the
scheme a generic non-oscillatory reconstruction procedure which may attain orders higher
than one. An original splitting of the numerical flux function into a convective and a non-
convective part is introduced to discretize the time derivative by the Diagonally Implicit-
Explicit Runge-Kutta (DIMEX-RK) time stepping scheme. The convective term is treated
implicitly by mimicking the upwinding of a scalar linear flux, while the non-convective
one is treated explicitly. Finally, several numerical examples illustrate the behavior of the
method.

Key words: Finite Volume, Runge-Kutta, Implicit-Explicit, Partial Differential Equation,
M-matrix, Unstructured Grid

1 Introduction

Convected-dominated flows are usually described in terms of the following multi-
dimensional hyperbolic system in divergence conservative form

∂

∂t
u +∇ · F(u) = 0, in Ω× (0, T ), (1)

whereΩ is a bounded open connected subset ofR
d, d = 1, 2, 3, u is a vector-valued

function fromRd × [0, ∞] into the open subsetU ⊆ Rm, andF(u) is a non-linear
vector-valued mapping fromU intoRm. Throughout the paper, we will refer tou
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as the solution vector function, to U as the set of admissible solution states, and
to F(u) as the flux vector function. As usual, the componentsF(u) are assumed
smooth — say of classC∞.

An Initial Boundary Value Problem (IBVP) is defined by providing system (1) with
an initial solutionu|t=0 = u0, whereu0 is a vector function fromRd into U ⊆ Rm,
and with a suitable set of problem dependent boundary conditions.

Let us denote the set of thed Jacobian matrices of the flux vector functions in (1)
by

J(u) =
∂F(u)

∂u
, for eachu ∈ U.

Equation (1) is a multidimensional hyperbolic system of equations in divergence
form if the matrix J(u,n) = n · J(u) has m real eigenvaluesλmin(u,n) =
λ1(u,n) ≤ · · · ≤ λm(u,n) = λmax(u,n) and a complete set of eigenvectors for
anyu ∈ U and any non-zero vectorn ∈ Rd. We will denote the set of the eigenval-
ues of the Jacobian matrixn · J(u) by Λ(u,n), and the minimum and maximum
eigenvalues byλmin(u,n) andλmax(u,n) . No strict hyperbolicity assumption will
be retained in this work.

The approximation method that we investigate in this work can be naturally con-
sidered in the framework of the Implicit-Explicit Runge-Kutta (IMEX-RK) meth-
ods [1–3]. This approach is especially suitable to the circumstances which force
the use of an implicit scheme even in evolutionary calculations. This occurs for
instance when fast reactive processes take place in the flow or when the flow con-
figuration features very high speed flows in some restricted regions, and moderate
to low speed flow elsewhere. Regions of high speed flows may drastically reduce
the time-step size allowable in an explicit formulation, consequently degrading the
performance of a numerical flow solver from the viewpoint of the computational
costs. On the other hand, an implicit first order discretization in time produces
a poor accurate approximation of the time-dependent solution. Thus, high-order
semi-implicit techniques should be devised to improve the overall accuracy of the
model prediction.

Basically, we consider a decomposition of the physical flux function into acon-
vectiveand anon-convectiveterm, respectively denoted byF(c)(u) andF(nc)(u).
Essentially, the IMEX-RK strategy that we propose consists in applying an im-
plicit discretization to the convective termF(c)(u) and an explicit one to the non-
convective termF(nc)(u). For this reason, we focus our attention on problems of
the form (1) whose physical flux vector function satisfies the following formal as-
sumption.

Assumption 1 The flux vector functionF(u) can be split as
F(u) = F(c)(u) + F(nc)(u), (2)

where the convective part takes the form
F(c)(u) = u⊗ v(u),
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v(u) being theconvective velocity fieldand satisfying
λmin(u,n) ≤ n · v(u) ≤ λmax(u,n), for anyu ∈ U, andn ∈ Rd.

The symbol⊗ indicates the standard tensor product, defined as follows. Given two
matricesA andB of orderm × n andp × q, A ⊗ B is the block matrix of order
mp × nq whose blocki, j is (A ⊗ B)i,j = AijB. The tensor product has some
noteworthy properties, see for instance Reference [4]. We just mention the one
most used in the paper, thus(A⊗B)(C⊗D) = AC⊗BD, with A, B, C andD
four generic matrices (with compatible dimensions).

Clearly, the functional form ofF(c)(u), v(u), andF(nc)(u) is strictly problem de-
pendent. Nonetheless, as pointed out in References [5,6], it turns out that the de-
composition (2) does not rely on an arbitrary formal trick but has a thorough phys-
ical meaning. It is indeed the consequence of the assumption that the balance laws
described by the model equations (1) are invariant under Galileian transformations.
Furthermore, it is possible to demonstrate that this invariance property also implies
the uniqueness of the convective/non-convective decomposition and also specifies
the functional form of the (possibly non-linear) convective velocity fieldv(u).

For many important problems usually considered by the CFD community, we veri-
fied thatv(u) is the real fluid velocity,n · v(u) is usually an eigenvalue of the Ja-
cobian matrixJ(u,n), and the non-convective termF(nc)(u) is also given a precise
physical interpretation. For instance, Assumption 1 is satisfied by the Compressible
Gas Dynamic Euler Equations,

u =

 ρ
ρv
ρE

 , F(c)(u) = u⊗ v(u), F(nc)(u) = p(u)

 0
I

v(u)

 ,

whereρ is the density,v the velocity,E the total energy, andp(u) the pressure
given by the thermodynamical relation

p

γ − 1
= ρE − 1

2
ρ|v|2,

and γ = 1.4, as usual for air at standard condition. Notice that the splitting in
Assumption 1 has a direct physical interpretation because the non-convective flux
F(nc)(u) is the pressure contribution to the physical flux.

Following a method-of-line approach, we numerically solve (1) by combining
a shock-capturing cell-centered Finite Volume (FV) spatial discretization of the
divergence term and an Diagonally Implicit-Explicit Runge-Kutta (DIMEX-RK)
scheme for the time derivative.

If Assumption 1 holds for the physical flux, it becomes natural to wonder wheter
a similar splitting may hold at the numerical flux function level. We formalize this
issue in Section 2 by introducing thenumerical convective splitting. Let us empha-
size that our numerical convective splitting fits particularly well in the DIMEX-RK
framework just because it allows to treat the numerical convective term implicitly,
and the non-convective one explicitly. To this purpose, the numerical convective
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part of the flux is defined via a suitable numerical upwind velocity field, in order
to mimick the upwinding techniques utilized in difference schemes for the linear
scalar advection equation. As pointed out in Reference [7], the integral FV form
of the divergence operator applied to the linear advection flux produces a discrete
operator that satisfies the properties of asingular M-matrix. The singularity can be
eventually removed by the diagonal term arising from the discretization of the time
derivative as well as by the introduction of the boundary conditions.

One of the major goals of this paper is to extend this issue to the more general case
of a multidimensional non-linear hyperbolic system of equations. More precisely,
we will show that some peculiar block structures can be identified in the time evo-
lution matrix operator and that the matrices underlying them are still M-matrices.
This fact has two noteworthy implications, that we briefly list below. First, we can
prove the existence and uniqueness of the solution of the non-linear algebraic prob-
lem arising at each internal stage of the DIMEX-RK scheme. Then, we show that
a less expensive iterative approximation at the correct time accuracy can be eas-
ily calculated. This fact makes it possible the development of simple and efficient
resolution algorithms for the implicit algebraic equations corresponding toF(c)(u).

We outline that this approach is compatible to many piecewise polynomial recon-
struction techniques that are usually considered to improve the spatial order of the
cell-centered FV methods — like MUSCL, ENO, etc — and many limiting proce-
dures that are applied to control the numerical oscillations. Furthermore, it is worth
noting that any numerical flux that can be re-formulated in accord with the nu-
merical convective splitting can be effectively incorporated into our discretization
framework. The requirement stated by the numerical convective splitting defini-
tion is not too restrictive because we prove that it is satisfied by many important
numerical fluxes available in literature. We mention the HLLE-like fluxes and sev-
eral widely known flux splitting schemes in the case of the Compressible Euler
Equations, such as the Steger-Warming, the Van Leer and the family of the AUSM
methods.

The paper is organized as follows. In Section 2 we introduce the basic definition
of the numerical convective splittingupon which the family of discretizations in-
vestigated in this paper is actually based. We also show that several classes of
shock-capturing methods fit within this definition. In Section 3 we formulate the
semi-discrete FV method and in Section 4 the coupled DIMEX-RK FV integra-
tors. In this last section, we also state the main theoretical properties of the full
discrete formulation. The demonstration of these properties will be the subject of
the forthcoming paper. Finally, in Section 5 conclusions are offered.

2 The numerical convective splitting

A FV scheme is usually defined by a numerical flux function, which will be de-
noted byH(uL,uR,n). Its entries are the solution statesuL anduR, and the vector
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n, which is perpendicular to the element interface over which the flux integral is
estimated. We adopt the symbolsuL anduR because these states are often consid-
ered as the “left” and the “right” states of a Riemann problem. The meaning of the
words “left” and “right” is uniquely defined by using the orientation of the vector
n, which is supposed to be always pointing from the left side of a cell interface to
the right one.

Following the physical convective/non-convective decomposition of Assumption 1,
we consider numerical fluxes that can be decomposed as the sum of two terms,
namelyH(c)(uL,uR,n) andH(nc)(uL,uR,n). The former one,H(c), is the numer-
ical correspondent ofF(c) and the latter one,H(nc), of F(nc). Let us introduce the
formal definition ofnumerical convective splitting.

Definition 2 A numerical flux admits a numerical convective splitting if it can be
decomposed into the sum of a convective and non-convective part,

H(u,v,n) = H(c)(u,v,n) + H(nc)(u,v,n).

The convective part takes the form

H(c)(u,v,n) = a(u,v,n)u− a(v,u,−n)v, (3)
and is such that for eachu, v ∈ U and n ∈ Rd with ‖n‖ = 1 the numerical
convective velocity satisfies the following conditions:

(i) a(u,v,n) ≥ 0 (non-negativity);
(ii) |a(u,v,n)− a(u′,v′,n)| ≤ L (‖u− u′‖+ ‖v − v′‖)

(Lipschitz continuity);
(iii) v(u) · n = a(u,u,n)− a(u,u,−n) (consistency).

Thus, we formally require that both the convective and the non-convective part of
the numerical flux functionH(u,v,n) satisfies a regularity condition in the argu-
mentsu andv and that a stronger consistency condition holds on the convective
flux function in place of the usual one, thusF(u) · n = H(u,u,n).

Notice that in the scalar multi-dimensional linear case, a numerical flux function in
accord with Definition 2 simply reduces to the linear upwind formula [7]. Let us
consider the physical flux functionF(u) = vu, whereu is to be taken in this case
as a scalar quantity rigidly advected by the constant velocity fieldv, and introduce
the standard upwind projections on the normal vectorn, that area(n)± = (v · n±
|v · n|)/2. SinceF(nc)(u) = 0, it obviously holds thatH(nc)(u,v,n) = 0, and we
can clearly identifya(u,v,n) = a(n)+ becausea(n)− = −a(−n)+.

Several important families of numerical fluxes proposed in the literature of the last
two decades satisfy Definition 2. In the rest of this section, we briefly review some
of the most important numerical flux formulae that are widely used by the CFD
community. The first two formulae are given for a general physical flux function,
F(u), while the others are specifically derived from the flux splitting schemes for
the multi-dimensional Compressible Euler Equations.
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Table 1
Some possible choices ofS(uL,uR,n)

S(uL,uR,n) Reference

max {λmax
L , λmax

R , 0} [12,13]

max
{

λ̃max
LR , λmax

R , 0
}

[9,10]

max {σL, σR} [11]

2.1 Rusanov-like numerical fluxes

The members of the family of Rusanov-like numerical fluxes take the following
viscosity form

H(uL,uR,n) =
1

2
[n · F(uL) + n · F(uR)]− 1

2
Q(uL,uR,n)(uR − uL)

where the diagonal numerical viscosity tensorQ(uL,uR,n) is a scalar multiple of
them×m identity matrixIm, thus

Q(uL,uR,n) = ξ(uL,uR,n)Im.

These schemes can be rewritten in numerical convective splitting, provided that

a(uL,uR,n) =
1

2
[v(uL) · n + ξ(uL,uR,n)] ,

H(nc)(uL,uR,n) =
1

2
(F(nc)(uL) + F(nc)(uR)) · n.

2.2 HLLE-like numerical fluxes

These numerical fluxes are discussed in References [8–11]. They can be re-
formulated in numerical convective splitting by setting:

a(uL,uR,n) =
SR

SR − SL

(vnL − SL) ,

H(nc)(uL,uR,n) =
(SRF(nc)(uL)− SLF

(nc)(uR)) · n
SR − SL

,

wherevnL = v(uL) · n, SR = S(uL,uR,n) andSL = −S(uR,uL,−n), and
some possible choices of the functionS(uL,uR,n) are listed in Table 1, with the
corresponding reference. In Table 1,̃λmax

LR is the maximum eigenvalue estimated
using the intermediate Roe averaged state, and

The choice ofS(uL,uR,n) in the first row of Table 1 gives the so-calledlocal Lax-
Friedrichs numerical flux, while the one in the second row the “classical” HLLE
scheme. This follows immediately by noting thatλmax(u,n) = −λmin(u,−n) and
using the identitymin(a, b) = −max(−a,−b), which holds for any pair of real
numbersa andb.

6



2.3 Steger & Warming flux splitting

This splitting is described in Reference [14] and can be re-formulated in accord
with the numerical convective splitting by settinga(uL,uR,n) = aSW (uL,n) and
H(nc)(uL,uR,n) = GSW (uL,n)−GSW (uR,−n), where

aSW (u,n) = (2γ)−1
(
2(γ − 1)λ+

1 + λ+
2 + λ+

3

)
,

GSW (u,n) =
p

2c

[
0,
(
λ+

2 − λ+
3

)
n, λ+

2 − λ+
3 +

c

γ

(
λ+

2 + λ+
3 − 2λ+

1

) ]T
,

c = (γp/ρ)1/2 denotes the frozen speed of sound, and
λ+

1 = vn
+, λ+

2 = (vn + c)+ , λ+
3 = (vn − c)+ .

2.4 Van Leer flux splitting

This splitting is described in References [15–17] and can be re-formulated in accord
with the numerical convective splitting by settinga(uL,uR,n) = aV L(uL,n) and
H(nc)(uL,uR,n) = GV L(uL,n)−GV L(uR,−n), where

aV L(u,n) =

 (c + vn)2/(4c) if |vn| ≤ c,

(vn)+ otherwise.

GV L(un) = aV L(u,n)

[
0,

ρ

γ
(2c− vn)n,

p + ρvn(2c− vn)

γ + 1

]T

.

2.5 AUSM+ flux splitting

The AUSM+ flux has been originally presented in Reference [18], where a
derivation from the Van Leer flux difference splitting is also discussed. It can
be re-formulated in accord with the numerical convective splitting by setting
a(uL,uR,n) = aausm+(uL,uR,n) andH(nc)(uL,uR,n) = Gausm+(uL,uR,n) −
Gausm+(uR,uL,−n) where

aausm+(uL,uR,n) =
(
M+(vnL/c) +M−(vnR/c)

)+
,

Gausm+(uL,uR,n) = p(uL) [ 0, P+(vnL/c), aausm+(uL,uR,n) ]T ,

c∗L/R =

(
2c2

L/R + (γ − 1)vn
2
L/R

γ + 1

)1/2

,

c = min

{
c∗L, c∗R,

c∗2L

vnL

,
c∗2R

vnR

}
,

and

M±(M) =

 (M ± |M |)/2 if |M | > 1;

(M ± 1)2/4± β(M2 − 1)2 if |M | ≤ 1.

P±(M) =

 (M ± |M |)/(2M) if |M | > 1;

(M ± 1)2(2±M)/4± αM(M2 − 1)2 if |M | ≤ 1.
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A number of AUSM-like fluxes and variants have been successively proposed and
analyzed theoretically and their performance investigated experimentally, see for
instance References [18,19]. These numerical fluxes can all be re-formulated in
accord with the numerical convective splitting.

3 The semi-discrete Finite Volume formulation

In this section, we introduce the semi-discrete FV method and discuss several prop-
erties that will be useful in the analysis of the DIMEX-RK FV method presented in
the next section.

3.1 Mesh notations and conventions

Our basic FV scheme is defined on a mesh that completely covers the computational
domainΩ ∈ Rd. The mesh is defined as the union of a set ofn non-overlapping
cells, which actually areintervalsin the 1-D case, oftrianglesin the 2-D one, and
tetrahedronsin the 3-D one. The mesh is assumed to satisfy some constraints, i.e.
it is to beregular andconformalin the sense specified by Reference [20].

Cells are conventionally labeled by an integer identifier ranging from1 to n. The
identifier is generically indicated by the index lettersi, j or k. For the generic cell
Ti we indicate by|Ti| thed dimensional measure of the cell (volume in 3-D, area
in 2-D, length in 1-D).

The intersection of two cells or the intersection of a cell and the border ofΩ with
positive(d − 1) dimensional measure is called a face (edge in 2-D, point in 1-D).
The internal face shared by the cellsTi and Tj is addressed by the pairij and
denoted by the symbolfij. For the sake of notation consistency, a boundary face is
also addressed by a pair of indices, namelyik, i being the unique cell that the face
belongs to, andk a specific boundary face identifier — like a fictitious “external”
cell. This convention allows us to refer to either internal or boundary faces by means
of an index pair. For the generic facefij, we indicate by|fij| its (d−1)−dimensional
measure (area in 3-D, length in 2D, conventionally1 in 1-D), and bynij its normal
vector (±1 in 1D). The normal vector is assumed to be oriented from celli to cell
j when the face is internal and outward directed when the face is on the boundary.

For each cellTi, we denote the set of internal faces byσ(i) and the subset of
the cell faces located at the boundary byσ′(i). The symbol|Ti| denotes thed-
dimensional measure of the cell, i.e. the tetrahedron volume in 3-D, the triangle
area in 2-D, and the interval length in 1-D. These notations and convections are
suitable for practical implementation of Finite Volume solvers by using the object
oriented libraryP2MESH [21].
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3.2 Vector/Matrix notations and conventions

Let us now introduce the vector and matrix notations that will be utilized in this
section and in the following ones. The symbolIk indicates thek×k identity matrix,
1k thek size vector all of whose components are equal to1, while the symbol0k

indicates thek size vector all of whose components are equal to0. A positive vector
v satisfiesv � 0, a non-negative vectorv satisfiesv ≥ 0, where the compact
notation means

v � 0 ⇐⇒ vi > 0 for all i

v ≥ 0 ⇐⇒ vi ≥ 0 for all i

v > 0 ⇐⇒ v ≥ 0 andv 6= 0.
Similar notations and definitions also apply to matrices; for instance, the matrix
inequalityM ≤ N means thatMij ≤ Nij for every pairij, and a positive (non-
negative) real matrixM is a matrix all of whose components are positive (non-
negative) real numbers. Block vectors are denoted by underlined bold symbols;
i.e. u is a block vector. Their block components are indicated by indexed (non
underlined) bold symbols; i.e.ui is thei-th sub-vector block ofu.

3.3 The basic semi-discrete Finite Volume scheme

The i-th cell-averaged solution state is denoted byui, and the global collection
of n cell-averaged data byu. Thus, this latter one is then × m-size block vector
uT = (uT

1 ,uT
2 , . . . ,uT

n ), whosei-th block is them-size vectorui. We can also
address the cell-averagedk-th equation variable fork = 1, 2, . . . ,m within thei-th
cell, for i = 1, 2, . . . , n by the notationui|k = u|k+mi. This is thek-th component
of thei-th vector block.

Reformulating equation (1) in an integral form for each cell of the mesh, applying
the Gauss divergence theorem and introducing suitable numerical flux functions
to discretize the physical flux yield the semi-discrete FV numerical scheme in the
form

|Ti|
dui

dt
+

∑
j∈σ(i)

H ij(u) +
∑

j′∈σ′(i)

H(bc)
ij′ (u) = 0, (4)

for eachi = 1, . . . , n. The termsH ij(u) andH(bc)
ij′ (u) denote the numerical flux

integrals estimated on internal and boundary faces. In equation (4),H ij(u) is es-
timated by using the cell-average approximationsui anduj within the elementsi
andj sharing the facefij and within an appropriate set of neighbor cells close to
them. Instead, the termH(bc)

ij′ (u) may also depend in some suitable form on a set

of externaldatau
(bc)
j′ . We point out that boundary conditions may differ at distinct

boundary faces, also implying a different functional form for the numerical fluxes.

Introducing the numerical flux (3) into (4) yields the final form of the basic semi-
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discrete FV scheme, thus

|Ti|
dui

dt
+
∑

j∈σ(i)

(aij(u)ui − aji(u)uj) +
∑

j∈σ(i)

H(nc)
ij (u) +

∑
j′∈σ′(i)

H(bc)
ij′ (u) = 0, (5)

where the scalar functionsaij and the vectorsH(nc)
ij are indeed the terms of

a(uL,uR,n) andH(nc)(uL,uR,n) evaluated at the cell interfaceij.

This indexed notation is introduced because the functional form ofaij and Gij

strongly depends on the spatial accuracy order of the approximation. In the next
section, we focus on this issue and explain the dependence on high-order cell-
average polynomial reconstructions.

3.4 The semi-discrete scheme

The simplest case concerns with a FV scheme thus of first order of accuracy in
space. This scheme is obtained by using a single-point approximation to the nu-
merical flux integral in (5), and is given by

aij(u) = |fij|a(ui,uj,nij),

H(nc)
ij (u) = |fij|H(nc)(ui,uj,nij).

(6)

A higher-order accurate discretization is formally achieved by using a higher-
order numerical quadrature for the numerical flux integrals. Notice, however, that a
higher-order quadrature formula would imply the explicit knowledge of the value
of the solution within the cellsi andj at the different quadrature points located on
the cell-interface. Since the first order accurate piecewise-constant representation
of the solution given by the cell-average approximations is actually not enough, a
better solution representation must be devised, which makes use of suitable higher-
order piecewise polynomials. To this purpose, a number of polynomial reconstruc-
tion procedures have been proposed in literature. Their formal properties, listed for
example in References [22–24], ensure the control of the spurious oscillations that
can appear in the numerical solution.

In principle, anynon-oscillatoryreconstruction procedure which is capable of in-
creasing the accuracy of the numerical flux integral can be inserted into our FV
scheme. Let us write the higher-order approximation of the numerical flux integral
as

H ij(u) = |fij|
Nq∑
k=1

ωkH(ui(·,xk
ij),uj(·,xk

ij),nij),

wherexk
ij is thekth quadrature point on the facefij, ωk the corresponding quadra-

ture weight, andui(t,x) the solution reconstructed in thei-th cell, which satisfies
the following assumption.

Assumption 3 The reconstructed solutionui(·,x) within thei-th cell satisfies
min
j∈σ(i)

uj ≤ ui(·,x) ≤ max
j∈σ(i)

uj, x ∈ fij,

for i = 1, . . . , n.
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Assumption 3 ensures that the values taken at quadrature nodes on the facefij of the
piecewise polynomial representation of the solution within the cellTi are always
between the cell averages ofTi and the adjacent cellTj. This issue follows quite
naturally from the limiting strategies usually adopted to guarantee the satisfaction
of a maximum principle [25–28]

The further assumption that we need is the following one.

Assumption 4 All of the weights used in quadrature formulae arepositive, i.e.
ωi > 0 for all i = 1, . . . , Nq.

This assumption is quite naturally satisfied by a number of quadrature formulae,
such as the Gaussian ones.

Then, we introduce the numerical convective splitting for FV schemes of order
higher than one by using the following definitions:

aij(u) = |fij|
Nq∑
k=1

ωkak
ij(u), (7a)

H(nc)
ij (u) = G(a)

ij (u) + |fij|
Nq∑
k=1

ωkH(nc)(ui(·,xk
ij),uj(·,xk

ij),nij), (7b)

where
ak

ij(u) = a(ui(·,xk
ij),uj(·,xk

ij),nij), (7c)

G(a)
ij (u) = |fij|

Nq∑
k=1

ωk(ak
ij(u)(ui(·,xk

ij)− ui)− ak
ji(u)(uj(·,xk

ij)− uj)). (7d)

In the definitions above, thea-term has been split in two contributions, namelyaij

andG(a)
ij . The former one is the scalara-function estimated at the quadrature nodes

by using the cell reconstructions and contributes to the linear advective term in (3).
The latter one takes into account how much the reconstructed values at quadrature
nodes differ from the cell-average solutions. This term is added toH(nc), which
may seem unusual at a first sigth. Nonetheless, the reconstruction step introduces
a well-known anti-diffusive effect [29], which justifies thatG(a)

ij (u) be considered
like a “non-convective” contribution to the scheme. When a first order piecewise
constant reconstruction is considered and the numerical flux integral is estimated
by the mid-point rule, i.e.Nq = 1, we have thatG(a)

ij = 0, and the definition of

aij(u) andH(nc)
ij (u) in (7) coincides with the one in (6).
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3.5 Matrix notation for the semi-discrete scheme

In this section, we introduce a compact matrix notation to manipulate the
scheme (5). Let us first introduce then× n matrixA(u) defined as

Aij(u) =


∑

l∈σ(i) ail(u) if i = j;

−aji(u) if ij addresses a mesh face, namelyfij;

0 otherwise;

(8)

the diagonal matrixD = diag(|T1| , . . . , |TN |), whosei-th component is thed-
measure of the cellTi, and the block vectorb(u)T = [b1(u)T , . . . ,bn(u)T ],
whosei-th block is given by

bi(u) = −
∑

j∈σ(i)

H(nc)
ij (u)−

∑
j′∈σ′(i)

H(bc)
ij′ (u).

Finally, by using the definitions introduced in (8), and the diagonal matrixD, we
reformulate the semi-discrete FV scheme (4) in the more compact matrix form

(D⊗ Im)
du

d t
= b(u)− [A(u)⊗ Im]u. (9)

The theoretical properties of the discretization matricesA(u) andA(u) ⊗ Im are
investigated in second part of this work.

4 Implicit Explicit Runge Kutta discretization in time

In order to develop a numerical method that is stable when a source of stiffness
is present in the equation, a fully implicit discretization should be adopted. This
approach would be surely successful, but would also be likely to be quite expensive.
For this reason, we focus our attention to the implicit-explicit discretization stategy.

For the sake of presentation, let us consider the ordinary differential equation y′ = f(x, y) + g(x, y),

y(a) = ya,

for the variabley, which is a function of the independent variablex; f(x, y) and
g(x, y, ), are two given right-hand side terms, andya the initial condition for the de-
pendent variabley. Let also assume thatf(x, y) be the stiff part of the source term,
andg(x, y) be the non-stiff one. The idea is that an implicit Runge-Kutta scheme
can be applied to discretize the stiff term and an explicit Runge-Kutta scheme can
be used for the non-stiff one. Combining the two distinct Runge-Kutta schemes
yields the ”composite” algorithm:

12



— solve thes–size non linear system fory(1), y(2), . . . ,y(s):

y(1) − yn − h
s∑

j=1
αIM

1jf(xn + c IM
j h, y(j))− h

i−1∑
j=1

αEX
1j g(xn + cEX

j h, y(j))

y(2) − yn − h
s∑

j=1
αIM

2jf(xn + c IM
j h, y(j))− h

i−1∑
j=1

αEX
2j g(xn + cEX

j h, y(j))

...

y(s) − yn − h
s∑

j=1
αIM

sj f(xn + c IM
j h, y(j))− h

i−1∑
j=1

αEX
sj g(xn + cEX

j h, y(j))


= 0;

— then compute

yn+1 = yn + h
s∑

i=1

ω IM
i f(xn + c IM

i h, y(i)) + h
s∑

i=1

ωEX
i g(xn + cEX

i h, y(i)).

It is important to note that using this splitting instead of using the same fully im-
plicit Runge-Kutta method for both termsf(x, y) andg(x, y) does not provide any
real advantage. In fact, the non-linear algebraic system that must be solved in the
former case is of the same size of the the system that results in the latter one. Thus,
we conclude that this combination is still too general for the aims of computational
efficiency and stability that we intend to attain. For this purpose, adiagonallyim-
plicit Runge-Kutta discretization of the stiff term turns out to be more suitable
instead of the fully implicit one previously considered:

— for eachi = 1, . . . , s solve fory(i):
y(i) − hαIM

ii f(xn + c IM
j h, y(j)) = r(i),

where

r(i) = yn + h
i−1∑
j=1

[
αIM

ij f(xn + c IM
j h, y(j)) + αEX

ij g(xn + cEX
j h, y(j))

]
;

— then compute

yn+1 = yn + h
s∑

i=1

ω IM
i f(xn + c IM

i h, y(i)) + h
s∑

i=1

ωEX
i g(xn + cEX

i h, y(i)).

Specific values ofαEX, αIM , ωEX, ω IM , cEX, cIM can be found in Reference [2,3].

Using the splitting in this form instead of using a single diagonally implicit Runge-
Kutta scheme allows us to simplify the resolution procedure because the final non
linear system only contains the contribution off .

Let us rewrite equation (9) as
du

d t
= b (u)− a(u) , (10)

where
A(u) = D−1A(u)⊗ Im,

a(u) = A(u)u,

b (u) =
(
D−1 ⊗ Im

)
b(u).

(11)
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The DIMEX-RK method provides a natural framework to discretize (10). In fact,
sincea(u) contains the transport contribution to the flux, it can be interpreted as
thestiff part of the system of ODEs (10), and an implicit discretization can be seek.
On the other hand, the second r.h.s. term, i.e.b (u), can be discretized explicitly.

The generals-stage DIMEX-RK scheme can be formulated as:

— for eachi = 1, . . . , s solve forwi:

wi + ∆t αIM
ii a

(
wi
)

= un + ∆t
i−1∑
j=1

(
αEX

ij b
(
wj
)
− αIM

ij a
(
wj
))

, (12a)

— then compute

un+1 = un + ∆t
s∑

i=1

(
ωEX

i b
(
wi
)
− ω IM

i a
(
wi
))

. (12b)

The DIMEX-RK method in (12a)–(12b) requires the solution ofs non-linear sys-
tems of the form

w + ∆t a a(w) = r, a > 0, (13)
wherer is the right-hand-side of (12a). In view of equation (11), let us first define
the map

Φ(w) = (I + ∆t aA(w))−1 r. (14)
Let us then observe that every solutionw of (13) is equivalently a fixed point
of (14). The main results of this section are resumed in the two following theo-
rems. The first one formally states the existence and uniqueness of the solution to
the non-linear equation (13). The other one defines a recursive procedure for solv-
ing (13). The proof of both theorems is based on some theoretical properties of the
discretization matrices, such as the Lipschitz continuity ofA(w). The investigation
of these properties will be the topic of the second part of this work.

Theorem 5 The map(14) admits a fixed point for all∆t > 0. The fixed point is
unique when

∆t <
1

L a κ2 ‖r‖1

,

where

κ =
maxi=1,2...,n |Ti|
mini=1,2...,n |Ti|

,

andL is the Lipschitz constant of the mapA(W).

Equation (13) depends onw in a non-linear fashion and, thus, the IMEX-RK
method as it has been proposed so far may be very expensive from the viewpoint of
the computational costs. However, as it is stated in the following theorem, the so-
lution w can be approximated up to orderO

(
∆tk+1

)
by a straightforward iterative

procedure.
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Theorem 6 Letwi be defined iteratively fori = 0, . . . , k as
w0 = un,

wi =
(
I + ∆t aA(wi−1)

)−1
r, i = 1, 2, . . . , k.

(15)

Then, thek-th iteratewk is anO
(
∆tk+1

)
approximation ofw, which is the exact

solution to(13).

In view of Theorem 6, solving non-linear systems of the form (13) is equivalent
to solving a set of linear systems with the same coefficient matrix. This coefficient
matrix usually has a significantly smaller size and is an M-matrix. Indeed, after
some straightforward algebraic manipulations it turns out that the recursive proce-
dure in (15) formally requires the solution of thek linear algebraic problems(

M(wi−1)⊗ Im

)
wi = (D⊗ Im)r i = 1, 2, . . . , k, (16)

where
M(wi−1) = D + ∆t a A(wi−1). (17)

This remarkable fact makes it possible a noteworthy simplification of the whole
solution procedure. As for anyW there holds that

(M(W)⊗ I)−1 = M(W)−1 ⊗ I,

it is clear that at any step the scheme (15) requires the formal inversion of the
matrix (17), which is the same for all of them linear systems in (16). The size of
this matrix isn× n and is thus smaller than the one of the whole coefficient matrix
M(W)⊗ I, which ism n×m n.

As anticipated above, the matrixM(W) is an M-matrix; the proof of this property
is given in the second part of this work. This fact has also some very important
consequences as far as computational efficiency is concerned in solving the linear
algebraic problems (16).

First, we point out that an M-matrixA such thatyTA ≥ 0 for some vectory � 0
admits anLU factorization whose triangular factorsL andU are also M-matrices,
see Reference [30]. Thus, no numerical pivoting is necessary to ensure stability in
theLU factorization process, as would be the case of a general matrix, see Refer-
ence [31].

Then, the structural pattern of the matrixM(W) i.e. its non-zeros, only depends
on the topological neighborhood relationships among the cells of the mesh. Thus,
a non-zero matrix entry always corresponds to a connection between two adjacent
cells of the mesh. If the mesh does not change in the time stepping calculation, i.e.
no grid adaptation is carried out during the run, the non-zero pattern ofM(W)
must remain constant. Then, it follows that the symbolic pivoting of the matrix, i.e.
the re-ordering of rows and columns to reduce and control the fill-in phenomenon of
the factorization, can be performed only once at the beginning of each calculation.
This fact may clearly have a strong impact in reducing both computational costs and
memory storage requirements when direct algebraic methods for sparse matrices
are used to solve (16).
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The previous arguments based on the M-matrix nature ofM(W) still remain valid
for incomplete factorizations, i.e. when a direct re-solution method is used to pre-
condition an iterative method. To this purpose, two important results are true. First,
the incompleteLU -decomposition of an M-matrix is stable at least as the complete
one without any numerical pivoting – see Theorem 3.2 in Reference [32]. Second, if
we consider an incomplete factorization of the formLU = A+R for the M-matrix
A, then the following iterative scheme can be considered

LUxn+1 = Rxn + b, ⇒ xn+1 = xn + U−1L−1qn,

whereqn = b−Axn. This iterative scheme requires a matrix-vector multiplication
and the solution of two sparse triangular systems at each iterative step, that implies
O (n2) floating-point arithmetic operations. This iterative scheme can be proved to
be convergent to the solution ofAx = b for every choice of the initial iteratex0 –
see Theorem 2.5 of Reference [32].

5 Final Remarks

This paper is a contribution to the evidence for and against semi-implicit ap-
proaches on unstructured meshes in discretizing multi-dimensional hyperbolic sys-
tems. The method that we propose has been developed to perform integration of
IBVPs in conservative divergence form. It is based on a special splitting of the phys-
ical and numerical flux vector function into a convective and a non-convective part,
namely the numerical convective splitting. In the framework of IMEX-RK schemes,
the convective part is discretized in an implicit way, while the non-convective one
in an explicit way. This coupled IMEX-RK FV integrator is strictly conservative,
shock-capturing, formallyn-th order accurate in space and time, and does not re-
quire the evaluation of any Jacobian matrix.

In this paper, we discuss some theoretical issues of the method by introducing a
general formalism that describes how a cell-centered FV discretization can be cou-
pled to the IMEX-RK time-stepping schemes. Thanks to this formalism, all the
theoretical results are independent of the spatial dimension of the problem, of the
numerical flux — provided that this latter one can be re-formulated in accord with
the numerical convective splitting — and of the cell-average polynomial recon-
struction used to achieve higher order accuracy in space.

Basically, the time evolution matrix operator shows a peculiar block structure com-
mon to a wide family of numerical fluxes. The underlying block matrices are M-
matrices and the analysis which can be carried out within this context makes it
possible to show that simple and efficient resolution algorithms even for high-order
schemes can be built. Although this FV scheme has been developed for unstruc-
tured mesh calculations, all these theoretical results can be straightforwardly ex-
tended to schemes defined on structured cartesian or curvilinear meshes. The proofs
of these theorems as well as the numerical testing of the methods regarding both
the computational efficiency and the quality of the approximation will be the topic
of the second part of this work.
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