
Consiglio Nazionale delle Ricerche

Istituto di
Matematica Applicata e
Tecnologie Informatiche

PUBBLICAZIONI

Enrico Bertolazzi and Gianmarco Manzini

DIAGONALLY IMPLICIT–EXPLICIT RUNGE KUTTA METHODS FOR
MULTIDIMENSIONAL HYPERBOLIC SYSTEMS.
PART II: ANALYSIS AND NUMERICAL EXPERIMENTS.

N. 17-PV 2004





Diagonally Implicit–Explicit Runge Kutta Methods
for Multidimensional Hyperbolic Systems.

Part II: Analysis and Numerical Experiments.

Enrico Bertolazzia Gianmarco Manzinib

aDipartimento di Ingegneria Meccanica e Strutturale,
Universit̀a di Trento,

via Mesiano 77, I – 38050 Trento, Italy
bIstituto di Matematica Applicata e Tecnologie Informatiche, IMATI – CNR,

via Ferrata 1, I – 27100 Pavia, Italy

Abstract

In this paper we continue the study of the Diagonally IMplicit-EXplicit Runge-Kutta
(DIMEX-RK) methods that we proposed in the first part of this work in the framework
of Finite Volume methods for unstructured grids. These new numerical approximation
schemes are based on a special splitting of the physical and numerical flux vector functions
into a convective and a non-convective part. In the framework of DIMEX-RK schemes,
the convective part is discretized in an implicit way, whilewe discuss the non-convective
one in an explicit way. We discuss some theoretical properties of the non-linear algebraic
evolution operators that are derived in the full discretization from the application of these
methods to strongly convected dominated flows. A set of numerical experiments illustrates
the behavior of this class of methods on reactive and non-reactive hypersonic simulations.

Key words: Finite Volume, Runge-Kutta, Implicit-Explicit, Partial Differential Equation,
M-matrix, Unstructured Grid

1 Introduction

This is the second paper in a series in which we contruct and study high resolu-
tion Diagonally IMplicit-EXplicit Runge-Kutta (DIMEX-RK) schemes for numer-
ically solving multi-dimensional hyperbolic systems in the framework of Finite
Volume (FV) methods for unstructured grids. The multidimensional hyperbolic
systems that we wish to focus on are related to either time-dependent or steady
high speed compressible flow simulations. This kind of flows,that are strongly
convected-dominated, is usually found when modelling reactive hypersonics. The
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mathematical model takes the conservative divergence form
∂

∂t
u + ∇ · F(u) = 0, in Ω × (0, T ), (1)

whereΩ is a bounded open connected subset ofRd, d = 1, 2, 3, u is a vector-valued
function fromRd × [0, ∞] into the open subsetU ⊆ Rm, andF(u) is a non-linear
vector-valued mapping fromU intoRm. Throughout the paper, we will refer tou
asthe solution vector function, to U asthe set of admissible solution states, and to
F(u) as the flux vector function. As usual, the components atF(u) are assumed
smooth — say of classC∞.

The DIMEX-RK schemes, that we proposed in our first work [1], are based on a
splitting of new conception of the numerical flux function into a convective and a
non-convective part. This splitting allows us to adopt the DIMEX strategy for the
time discretization. In fact, the convective term, which may be source of stiffness in
this kind of problems, will be treated implicitly by mimicking the upwinding of a
scalar linear flux. On the other hand, the non-convective part of the numerical flux
function will be treated explicitly. In order to formally introduce this idea, let us
first denote the set ofd Jacobian matrices of the flux vector functions in (1) by

J(u) =
∂F(u)

∂u
, for eachu ∈ U.

Equation (1) is a multidimensional hyperbolic system of equations in divergence
form if the matrix J(u,n) = n · J(u) has m real eigenvaluesλmin(u,n) =
λ1(u,n) ≤ · · · ≤ λm(u,n) = λmax(u,n) and a complete set of eigenvectors
for any u ∈ U and any non-zero vectorn ∈ Rd. We will denote the minimum
and maximum eigenvalues byλmin(u,n) andλmax(u,n). We focus our attention on
problems of the form (1) whose physical flux vector function satisfies the following
formal assumption.

Assumption 1 The flux vector functionF(u) can be split as
F(u) = F

(c)(u) + F
(nc)(u),

where the convective part takes the form
F

(c)(u) = u⊗ v(u),

v(u) being theconvective velocity fieldand satisfying
λmin(u,n) ≤ n · v(u) ≤ λmax(u,n), for anyu ∈ U, andn ∈ Rd.

Following Assumption 1, we consider numerical fluxesH(uL,uR,n) that satisfy
the following definition:

Definition 2 A numerical flux admits anumerical convective splittingif it can be
decomposed into the sum of a convective and non-convective part,

H(u,v,n) = H(c)(u,v,n) + H(nc)(u,v,n).

The convective part takes the form
H(c)(u,v,n) = a(u,v,n)u− a(v,u,−n)v,

and is such that for eachu, v ∈ U and n ∈ Rd with ‖n‖ = 1 the numerical
convective velocity satisfies the following conditions:
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(i) a(u,v,n) ≥ 0;
(ii) |a(u,v,n) − a(u′,v′,n)| ≤ L (‖u− u

′‖ + ‖v − v
′‖);

(iii) v(u) · n = a(u,u,n) − a(u,u,−n).

In [1] we discuss how many of the shock-capturing numerical fluxes developed
for strongly convected-dominated problems can be re-formulated in accord with
Definition 2. This allowed us to derive a new class of DIMEX-RKdiscretization
methods in the FV framework and to guarantee high-resolution quality in the solu-
tion approximation by using the reconstruction from cell averages .

In this paper, we carry out the theoretical analysis of theseDIMEX-RK finite vol-
ume methods to demonstrate some interesting properties concerning the algebraic
structure of the discrete non-linear evolution operators.

The outline of the paper is as follows. In Section 2, we brieflyreview the semi-
discrete FV formulation. In Section 3, we introduce the DIMEX-RK methods for
the full discretization and the basic algebraic non-linearproblem derived by the ap-
plication of the method to the semi-discrete FV scheme. In Section 4, we study the
theoretical properties of the non-linear algebraic evolution operators. In particular,
we show the existence and uniqueness of the solution of the non-linear algebraic
problem under quite general hypothesis by using the M-matrix theory. We also
design efficient iterative procedures that ensure the correct formal order of accu-
racy in solving this non-linear algebraic problem. In Section 5, we study how non-
negativity results can be obtained for these approximationmethods. In Section 6,
we illustrate the performance of these methods in term of computational efficiency
and quality of approximation on several 1-D and 2-D numerical examples. Finally,
in Section 7 conclusions are offered.

2 The semi-discrete Finite Volume formulation

2.1 Mesh notations and conventions

Our basic FV scheme is defined on a mesh that completely coversthe computational
domainΩ ∈ Rd. The mesh is defined as the union of a set ofn non-overlapping
control volumes orcells, that areintervalsin the 1-D case,trianglesin the 2-D case,
andtetrahedronsin the 3-D case. The mesh is assumed to beregularandconformal
in the sense specified by Reference [2].

Cells are conventionally labeled by an integer identifier ranging from1 to n. The
identifier is generically indicated by the index lettersi, j or k. For the generic cell
Ti we indicate by|Ti| thed dimensional measure of the cell (volume in 3-D, area
in 2-D, length in 1-D).

The intersection of two cells or the intersection of a cell and the border ofΩ with
positive(d − 1) dimensional measure is called a face (edge in 2-D, point in 1-D).
The internal face shared by the cellsTi andTj is addressed by the pairij and
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denoted by the symbolfij. For the sake of notation consistency, a boundary face
is also addressed by a pair of indices, namelyik, i being the unique cell the face
belongs to, andk a specific boundary face identifier — like a fictitious “external”
cell. This convention allows us to refer to either internal or boundary faces by means
of an index pair. For the generic facefij, we indicate by|fij| its (d−1)−dimensional
measure (area in 3-D, length in 2D, conventionally1 in 1-D), and bynij its normal
vector (±1 in 1D). The normal vector is assumed to be oriented from the cell i to
the cellj when the face is internal and outward directed when the face is on the
boundary.

For each cellTi, we denote byσ(i) the set of internal faces and byσ′(i) the subset
of the cell faces located at the boundary. The symbol|Ti| denotes thed-dimensional
measure of the cell, i.e. the tetrahedron volume in 3-D, the triangle area in 2-D, and
the interval length in 1-D. These notations and convectionsare suitable for prac-
tical implementation of Finite Volume solvers by using the object oriented library
P2MESH [3].

2.2 Vector/Matrix notations and conventions

Let us now introduce the vector and matrix notations that will be utilized in this
sections and in the following ones. The symbolIk indicates thek × k identity
matrix, 1k the k size vector all of whose components are equal to1, while the
symbol0k indicates thek size vector all of whose components are equal to0. A
positive vectorv satisfiesv ≫ 0, a non-negative vectorv satisfiesv ≥ 0, where
the compact notation means

v ≫ 0 ⇐⇒ vi > 0 for all i

v ≥ 0 ⇐⇒ vi ≥ 0 for all i

v > 0 ⇐⇒ v ≥ 0 andv 6= 0.
Similar notations and definitions also apply to matrices; for instance, the matrix
inequalityM ≤ N means thatMij ≤ Nij for every pairij, and a positive (non-
negative) real matrixM is a matrix all of whose components are positive (non-
negative) real numbers. Block vectors are denoted by underlined bold symbols,
that isu is a block vector. Their block components are indicated by indexed (non
underlined) bold symbols, that isui is thei-th sub-vector block ofu.

The symbol⊗ indicates the standard tensor product, which is as follows.Given
two matricesA andB of orderm × n andp × q, A ⊗ B is the block matrix of
ordermp × nq whose blocki, j is (A ⊗ B)i,j = AijB. The tensor product has
two noteworthy properties, see for instance Reference [4].We just mention the one
most used in the paper, that is(A ⊗ B)(C ⊗ D) = AC ⊗ BD, with A, B, C and
D four generic matrices (with compatible dimensions).
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2.3 The basic semi-discrete FV scheme

The i-th cell-averaged solution state is denoted byui, and the global collection
of n cell-averaged data byu. Thus, this latter one is then × m-size block vector
u

T = (uT
1 ,uT

2 , . . . ,uT
n ), whosei-th block is them-size vectorui. We can also

address the cell-averagedk-th equation variable fork = 1, 2, . . . , m within thei-th
cell, for i = 1, 2, . . . , n by the notationui|k = u|k+mi. This is thek-th component
of thei-th vector block.

Reformulating equation (1) in an integral form for each cellof the mesh, applying
the Gauss divergence theorem and introducing suitable numerical flux functions
to discretize the physical flux yield the semi-discrete FV numerical scheme in the
form

|Ti|
dui

dt
+

∑

j∈σ(i)

(aij(u)ui − aji(u)uj) +
∑

j∈σ(i)

H(nc)
ij (u) +

∑

j′∈σ′(i)

H(bc)
ij′ (u) = 0, (2)

where the scalar functionsaij and the vectorsH(nc)
ij are defined as follows

aij(u) = |fij|
Nq
∑

k=1

ωkak
ij(u), (3a)

H(nc)
ij (u) = G(a)

ij (u) + |fij |
Nq
∑

k=1

ωkH(nc)(ui(·,xk
ij),uj(·,xk

ij),nij), (3b)

and
ak

ij(u) = a(ui(·,xk
ij),uj(·,xk

ij),nij), (4a)

G(a)
ij (u) = |fij|

Nq
∑

k=1

ωk(ak
ij(u)(ui(·,xk

ij) − ui) − ak
ji(u)(uj(·,xk

ij) − uj)). (4b)

In (3a)–(3b)–(4b),xk
ij is thekth quadrature node on the facefij, ωk the correspond-

ing quadrature weight, andui(t,x) the solution reconstructed in thei-th cell. We
assume that:

Assumption 3 All of the weights used in quadrature formulae arepositive, i.e.
ωi > 0 for all i = 1, . . . , Nq.

3 DIMEX-RK discretization in time

Let us rewrite equation (2) as
du

d t
= b (u) − a(u) , (5)

where
D = diag(|T1| , . . . , |TN |), A(u) = D

−1
A(u) ⊗ Im, a(u) = A(u)u. (6)

Then × n matrixA(u) is defined as

Aij(u) =















∑

l∈σ(i) ail(u) if i = j;

−aji(u) if ij addresses a mesh face, namelyfij;

0 otherwise.

(7)
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The block vectorb (u)T = [b1(u)T , . . . ,bn(u)T ], whosei-th block is given by

|Ti|bi(u) = −
∑

j∈σ(i)

H(nc)
ij (u) −

∑

j′∈σ′(i)

H(bc)
ij′ (u).

The DIMEX-RK method provides a natural framework to discretize (5). In fact,
sincea(u) contains the transport contribution to the flux, it can be interpreted as
thestiff part of the system of ODEs (5), and an implicit discretization can be seek.
On the other hand, the second r.h.s. term, i.e.b (u), can be discretized explicitly.

The generalr-stage DIMEX-RK scheme is formulated as:

— for eachi = 1, . . . , r solve forwi:

w
i + ∆t αIM

ii a
(

w
i
)

= u
n + ∆t

i−1
∑

j=1

(

αEX
ij b

(

w
j
)

− αIM
ij a

(

w
j
))

, (8a)

— then compute

u
n+1 = u

n + ∆t
r

∑

i=1

(

ωEX
i b

(

w
i
)

− ω IM
i a

(

w
i
))

. (8b)

Specific values ofαEX, α
IM , ω

EX, ω
IM can be found in Reference [5,6].

For completeness’ sake, we report in Section 6 the value of these coefficients in a
double Butcher tableau format for all the schemes that we consider in the numerical
experiments.

The DIMEX-RK method in (8a)–(8b) requires the solution ofr non-linear systems
of the form

w + ∆t a a (w) = r, a > 0, (9)
wherer is the right-hand-side of (8a). In view of equation (6), let us first define the
map

Φ(w) = (I + ∆t a A(w))−1
r. (10)

Let us then observe that every solutionw of (9) is equivalently a fixed point of (10).
The theoretical results of this paper are resumed in the two following theorems. The
first one formally states the existence and uniqueness of thesolution to the non-
linear equation (9). The other one defines a recursive procedure to solve (9). Since
both theorems are based on some theoretical properties of the discretization matri-
ces, such as the Lipschitz continuity ofA(w), we anticipate here their statements
without the proof, which will be given at the end of the next section.

Theorem 4 The map(10) admits a fixed point for all∆t > 0. The fixed point is
unique when

∆t <
1

L a κ2 ‖r‖1

, (11)

where

κ =
maxi=1,2...,n |Ti|
mini=1,2...,n |Ti|

,
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andL is the Lipschitz constant of the mapA(W).

Equation (9) depends onw in a non-linear fashion, and thus the DIMEX-RK
method as it has been proposed so far may be very expensive from the viewpoint
of computational costs. However, the solutionw can be approximated up to order
O

(

∆tk+1
)

by a straightforward iterative procedure, as it is stated inthe following
theorem:

Theorem 5 Letwi be defined iteratively fori = 0, . . . , k as
w

0 = u
n,

w
i =

(

I + ∆t aA(wi−1)
)

−1
r, i = 1, 2, . . . , k.

(12)

Then, thek-th iteratew
k is anO

(

∆tk+1
)

approximation ofw, which is the exact
solution to(9).

4 Properties of the discretization matricesA(u), A(u) ⊗ Im and proofs

In this section, we discuss some important properties of thematricesA(u) and
A(u) ⊗ Im and in particular we will prove that they are singularM-matricesand
Lipschitz continuous mappings ofu. These results are crucial in demonstrating
theorems 4 and 5, whose proofs are given at the end of this section. Let us first
introduce the notations, the definitions and the basic results from the M-matrix the-
ory. The basic properties of M-matrices are listed for reference’s sake as technical
lemmata without proofs. A detailed presentation of this topic is beyond the scope of
the present paper; hence, we refer the interested reader to the extensive exposition
given in References [7,8].

Definition 6 Any matrixM of the formM = sI − B, with B ≥ 0 is a Z-matrix.
Moreover ifs > ρ(B) the spectral radius ofB thenM is anM-matrix, if s = ρ(B)
it is a singularM-matrix.

Lemma 7 Any matrixM such thatεI + M is an M-matrix for any real number
ε > 0 is a singularM-matrix.

Lemma 8 A matrixM is a Z-matrix iffMij ≤ 0 for i 6= j.

Lemma 9 Each one of these three statements is equivalent to the statement “M is
an M-matrix”:

(i) MT is an M-matrix;
(ii) M is a Z-matrix and there exists a vectorx ≫ 0 such thatMx ≫ 0;

(iii) M is a non-singular Z-matrix andM−1 > 0.

Lemma 10 LetM be an M-matrix andD a non-negative diagonal matrix, then:

(i) if D is non-singular thenDM is an M-matrix;
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(ii) D + M is an M-matrix;
(iii) the inequality(D + M)−1 ≤ M−1 holds.

From the definition given in (7) it follows thatA(u) andA(u) ⊗ Im are singular
matrices. We formally state this fact in Lemma 11.

Lemma 11

(i) 1
T
n is a left eigenvector ofA(u), with respect to the null eigenvalue;

(ii) 1
T
nm = 1

T
n ⊗ 1

T
m is a left eigenvector ofA(u) ⊗ Im with respect to the null

eigenvalue;

Proof.

(i) From (7) it follows that
[

1
T
nA(u)

]

k
=

∑n
j=1 Ajk(u) = 0 for k = 1, 2, . . . , n.

(ii) From (7) and(i) it follows that(1T
n ⊗1

T
m)(A(u)⊗ Im) = 1

T
nA(u)⊗1

T
mIm =

0
T
n ⊗ 1

T
m = 0

T
nm.

The following proposition is among the main results of the present section.

Proposition 12

(i) A(u) is a singular M-matrix.
(ii) A(u) ⊗ Im is a singular M-matrix.

Proof.

(i) From (7) and Lemma 8 it follows thatA(u) is a Z-matrix. From Lemma 11 we
have that1T

nA(u) = 0
T
n and there holds that1T

n (εIn + A(u)) = ε1T
n ≫ 0

T
n .

By using Lemma 9(ii), it follows thatεIn+A(u) is an M-matrix for allε > 0.
Finally, Lemma 7 implies the statement.

(ii) The result follows by using the same arguments of the previous item and the
positive vector1T

n ⊗ 1
T
m instead of1T

n

From the Lipschitz continuity property of the numerical fluxof the numerical con-
vective splitting there immediately turns out the following proposition.

Proposition 13 BothA(u) andA(u) ⊗ Im are Lipschitz continuous mappings of
the entry argumentu with respect to thesameLipschitz constantL.

Proof. From Definition 2-(ii) and the fact that the numerical flux is usually sup-
posed to be a Lipschitz function of its arguments, it immediately follows that

‖A(u) − A(v)‖1 = ‖A(u) ⊗ Im −A(v) ⊗ Im‖1 ≤ L ‖u − v‖1 .

The following lemma illustrates how we can take advantage ofthe fact that all of the
systems (9) are indeed generated by the finite volume discretization of numerical
fluxes re-formulated along the lines of the numerical convective splitting.

Lemma 14 The matrixA(w)
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(i) is a singular M-matrix;
(ii) is a Lipschitz continuous function of its argument, that is areal positive con-

stant exists,L, such that for every couple of vectorsu andw the inequality
‖A(u) −A(w)‖1 ≤ L ‖u− w‖1

holds.

Proof. The first item is a direct consequence of Proposition 12, while the second
one follows immediately from Proposition 13.

Then, we have the two following lemmata (see Reference [9] for the‖·‖
∞

estimate).

Lemma 15 LetM = I + B be a singular M-matrix, andv ≫ 0 a non-negative
vector such thatvT

B = 0; then
∥

∥

∥M−1
∥

∥

∥

1
≤ vmax

vmin

.

Proof. Fromv
T
B = 0 it follows

vmax1
T ≥ v

T = v
T (I + B)−1 = v

TM−1; (13)
from Lemma 9(iii) we can write,

v
TM−1 ≥ vmin1

TM−1, (14)
and by using both (13) and (14) we prove the lemma.

Lemma 16 The matrixI+∆t a A(w) is a non-singular M-matrix for every vector
w and its non-negative inverse verifies the inequality

∥

∥

∥(I + ∆t a A(w))−1
∥

∥

∥

1
≤ κ. (15)

Proof. Because of Proposition 12(i), the term∆t aA(w) is a singular M-matrix;
moreover a direct calculation yields

(1T
nD ⊗ 1

T
m)A(w) = (1T

nD ⊗ 1
T
m)

(

D
−1

A(w) ⊗ Im

)

,

= 1
T
nA(w) ⊗ 1

T
m,

= 0n,
and from Lemma 15 withv = D1n ⊗ 1m equation (15) follows.

Lemma 17 The following inequality holds for allu, w:
‖Φ(u) −Φ(w)‖1 ≤ ∆t a L κ2 ‖u− w‖1 ‖r‖1 . (16)

Proof. The inequality (16) follows by noting that
Φ(u) −Φ(w)

= (I + ∆t aA(u))−1
r − (I + ∆t a A(w))−1

r,

= ∆t a (I + ∆t aA(u))−1 (A(w) −A(u)) (I + ∆t aA(w))−1
r,

taking the1-norm on both sides and applying the result of Lemma 16

Finally, these are the proofs of Theorems 4 and 5.
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Proof of Theorem 4. Let us notice that
K = {u | ‖u‖1 ≤ κ ‖r‖1}

is a convex compact set and that from Lemma 16 there holds

‖Φ(u)‖1 ≤
∥

∥

∥(I + ∆t aA(u))−1
∥

∥

∥

1
‖r‖1 ≤ κ ‖r‖1 .

Thus,Φ is a continuous map from the convex compact setK into K. From the
Brouwer fixed point theorem [10] it follows that the map admits a fixed point.
Finally, from Lemma 17, equation (16), it follows that if∆t satisfies (11) the map
Φ is a contraction. This implies the uniqueness of the solution.

Proof of Theorem 5. By using the approximationA(w) ≈ A(un) in (9), we define
w

∗ as the solution of the linear algebraic system
(I + ∆t aA(un))w∗ = r. (17)

By comparing (9) and (17), we have
(I + ∆t aA(un)) (w − w

∗) = ∆t a L [A(un) −A(w)]w,

and in view of Lemmata 16 and 14 there holds
‖w −w

∗‖1 ≤
∥

∥

∥(I + ∆t aA(un))−1
∥

∥

∥

1
‖A(un) −A(w)‖1 ‖w‖1 ,

≤ κ ∆t a ‖w − u
n‖1 ‖w‖1 .

(18)

As ‖w − u
n‖ = O (∆t), it follows that‖w − w

∗‖1 = O
(

∆t2
)

.

Thus, the approximationA(w) ≈ A(un) in (17) is first order accurate. Nonethe-
less, when a better approximation ofw is used instead ofun, namelyu∗,k, such that
∥

∥

∥u
∗,k − w

∥

∥

∥

1
= O

(

∆tk
)

, we can definew∗,k as the solution of
(

I + ∆t a A(u∗,k)
)

w
∗,k = r.

From inequality (18) withun substituted byu∗,k it turns out thatw∗,k is an
O

(

∆tk+1
)

approximation of thetruenon-linear solutionw.

5 Some remarks about the non-negativity of the scheme

In order to discuss the non-negativity issue of these DIMEX-RK FV schemes, we
shall consider in the rest of this section a simplified model problem. To this purpose,
let us assume that the unknown vectoru be transported by a (possibly non-linear)
advective fluxu⊗ v(u) and that the strictly non-linear contribution in the physical
flux is null, that isF(nc)(u) = 0. We have

∂

∂t
u + ∇ · u⊗ v(u) = 0, in Ω × (0, T ). (19)

Notice that in (19) we do not make any strict assumption on thelinearity of the flux,
because the velocity field may still be dependent on the solution u. If the boundary
flux is non-negative, i.e.u⊗v(u)·n ≥ 0, we can state the following non-negativity
results on the cell-averaged solutionu. For the sake of exposition, we consideru

n

as the cell-averaged vector of one unknown field at the timetn. All of the results
readily generalize to the more general case of a vector of unknown variables.

Proposition 18 The simplest DIMEX-RK scheme is theForward–Backward Euler

10



method, which is first order accurate in time and takes the form

u
n+1 + ∆t a

(

u
n+1

)

= u
n + ∆t b (un) . (20)

(1) Let us suppose thatun ≥ 0. Then, the scheme in(20), which is globally first
order accurate when no spatial reconstruction is applied, is unconditionally
non-negative, that isun+1 ≥ 0;

(2) The same scheme produces a non-negative solution under the condition

(I + ∆tC(un))un ≥ 0, (21)
which clearly depends on the reconstruction matrix.

Proof.

(1) The semi-discrete form of the model equation (19) is
∂

∂t
u + A(u)u = 0, (22)

and the first order accurate DIMEX scheme in (20)withoutreconstruction can
be simply formulated as

(

I + ∆tA(un+1)
)

u
n+1 = u

n,

which formally implies that

u
n+1 =

(

I + ∆tA(un+1)
)

−1
u

n.

Since(I + ∆tA(un+1)) is an M-matrix and from Lemma 9, item 3,u
n ≥ 0

implies thatun+1 ≥ 0. This result is not limited by constraints on the time
step size∆t.

(2) When a spatial reconstruction is considered, (22) is discretized by applying
the first order time accurate scheme (20) as

(

I + ∆tA(un+1)
)

u
n+1 = (I + ∆tC(un))u

n.

The non-negativity ofun+1 can be obtained by an argument that exploits the
non-negativity of the inverse of an M-matrix as in the proof of the previous
item. In this case, the condition to be satisfied by the r.h.s of the equation is
no moreu ≥ 0, but the one stated in the proposition.

The condition (21) can be used to produce suitable sufficientconditions capable
of ensuring the non-negativity of the cell-averaged solution. To see how this item
works, let us derive one such sufficient condition. Let us consider thei-th cell equa-
tion. There holds

[(I + ∆tC(un))u
n]i = (Im + ∆tCii(u

n))u
n
i +

∑

j∈σ(i)

Cij(u
n)un

j

≥ (Im + ∆tCii(u
n))u

n
i − ∆tCiiM

n
i 1m ≥ 0,

whereM n
i = maxj∈σ(i) u

n
j . Thelocal condition on the cell time-step∆ti is

∆ti ≤
mn

i

maxs Cii(un)|ss(M n
i − mn

i )
, m

n
i = min

j∈σ(i)
u

n
j .

This last condition implies theglobal time-step sufficient condition

∆tmax ≤ 2

‖C(un)‖
∞

(

m

M − m

)

, m = min
i,n

m
n
i , M = max

i,n
M

n
i ,

11



and we exploited the fact thatmaxi,s Cii(u
n)|ss = 1

2
‖C(un)‖

∞
.

Stating general conditions to ensure non-negativity is more difficult when we con-
sider a DIMEX-RK scheme with formal accuracy greater than1 or when the truly
non-linear part of the flux defined in (1) is non null, i.e.F

(nc)(u) 6= 0. Nonetheless,
a case-by-case analysis may again produce non-negativity results, see for instance
Reference [11]. For example, by using the result in Reference [12] and due to the
fact that the MDP(1,2,2) can be written as the sum of an implicit and an explicit
part, the non-negativity property can still be ensured under the conditionCFL ≤ 2.

6 Numerical Results

In this section we document the performance of several representative DIMEX-RK
FV schemes as far as their approximation order is concerned and experimentally
investigate the computational efficiency of the DIMEX-RK approach on a complex
fluid dynamics application. Tables (1-3) show the double Butcher’s tableaux with
the coefficientsαIM , ω

IM , andα
EX, ω

EX used in the formulation (8a)–(8b) for all of
the schemes in the numerical experiments of this section. The format is as follows

c
IM

α
IM

ω
IM

c
EX

α
EX

ω
EX

where the tableau on the left refers to the implicit part of the approximation, while
the one on the right to the explicit part of the approximation. We also use the triplet
notation(s′, s′′, r), where the integers′ characterizes the number of stages of the
implicit scheme, the integers′′ characterizes the number of stages of the explicit
scheme, andr is the order of the DIMEX-RK integrator.

Table 1
First-Order DIMEX-RK Methods

FB(1,1,1)
0 0 0

1 0 1

0 1

0 0 0

1 1 0

1 0

MDP(1,2,2)
0 0 0

1/2 0 1/2

0 1

0 0 0

1/2 1/2 0

0 1

6.1 Accuracy of the Methods

In the first set of experiments, we measure the order of accuracy in time and the
global (spatial and temporal) order of accuracy of each approximation scheme.
Since the order of accuracy is formally defined for smooth functions, we pro-
pose the following original test case for the one-dimensional compressible Euler
equations which shows a smooth exact solution. The initial density and pressure
fields consist in a bell-shaped pulse superimposed to a spatially constant value,
which is translated by an initially constant velocity field.The extension of the one-
dimensional computational domain is virtually infinite, but clearly only a small por-
tion of it can be represented. The simulation is arrested before the pulse goes out
of the finite computational domain in order not to have to takecare of the boundary

12



Table 2
Second-Order DIMEX-RK Methods

ARS(2,2,2) [5]
0 0 0 0

γ 0 γ 0

1 0 1 − γ γ

0 1 − γ γ

0 0 0 0

γ γ 0 0

1 δ 1 − δ 0

δ 1 − δ 0

γ = 1 −
√

2

2
,

δ = 1 − 1

2γ
.

ARS(2,3,2) [5]
0 0 0 0

γ 0 γ 0

1 0 1 − γ γ

0 1 − δ δ

0 0 0 0

γ γ 0 0

1 δ 1 − δ 0

δ 1 − δ 0

γ = 1 −
√

2

2
,

δ = −2
√

2

3
.

LRR(3,2,2) [13]
0 0 0 0 0

1/2 0 1/2 0 0

1/3 0 0 1/3 0

1 0 0 3/4 1/4

0 0 3/4 1/4

0 0 0 0 0

1/2 1/2 0 0 0

1/3 1/3 0 0 0

1 0 1 0 0

0 1 0 0

Table 3
Third-Order DIMEX-RK Methods

ARS(2,3,3) [5]
0 0 0 0

γ 0 γ 0

1 − γ 0 1 − 2γ γ

0 1/2 1/2

0 0 0 0

γ γ 0 0

1 − γ γ − 1 2 − 2γ) 0

0 1/2 1/2

γ =
3 +

√
3

6
.

ARS(4,4,3) [5]
0 0 0 0 0 0

1/2 0 1/2 0 0 0

2/3 0 1/6 1/2 0 0

1/2 0 -1/2 1/2 1/2 0

1 0 3/2 -3/2 1/2 1/2

0 3/2 -3/2 1/2 1/2

0 0 0 0 0 0

1/2 1/2 0 0 0 0

2/3 11/18 1/18 0 0 0

1/2 5/6 -5/6 1/2 0 0

1 1/4 7/4 3/4 -7/4 0

1/4 7/4 3/4 -7/4 0

condition treatment.

The order of accuracy in time is numerically measured as follows. We calculate two
distinct solutions with time-steps∆t and∆t/2 and we compare them with a ref-
erence solution obtained by using the time-step∆t/10. The logarithm of the ratio
between differences measured in a standardL2-norm yields the desired time con-
vergence rate. In this case we use a mesh of200 intervals and a piecewise constant
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reconstruction.

The global accuracy is estimated by running three differentsimulations on meshes
with respectively200, 400 and800 intervals. The time-step size changes during the
run in accord with the maximum allowableCFL number. We use a piecewise con-
stant reconstruction for the first order time-stepping schemes, a linear reconstruc-
tion for the second order time-stepping schemes, and a parabolic reconstruction
for the third order time-stepping schemes. The slopes in thelinear reconstruction
are monotonized by a standard minmod limiter, while slopes and concavities in the
parabolic reconstruction are monotonized by adopting the procedure proposed in
Reference [14].

Table 4 reports the orders of accuracy obtained by using the HLLE flux. The first
and second columns of the table are self-explanatory. The third column shows the
convergence rates in time of the DIMEX-RK schemes, and the fourth column their
global (in time and space) convergence rates, all measured as explained above.
From the table it is evident that all these DIMEX-RK FV achieves the formal order
of accuracy that is theoretically expected. It should be pointed out that repeating
these experiments by using the other numerical fluxes that meet the numerical con-
vective splitting formulation, like theSteger-Warmingflux splitting, theVan Leer
flux splitting and theAUSM+flux splitting (see [1] for more details), produces sim-
ilar results. This very little dependence on the choice of the numerical flux is quite
reasonable, because we do not measure any significant issue related to the spatial
discretization.
Table 4
DIMEX-RK convergence rates in time and for the full (time andspace) FV discretizations.

Formal Accuracy DIMEX-RK Method DIMEX-RK Rate Global rate

First-Order
ERK(1) 1.220 0.952

FB(1,1,1) 1.126 0.930

Second-Order

ERK(2) 2.048 1.947

MDP(1,2,2) 2.044 1.947

ARS(2,2,2) 2.045 1.946

ARS(2,3,2) 2.045 1.946

LRR(3,3,2) 2.045 1.946

Third-Order

ERK(3) 3.019 2.963

ARS(2,3,3) 2.989 2.984

ARS(4,4,3) 3.004 2.943

6.2 Computational Efficiency

In the second set of experiments, we consider the system of 2-D reactive compress-
ible Euler equations on three standard test cases taken fromthe CFD literature.
Basically, a shock discontinuity is moving on a compressionramp with different
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inclination angles and thus forms well-known shock patterns at the final integra-
tion time. As we are only interested in measuring the CPU times for the various
DIMEX-RK schemes, a detailed analysis of these shock interaction phenomena is
beyond the scope of this paper. Thus, we refer the reader to Reference [11] and
the bibliography therein for a thorough description of thismodel problems. We list
below the major simulation parameters that characterize each test case. We also
provide for each test case a figure that shows the approximatesolution at the final
time step as indicated below. The approximate solution shown in each figure is cal-
culated by using the a piece-wise linear reconstruction, the HLLE numerical flux
and the ERK(2) time integrator.

(i) Single Mach Reflection:
Mach numberMs = 2.03, compression angle270, mesh of59756 triangles, final
time t = 100µs, solution shown in Figure 1;

(ii) Complex Mach Reflection:
Mach numberMs = 10.37, compression angle100, mesh of34833 triangles,
final timet = 20µs, solution shown in Figure 3;

(iii) Double Mach Reflection:
Mach numberMs = 8.7, compression angle270, mesh of49179 triangles, final
time t = 24µs, solution shown in Figure 2.

For a complete description of the model problem and the threetest cases, we refer
the reader to Reference [11] and the bibliography therein.

Table 5 illustrates the performance of the schemes ERK(2) and DIMEX
MDP(1,2,2). Row#Iter reports the total number of iterations required to solve
the non-linear algebraic system (9) by applying the iterative procedure of equa-
tion (12). The non-linear solving procedure implements a standard Richardson iter-
ative scheme [15] coupled with an incompleteLU preconditioner [16]. RowsRec.,
Chem.andSteprespectively detail the computational time (in seconds) needed to
perform second order reconstructions, the update of the chemical terms, and the
rest of the integration time-step. Finally, RowTot. Timegives the total CPU time
to perform the run, and Row% Gain the percentage gain obtained by using the
DIMEX-RK scheme instead of the explicit one.

Let us remark that the reconstruction procedure, which is needed to attain second
order accuracy in space, is the same for both ERK(2) and MDP(1,2,2) methods and
must be performed at each time-step. The reconstruction is an important entry in
the overall computational costs, but its impact is less dramatic in the DIMEX-RK
case than in the explicit one. This is because the former scheme allows a greater
time step size and requires less time iterations to perform the same calculation.
The update of the chemical terms (RowChem.) and the rest of the integration time
step (RowStep) is less expensive for the explicit scheme, because the DIMEX-
RK method requires the iterative re-solution of a set non-linear algebraic systems.
Nonetheless, from the viewpoint of global computational costs (RowTot. Time) the
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Fig. 1. Single Mach Reflection atT = 100µs
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Fig. 2. Double Mach Reflection atT = 20µs

DIMEX-RK method is always more efficient. The percentage gain (Row% Gain)
is in the range[30, 60]%.
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Fig. 3. Complex Mach Reflection atT = 24µs

Table 5
Perfomance of ERK(2) and MDP(1,2,2) schemes on a 2-D reactive compressible flow cal-
culation; the CPU times are in seconds.

Problem SINGLE COMPLEX DOUBLE

Method ERK(2) MDP ERK(2) MDP ERK(2) MDP

#Iter. 1626 771 1512 455 1753 524

Rec. (sec) 3400 1590 1850 556 3040 910

Chem.(sec) — — 318 565 513 852

Step (sec) 5980 5360 3650 2540 5990 4130

Tot. Time (sec) 9370 6960 5810 3660 9540 5900

% Gain 35% 59% 61%

7 Conclusions

In this paper, we studied some theoretical properties of theDIMEX-RK FV integra-
tors that have been developed for multi-dimensional hyperbolic systems in [1]. We
demonstrated that this approach produces a time evolution matrix operator which
shows a peculiar block structure common to a wide family of numerical fluxes. The
underlying block matrices are M-matrices and the analysis which can be carried on
within this context allowed to show that simple and efficientresolution algorithms
even for high-order schemes can be built. Although this FV scheme has been de-
veloped for unstructured mesh calculations all the theoretical results proved here
can be straightforwardly extended to schemes defined on structured cartesian or
curvilinear meshes.

Finally, the performance of the method has been experimentally investigated. A set
of representative time integration schemes up to third order global accuracy applied
to a 1-D test case has been considered to measure the approximation accuracy of
the method. The computational efficiency of the DIMEX-RK approach when com-
pared to an explicit integration time stepping scheme has been measured on a more
complex application concerning with the simulation of a 2-Dreactive compressible
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flow. All these experimental investigations illustrate that this approach performs in
good accord with the theoretical predictions.
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