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Abstract

In this paper we continue the study of the Diagonally IMpEKplicit Runge-Kutta
(DIMEX-RK) methods that we proposed in the first part of thierlwin the framework
of Finite Volume methods for unstructured grids. These neamerical approximation
schemes are based on a special splitting of the physicalumdnical flux vector functions
into a convective and a non-convective part. In the fram&vadrDIMEX-RK schemes,
the convective part is discretized in an implicit way, white discuss the non-convective
one in an explicit way. We discuss some theoretical progeuf the non-linear algebraic
evolution operators that are derived in the full discrattaafrom the application of these
methods to strongly convected dominated flows. A set of nim@leexperiments illustrates
the behavior of this class of methods on reactive and noctiveahypersonic simulations.

Key words: Finite Volume, Runge-Kutta, Implicit-Explicit, Partialifferential Equation,
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1 Introduction

This is the second paper in a series in which we contruct amlydtigh resolu-
tion Diagonally IMplicit-EXplicit Runge-Kutta (DIMEX-RHK schemes for numer-
ically solving multi-dimensional hyperbolic systems iretframework of Finite
Volume (FV) methods for unstructured grids. The multidisienal hyperbolic
systems that we wish to focus on are related to either tinpeugent or steady
high speed compressible flow simulations. This kind of flothat are strongly
convected-dominated, is usually found when modellingtreatypersonics. The



mathematical model takes the conservative divergence form

6%11 +V-F(u) =0, inQ x (0, 7), 1)

where(2 is a bounded open connected subs@&fd = 1,2, 3, u is a vector-valued
function fromR? x [0, o] into the open subsét C R™, andF(u) is a non-linear
vector-valued mapping frortt into R™. Throughout the paper, we will refer io
asthe solution vector functigrio 4l asthe set of admissible solution statesd to
F(u) asthe flux vector functionAs usual, the components Btu) are assumed
smooth — say of clas§™.

The DIMEX-RK schemes, that we proposed in our first work [1§ bBased on a
splitting of new conception of the numerical flux functioridra convective and a
non-convective part. This splitting allows us to adopt tH¥BX strategy for the
time discretization. In fact, the convective term, whichyrba source of stiffness in
this kind of problems, will be treated implicitly by mimiakg the upwinding of a
scalar linear flux. On the other hand, the non-convectiveqfdhe numerical flux
function will be treated explicitly. In order to formally roduce this idea, let us
first denote the set af Jacobian matrices of the flux vector functions in (1) by
J(u) = Lgiu), for eachu € 4l.
Equation (1) is a multidimensional hyperbolic system ofaepns in divergence
form if the matrix J(u,n) = n - J(u) hasm real eigenvalues\""(u,n) =
A(uyn) < --- < Ap(u,n) = A™(u,n) and a complete set of eigenvectors
for anyu € 4 and any non-zero vectar ¢ R?. We will denote the minimum
and maximum eigenvalues by (u, n) and\™¥(u, n). We focus our attention on
problems of the form (1) whose physical flux vector functiatisfies the following
formal assumption.

Assumption 1 The flux vector functiof'(u) can be split as
F(u) = F(u) + F"9(u),
where the convective part takes the form
FO(u) = u® v(u),
v(u) being theconvective velocity fieldand satisfying
AMN(a,n) < n-v(u) < A", n), foranyu € $, andn € R“

Following Assumption 1, we consider numerical fluxééu;, ugz, n) that satisfy
the following definition:

Definition 2 A numerical flux admits aumerical convective splitting it can be
decomposed into the sum of a convective and non-conveetiije p

H(u,v,n) = HO(u,v,n) + H"™(u, v, n).
The convective part takes the form

H®(u,v,n) = a(u,v,n)u — a(v,u, —n)v,
and is such that for each, v € {4 andn € R? with ||n|]| = 1 the numerical
convective velocity satisfies the following conditions:



(i) a(u,v,n) > 0;
(ii) [a(u,v,n) —a(’, v/, n)| < L (Jlu—u'[| + [|v - v’
(77) v(u)-n=a(u,u,n)—a(u,u, —n).

);

In [1] we discuss how many of the shock-capturing numericate developed
for strongly convected-dominated problems can be re-ftatad in accord with
Definition 2. This allowed us to derive a new class of DIMEX-RlScretization
methods in the FV framework and to guarantee high-resaolujiality in the solu-
tion approximation by using the reconstruction from cekr@ages .

In this paper, we carry out the theoretical analysis of tH2id¢EX-RK finite vol-
ume methods to demonstrate some interesting propertieerung the algebraic
structure of the discrete non-linear evolution operators.

The outline of the paper is as follows. In Section 2, we brieflyiew the semi-

discrete FV formulation. In Section 3, we introduce the DIK4RK methods for

the full discretization and the basic algebraic non-liqablem derived by the ap-
plication of the method to the semi-discrete FV scheme. bii@e 4, we study the
theoretical properties of the non-linear algebraic evotubperators. In particular,
we show the existence and uniqueness of the solution of thdinear algebraic
problem under quite general hypothesis by using the M-matreory. We also

design efficient iterative procedures that ensure the cofoemal order of accu-
racy in solving this non-linear algebraic problem. In Saexctb, we study how non-
negativity results can be obtained for these approximatiethods. In Section 6,
we illustrate the performance of these methods in term ofpzdational efficiency

and quality of approximation on several 1-D and 2-D numéegamples. Finally,

in Section 7 conclusions are offered.

2 The semi-discrete Finite Volume formulation
2.1 Mesh notations and conventions

Our basic FV scheme is defined on a mesh that completely ctheeceomputational
domainQ) € R9. The mesh is defined as the union of a setafon-overlapping
control volumes ocells, that arantervalsin the 1-D casetrianglesin the 2-D case,
andtetrahedronsn the 3-D case. The mesh is assumed toggellar andconformal
in the sense specified by Reference [2].

Cells are conventionally labeled by an integer identifiergiag from1 to n. The
identifier is generically indicated by the index lettérg or k. For the generic cell

T, we indicate by T;| thed dimensional measure of the cell (volume in 3-D, area
in 2-D, length in 1-D).

The intersection of two cells or the intersection of a cell #me border of2 with
positive(d — 1) dimensional measure is called a face (edge in 2-D, point).1-
The internal face shared by the cells and T, is addressed by the paij and



denoted by the symbd);. For the sake of notation consistency, a boundary face
is also addressed by a pair of indices, namélyi being the unique cell the face
belongs to, and a specific boundary face identifier — like a fictitious “exiaifn
cell. This convention allows us to refer to either intermaboundary faces by means
of an index pair. For the generic faf,g we indicate byf;;| its (d—1)—dimensional
measure (area in 3-D, length in 2D, conventionallg 1-D), and byn;; its normal
vector @1 in 1D). The normal vector is assumed to be oriented from theide

the cell j when the face is internal and outward directed when the faomithe
boundary.

For each celll;, we denote by (i) the set of internal faces and b¥(7) the subset
of the cell faces located at the boundary. The synibgldenotes theé-dimensional

measure of the cell, i.e. the tetrahedron volume in 3-D,riagle area in 2-D, and
the interval length in 1-D. These notations and convectaressuitable for prac-
tical implementation of Finite Volume solvers by using thgext oriented library
P2MESH [3].

2.2 \ector/Matrix notations and conventions

Let us now introduce the vector and matrix notations thak él utilized in this
sections and in the following ones. The symiiglindicates thek x k identity
matrix, 1, the k size vector all of whose components are equal,tevhile the
symbol0, indicates thek size vector all of whose components are equdl.té
positive vectorv satisfiesv > 0, a hon-negative vector satisfiesv > 0, where
the compact notation means

v>0<= vy >0 forall:

v>0 <= vy, >0 foralli

v>0 <= v>0 andv#0.
Similar notations and definitions also apply to matrices;ifstance, the matrix
inequalityM < N means thatl/;; < N;; for every pairij, and a positive (non-
negative) real matriXM is a matrix all of whose components are positive (non-
negative) real numbers. Block vectors are denoted by unéeribold symbols,
that isu is a block vector. Their block components are indicated lofexed (non
underlined) bold symbols, thatis is thei-th sub-vector block of.

The symbol® indicates the standard tensor product, which is as foll@gen
two matricesA andB of orderm x n andp x ¢, A ® B is the block matrix of
ordermp x ng whose blocki, j is (A @ B);; = A;;B. The tensor product has
two noteworthy properties, see for instance Referencé/NéJjust mention the one
most used in the paper, that(iA ® B)(C ® D) = AC ® BD, with A, B, C and
D four generic matrices (with compatible dimensions).



2.3 The basic semi-discrete FV scheme

The i-th cell-averaged solution state is denotedwyy and the global collection
of n cell- averaged data by. Thus, this latter one is the x m-size block vector

u?’ = (ul ul, ... ul), whosei-th block is them-size vectoru;. We can also
address the cell-averagé&eth equation variable fok = 1,2, ..., m within thei-th
cell, fori = 1,2, ..., n by the notationy; |, = ulx.;. This is thek-th component

of the:-th vector block.

Reformulating equation (1) in an integral form for each oélthe mesh, applying
the Gauss divergence theorem and introducing suitable mcathdux functions
to discretize the physical flux yield the semi-discrete Fvhewical scheme in the

form
dt A S C )+ HI W)+ HY (w) =0, (2)

j€a(i) jeo(i ) j'€a’ (i)
where the scalar functlorw] and the vectorH ) are defined as follows

u) = [fj| Z wial;(u), (3a)

H? ) (u) = G (u) +|fzj|2wkH(”C)(uz( xE),w (x5 n;),  (3b)

) Zj ) U
k=1
and
al (0) = alw (- x5), (x5 my), “2)

G%mﬂmiw@mmm%%w—%uwmy u;)). (4b)

In (3a)—(3b)— (4b)x is thekth quadrature node on the fazg w;, the correspond-
ing quadrature Welght and;(t, x) the solution reconstructed in thieh cell. We
assume that:

Assumption 3 All of the weights used in quadrature formulae gresitive i.e.
w; >0foralli=1,..., N,.

3 DIMEX-RK discretization in time

Let us rewrite equation (2) as
du

b -aw. ©

where
D =diag|Ti|.....[Tx)), Aw)=D"'A(w) @1, a(u) =Au (6
Then x n matrix A (u) is defined as
Yieom au(a) if i =7,
Aij() ={ —aji(u) if ij addresses a mesh face, nanfgly ~ (7)

0 otherwise.



The block vectob (u)” = [by(u)7, ..., b,(u)” ], whosei-th block is given by
Tdbiw) = - 3 H7@ - > H ).
j€o(i

jEo(d) j'ea’ (i)

The DIMEX-RK method provides a natural framework to disaet(5). In fact,
sincea(u) contains the transport contribution to the flux, it can beripteted as
thestiff part of the system of ODEs (5), and an implicit discretizattan be seek.
On the other hand, the second r.h.s. termpi(@1), can be discretized explicitly.

The generat-stage DIMEX-RK scheme is formulated as:
— foreachi = 1,...,r solve forw":
i—1
w'+ AtaMa (ﬂz) =u"+ ALY (ozfij (ﬂj) —of'a (ﬂj)) , (8a)
j=1
— then compute

u"tt =u" + At XT: (wFb (w') — wiMa(w')). (8b)
=1

Specific values o&®*, a'™, w®*, w™ can be found in Reference [5,6].

For completeness’ sake, we report in Section 6 the valueesiticoefficients in a
double Butcher tableau format for all the schemes that weidenin the numerical
experiments.

The DIMEX-RK method in (8a)—(8b) requires the solution-afon-linear systems
of the form

w+ Atea(w) =r, a >0, (9)
wherer is the right-hand-side of (8a). In view of equation (6), Istfisst define the
map

d(w)=(I+AtaAw)) 'r. (10)

Let us then observe that every solutwrof (9) is equivalently a fixed point of (10).
The theoretical results of this paper are resumed in thedl@iding theorems. The
first one formally states the existence and uniqueness asdhgion to the non-
linear equation (9). The other one defines a recursive puwedd solve (9). Since
both theorems are based on some theoretical properties digbretization matri-
ces, such as the Lipschitz continuity dfw), we anticipate here their statements
without the proof, which will be given at the end of the nexttgan.

Theorem 4 The map(10) admits a fixed point for al¢z > 0. The fixed point is
unique when

1
At < ——— 11
Lar[ll, )
where

ceey

veey



and L is the Lipschitz constant of the maffW).

Equation (9) depends ow in a non-linear fashion, and thus the DIMEX-RK
method as it has been proposed so far may be very expensmdlieviewpoint
of computational costs. However, the solutwican be approximated up to order
@) (At’““) by a straightforward iterative procedure, as it is statetthéfollowing
theorem:

Theorem 5 Letw' be defined iteratively for= 0, ...,k as
w’ =u",
| o (12)
ﬂz = (I"‘AtCLA(ﬂlil)) 11'7 Z:17277k
Then, thek-th iteratew” is an O (At’““) approximation ofw, which is the exact
solution to(9).

4 Properties of the discretization matricesA (u), A(u) ® I,,, and proofs

In this section, we discuss some important properties ofmh&icesA (u) and
A(u) ® I, and in particular we will prove that they are singuMsmatricesand
Lipschitz continuous mappings af. These results are crucial in demonstrating
theorems 4 and 5, whose proofs are given at the end of thimsetet us first
introduce the notations, the definitions and the basic tefdm the M-matrix the-
ory. The basic properties of M-matrices are listed for refiee’s sake as technical
lemmata without proofs. A detailed presentation of thisdapbeyond the scope of
the present paper; hence, we refer the interested reades extensive exposition
given in References [7,8].

Definition 6 Any matrixM of the formM = sI — B, with B > 0 is a Z-matrix.
Moreover ifs > p(B) the spectral radius oB then M is anM-matrix, if s = p(B)
it is a singularM-matrix.

Lemma 7 Any matrixM such thatI + M is an M-matrix for any real number
e > 0 is asingularM-matrix.

Lemma 8 A matrix. M is a Z-matrix iffAM;; < 0 fori # j.

Lemma 9 Each one of these three statements is equivalent to therstaté M is
an M-matrix”:

(i) M7 is an M-matrix;
(1) M is a Z-matrix and there exists a vectors>> 0 such thatMx > 0;
(ii1) M is a non-singular Z-matrix and1~! > 0.

Lemma 10 Let M be an M-matrix and® a non-negative diagonal matrix, then:

() if D is non-singular therD M is an M-matrix;



(17) D+ M is an M-matrix;
(4ii) the inequalityD + M)~ < M~ holds.

From the definition given in (7) it follows thaA (u) and A (u) ® 1,, are singular
matrices. We formally state this fact in Lemma 11.

Lemma 11

(i) 11is a left eigenvector oA (u), with respect to the null eigenvalue;
(ii) 11 =117 ® 17 is a left eigenvector oA (u) ® I,,, with respect to the null
eigenvalue;

Proof.
(i) From (7) it follows that[lZA( )} =37 Ajp(u) =0fork =1,2,.

(41) From (7) and) itfoIIowsthat(1T®1T)(A( )1, ) 17A(u )®1T =
0l @11 =07 .

The following proposition is among the main results of thegent section.

Proposition 12

(1) A(u) is a singular M-matrix.
(i1) A(u) ® I, is a singular M-matrix.

Proof.

(1) From (7) and Lemma 8 it follows tha (u) is a Z-matrix. From Lemma 11 we
have thatt? A (u) = 0% and there holds that! (I, + A(u)) = €17 > 07.
By using Lemma §ii), it follows that<I,, + A (u) is an M-matrix for alle > 0.
Finally, Lemma 7 implies the statement.

(77) The result follows by using the same arguments of the praviieun and the
positive vectorl? ® 17 instead oftL?

From the Lipschitz continuity property of the numerical floithe numerical con-
vective splitting there immediately turns out the follogiproposition.

Proposition 13 Both A(u) and A (u) ® L, are Lipschitz continuous mappings of
the entry argumeni with respect to theameLipschitz constant.

Proof. From Definition 2(ii) and the fact that the numerical flux is usually sup-
posed to be a Lipschitz function of its arguments, it immesdyefollows that

[A(w) — AW, = [[Alw) @ L, = A(v) @ L[, < Liju —vl]; .

The following lemma illustrates how we can take advantagkefact that all of the
systems (9) are indeed generated by the finite volume dizatien of numerical
fluxes re-formulated along the lines of the numerical cotivesplitting.

Lemma 14 The matrixA(w)



(1) is a singular M-matrix;
(71) is a Lipschitz continuous function of its argument, that iea positive con-
stant exists/., such that for every couple of vectarsandw the inequality

[A(u) — Aw)[|, < L[u-w|,
holds.

Proof. The first item is a direct consequence of Proposition 12,emfié second
one follows immediately from Proposition 13.

Then, we have the two following lemmata (see Reference [ahig||- || estimate).

Lemma 15 Let M = I + B be a singular M-matrix, and > 0 a non-negative
vector such that’B = 0; then

o, e

Umin

Proof. Fromv’B = 0 it follows

Umazl? > v =vII+B) ' =vIM (13)
from Lemma 9iii) we can write,
VTM_l Z Umin]-TM_la (14)

and by using both (13) and (14) we prove the lemma.

Lemma 16 The matrixI + At a A(w) is a non-singular M-matrix for every vector
w and its non-negative inverse verifies the inequality

H(HAMA(E))”Hl < k. (15)

Proof. Because of Proposition 13, the termAt a A(w) is a singular M-matrix;
moreover a direct calculation yields

(1ID® 1) Aw) = (1’D®17) (D'A(w) ® L,),
= 12A(ﬂ) ® 1§7

= 0n7
and from Lemma 15 witkr = D1,, ® 1,, equation (15) follows.

Lemma 17 The following inequality holds for aih, w:
IP(w) — S(w)ll, < AtaLr?|lu—wl ], (16)

Proof. The inequality (16) follows by noting that
®(u) - H(w)
—(I+AtaA) 'r— I+ AtaA(w)) 'r,
=Ata (I+AtaA() ' (Aw) — A)) I+ AtaA(w)) 'r,
taking thel-norm on both sides and applying the result of Lemma 16

Finally, these are the proofs of Theorems 4 and 5.



Proof of Theorem 4. Let us notice that
K=A{u| fluf, <#lrfl}

IS a convex compact set and that from Lemma 16 there holds

| @@)ll, < [@+Atad@) ™| [r]l, < =l
Thus, @ is a continuous map from the convex compact/sento K. From the
Brouwer fixed point theorem [10] it follows that the map adsat fixed point.
Finally, from Lemma 17, equation (16), it follows thatAft satisfies (11) the map
& is a contraction. This implies the uniqueness of the salutio

Proof of Theorem 5. By using the approximatiod(w) ~ A(u") in (9), we define
w* as the solution of the linear algebraic system
(I+AtaAu"))w" =r. (17)
By comparing (9) and (17), we have
I+AtaAu")) (w—-w") =Atal [Au") - Alw)] w,
and in view of Lemmata 16 and 14 there holds

lw —wl, < |[(T+AtaA@)) ™, AW = A, wl,. a8)

< kAta|lw—u"|, [lwl],.
As |lw — u"|| = O (At), it follows that||lw — w*||, = O (At*).

Thus, the approximationl(w) ~ A(u”) in (17) is first order accurate. Nonethe-
less, when a better approximationwfis used instead af”, namelyu**, such that

‘g*’k — ﬂHl =0 (At’“), we can definev** as the solution of

(I + At a.A(g*’k)) wht =r.
From inequality (18) withu” substituted byu** it turns out thatw** is an
@) (At’““) approximation of theérue non-linear solutionw.

5 Some remarks about the non-negativity of the scheme

In order to discuss the non-negativity issue of these DIMEXFV schemes, we
shall consider in the rest of this section a simplified modebjem. To this purpose,
let us assume that the unknown veatobe transported by a (possibly non-linear)
advective fluxu ® v(u) and that the strictly non-linear contribution in the physic
flux is null, that isF(™) (u) = 0. We have

%u+V-u®V(u)=0, in Q % (0, T). (19)

Notice that in (19) we do not make any strict assumption otittearity of the flux,
because the velocity field may still be dependent on theisolut If the boundary
flux is non-negative, i.e1®v(u)-n > 0, we can state the following non-negativity
results on the cell-averaged solutianFor the sake of exposition, we consider
as the cell-averaged vector of one unknown field at the tim@ll of the results
readily generalize to the more general case of a vector afiamk variables.

Proposition 18 The simplest DIMEX-RK scheme is therward—Backward Euler

10



method, which is first order accurate in time and takes thenfor
w4 Ata(u"t) =u" + Atb(u") . (20)

(1) Let us suppose that® > 0. Then, the scheme {20), which is globally first
order accurate when no spatial reconstruction is appliedynconditionally
non-negative, that ig"*! > 0;

(2) The same scheme produces a non-negative solution umeleondition

(I+ AtC(u™))u"™ > 0, (21)
which clearly depends on the reconstruction matrix.

Proof.
(1) The semi-discrete form of the model equation (19) is
0
— 22

and the first order accurate DIMEX scheme in (2&thoutreconstruction can
be simply formulated as

(I + AtA(u”“)) u"tt =u",
which formally implies that
utt = (I - At.A(u"Jrl))_1 u”.
Since(I + AtA(u™*!)) is an M-matrix and from Lemma 9, item 8" > 0
implies thatu™™! > 0. This result is not limited by constraints on the time
step sizeAt.

(2) When a spatial reconstruction is considered, (22) isrdiized by applying
the first order time accurate scheme (20) as

(T+ALA@™)) w*! = (I + AtC(u") u”

The non-negativity ofi"*! can be obtained by an argument that exploits the
non-negativity of the inverse of an M-matrix as in the probtle previous
item. In this case, the condition to be satisfied by the r.hth®equation is

no moreu > 0, but the one stated in the proposition.

The condition (21) can be used to produce suitable suffi@entlitions capable
of ensuring the non-negativity of the cell-averaged solutiTo see how this item
works, let us derive one such sufficient condition. Let usstaer thei-th cell equa-
tion. There holds

[(I+ AtC(u™)u"], = (L, + AtCyu(u™)ul + > Cji(u

j€o(3)

> (I, + AtCy(u")) uf — AtC; M1, > 0,
whereM;" = max;c,(;) u} - Thelocal condition on the cell time- -stefit; is

mr

At; < ! , m;" = min u
~ max, Cj(u”)|ss(M™ — mp) " o)

This last condition implies thglobal time-step sufficient condition

2 m
< = mi n — n

11



[ceh

and we exploited the fact thatax; ; C;;(u")|ss = 1 | C(u")]|

Stating general conditions to ensure non-negativity isewificult when we con-
sider a DIMEX-RK scheme with formal accuracy greater thamw when the truly
non-linear part of the flux defined in (1) is non null, I (u) # 0. Nonetheless,
a case-by-case analysis may again produce non-negatgiijts, see for instance
Reference [11]. For example, by using the result in Refexg¢h2] and due to the
fact that the MDP(1,2,2) can be written as the sum of an int@ied an explicit
part, the non-negativity property can still be ensured utiteconditionCFL < 2.

6 Numerical Results

In this section we document the performance of several septative DIMEX-RK
FV schemes as far as their approximation order is concemneédgperimentally
investigate the computational efficiency of the DIMEX-RKpapach on a complex
fluid dynamics application. Tables (1-3) show the doublecBat’s tableaux with
the coefficientsx'"', w'™, anda®*, w®* used in the formulation (8a)—(8b) for all of
the schemes in the numerical experiments of this sectioamfdimat is as follows

cIM ‘ aIM CEX ‘ aEX

‘ W™ ‘ WEX
where the tableau on the left refers to the implicit part ef @éipproximation, while
the one on the right to the explicit part of the approximathe also use the triplet
notation(s’, s”, r), where the integes¢’ characterizes the number of stages of the
implicit scheme, the integet’ characterizes the number of stages of the explicit
scheme, and is the order of the DIMEX-RK integrator.

Table 1
First-Order DIMEX-RK Methods
FB(1,1,1) MDP(1,2,2)
0|0 O 00 O 0|0 O 0 0O O
110 1 111 O 1210 1/2 1/2(1/2 0
0 1 10 0 1 0 1

6.1 Accuracy of the Methods

In the first set of experiments, we measure the order of acguratime and the
global (spatial and temporal) order of accuracy of each @ppration scheme.
Since the order of accuracy is formally defined for smoothcfioms, we pro-
pose the following original test case for the one-dimersi@ompressible Euler
equations which shows a smooth exact solution. The inigaisdty and pressure
fields consist in a bell-shaped pulse superimposed to aaflgatonstant value,
which is translated by an initially constant velocity fielthe extension of the one-
dimensional computational domain is virtually infinitef lolearly only a small por-
tion of it can be represented. The simulation is arrestedrbdahe pulse goes out
of the finite computational domain in order not to have to tedee of the boundary

12



Table 2

Second-Order DIMEX-RK Methods
ARS(2,2,2) [5]

0 0

0 0 0 3
v|l0 4 0O v 0 O o=l
110 1—v ~ 116 1-6 0 s = 1- L1
0 1—v ~ 5§ 1-6 O 2y
ARS(2,3,2) [5]
0 0 0O 0 0
v|0 v O vl 0 0 o= 1‘?’
10 1—v ¥« 1(6 1-6 O 5 = _2V2
0 1-6 6 5§ 1-6 0 3
LRR(3,2,2) [13]
olo 0o 0 0 0/0 00O
17210 12 0 0 172112 0 0 0O
3|0 0 13 O 13[13 0 0 0
1/0 0 34 14 1/0 1 00
0 0 34 14 0 100

Table 3
Third-Order DIMEX-RK Methods

ARS(2,3,3) [5]

0 o0 0 0 0 0 0
0 v 0 v v 0 0 343
170 1-2¢ ~ -y |y=1 2-29) O 7T
0 12 12 | o 12 12
ARS(4,4,3) [5]
olo o 0 0 O o] o O 0 O0 O
/2|0 12 0 0 O 12| 12 0 0 0 0
23/0 1/6 12 0 0 2/3|11/18 1/18 0 0 O
1210 -12 12 12 0 12| 56 -5/6 12 0 0
110 32 -32 12 12 1| 14 714 34 -714 0
0 32 -32 1/2 1/2 14 714 3/4 -74 0

condition treatment.

The order of accuracy in time is numerically measured aevial We calculate two
distinct solutions with time-stepA¢ and At/2 and we compare them with a ref-
erence solution obtained by using the time-step10. The logarithm of the ratio
between differences measured in a standZrtiorm yields the desired time con-
vergence rate. In this case we use a meshofintervals and a piecewise constant
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reconstruction.

The global accuracy is estimated by running three diffesentilations on meshes
with respectively200, 400 and800 intervals. The time-step size changes during the
run in accord with the maximum allowab{&L number. We use a piecewise con-
stant reconstruction for the first order time-stepping sté® a linear reconstruc-
tion for the second order time-stepping schemes, and a @arakconstruction
for the third order time-stepping schemes. The slopes iritlear reconstruction
are monotonized by a standard minmod limiter, while slopgsa@ncavities in the
parabolic reconstruction are monotonized by adopting tbegquure proposed in
Reference [14].

Table 4 reports the orders of accuracy obtained by using theéeHlux. The first
and second columns of the table are self-explanatory. Tinege¢blumn shows the
convergence rates in time of the DIMEX-RK schemes, and theticcolumn their
global (in time and space) convergence rates, all measweax@ained above.
From the table it is evident that all these DIMEX-RK FV aclasthe formal order
of accuracy that is theoretically expected. It should benfgai out that repeating
these experiments by using the other numerical fluxes that the numerical con-
vective splitting formulation, like th&teger-Warminglux splitting, theVan Leer
flux splitting and theAUSM+flux splitting (see [1] for more details), produces sim-
ilar results. This very little dependence on the choice efribmerical flux is quite
reasonable, because we do not measure any significant edatedrto the spatial
discretization.

Table 4

DIMEX-RK convergence rates in time and for the full (time apéhce) FV discretizations.

Formal Accuracy DIMEX-RK Method DIMEX-RK Rate Global rate

Eirst.Order ERK(1) 1.220 0.952
FB(1,1,1) 1.126 0.930

ERK(2) 2.048 1.947

MDP(1,2,2) 2.044 1.947

Second-Order ARS(2,2,2) 2.045 1.946
ARS(2,3,2) 2.045 1.946

LRR(3,3,2) 2.045 1.946

ERK(3) 3.019 2.963

Third-Order ARS(2,3,3) 2.989 2.984
ARS(4,4,3) 3.004 2.943

6.2 Computational Efficiency
In the second set of experiments, we consider the systenbaictive compress-

ible Euler equations on three standard test cases takentfrer@FD literature.
Basically, a shock discontinuity is moving on a compressamp with different
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inclination angles and thus forms well-known shock patexnthe final integra-
tion time. As we are only interested in measuring the CPU difoe the various
DIMEX-RK schemes, a detailed analysis of these shock iotena phenomena is
beyond the scope of this paper. Thus, we refer the readerferdRee [11] and
the bibliography therein for a thorough description of timsdel problems. We list
below the major simulation parameters that characterizé &sst case. We also
provide for each test case a figure that shows the approxisoaigon at the final
time step as indicated below. The approximate solution shiowach figure is cal-
culated by using the a piece-wise linear reconstructiom HhLE numerical flux
and the ERK(2) time integrator.

(i) Single Mach Reflection

Mach numben/, = 2.03, compression angt&r’, mesh 059756 triangles, final
timet = 100us, solution shown in Figure 1;

(i) Complex Mach Reflection
Mach numberM, = 10.37, compression angl&€0’, mesh of34833 triangles,
final timet = 20us, solution shown in Figure 3;

(i) Double Mach Reflectian
Mach numbenV/, = 8.7, compression angl&7®, mesh of49179 triangles, final
timet¢ = 24us, solution shown in Figure 2.

For a complete description of the model problem and the ttestecases, we refer
the reader to Reference [11] and the bibliography therein.

Table 5 illustrates the performance of the schemes ERK(2) BHWMEX
MDP(1,2,2). Row#lter reports the total number of iterations required to solve
the non-linear algebraic system (9) by applying the iteeaprocedure of equa-
tion (12). The non-linear solving procedure implementsaadard Richardson iter-
ative scheme [15] coupled with an incomplét€ preconditioner [16]. RowRec,
Chem.and Steprespectively detail the computational time (in secondg€ded to
perform second order reconstructions, the update of theiclaé¢ terms, and the
rest of the integration time-step. Finally, Rawt. Timegives the total CPU time
to perform the run, and Ro®o Gainthe percentage gain obtained by using the
DIMEX-RK scheme instead of the explicit one.

Let us remark that the reconstruction procedure, which ésled to attain second
order accuracy in space, is the same for both ERK(2) and MRR(Imethods and
must be performed at each time-step. The reconstruction isyportant entry in
the overall computational costs, but its impact is less @tamn the DIMEX-RK
case than in the explicit one. This is because the formemsetadlows a greater
time step size and requires less time iterations to perfdwensame calculation.
The update of the chemical terms (R@Rem) and the rest of the integration time
step (RowStep is less expensive for the explicit scheme, because the DHVE
RK method requires the iterative re-solution of a set naedr algebraic systems.
Nonetheless, from the viewpoint of global computationats¢RowTot. Timg the
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Fig. 1. Single Mach Reflection &t = 100us
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Fig. 2. Double Mach Reflection &t = 20us

DIMEX-RK method is always more efficient. The percentagen&ow % Gain)
is in the rangéd30, 60]%.
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Fig. 3. Complex Mach Reflection &t = 24us
Table 5

Perfomance of ERK(2) and MDP(1,2,2) schemes on a 2-D reactimpressible flow cal-
culation; the CPU times are in seconds.

Problem SINGLE COMPLEX DOUBLE
Method ERK(2) MDP ERK(2) MDP ERK(2) MDP
#lter. 1626 771 1512 455 1753 524
Rec. (sec) 3400 1590 1850 956 3040 910
Chem.(sec) — — 318 565 513 852
Step (sec) 5980 5360 3650 2540 5990 4130
Tot. Time (sec)| 9370 6960 5810 3660 9540 5900
% Gain 35% 59% 61%

7 Conclusions

In this paper, we studied some theoretical properties dDIMEX-RK FV integra-
tors that have been developed for multi-dimensional hygerisystems in [1]. We
demonstrated that this approach produces a time evolutairixyoperator which
shows a peculiar block structure common to a wide family ehatical fluxes. The
underlying block matrices are M-matrices and the analysiskvcan be carried on
within this context allowed to show that simple and efficissgolution algorithms
even for high-order schemes can be built. Although this Aveste has been de-
veloped for unstructured mesh calculations all the thémketesults proved here
can be straightforwardly extended to schemes defined ontstad cartesian or
curvilinear meshes.

Finally, the performance of the method has been experirtgmeaestigated. A set
of representative time integration schemes up to thirdraytidal accuracy applied
to a 1-D test case has been considered to measure the apatioxiraccuracy of
the method. The computational efficiency of the DIMEX-RK eggrh when com-
pared to an explicit integration time stepping scheme has b@asured on a more
complex application concerning with the simulation of a 2ective compressible
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flow. All these experimental investigations illustratetttias approach performs in
good accord with the theoretical predictions.
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