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Abstract

We propose a strategy for the construction of monotone schemes in the framework of the mimetic finite difference
method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.
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1. Introduction

A major property of the solutions of elliptic problems is the existence of Maximum and Minimum Prin-
ciples [17, 18]. The possibility of reproducing at the discrete level this fundamental property of the exact
solutions has been extensively investigated in the literature concerning finite volumes and finite elements for
linear and nonlinear parabolic and elliptic partial differential equations [7, 10, 16, 20, 21, 28, 35]. In fact, it
turns out that proving the existence of a Discrete Maximum Principle (DMP) for the approximate solution
is a crucial step towards the development of robust and accurate numerical methods. This property may be
crucial, for example, in the numerical modeling of multiphase flow problems in heterogeneous porous media
with anisotropic diffusivity [28].

The DMP mimics the maximum principle of the analytical problem in some sense that we need to specify.
In fact, since we may find different formulations of the maximum principle in the continuum [19], it is not
surprising that there may exist a number of different formulations of the DMP. For example, a numerical
method is said to satisfy a maximum principle if the solution p on Ω is less than or equal to p on ∂Ω when
the source term is zero [34]. Another common formulation of a DMP is based on the requirement that the
inverse of the stiffness matrix arising from the discretization be a nonnegative matrix, i.e., a matrix with
nonnegative coefficients. To formalize this statement, let the system of discrete equations Aph = fh be given
by the discretization of the elliptic problem L(p) = f with the additional assumption of a homogeneous
Dirichlet condition on the boundary (fh being a suitable approximation of f and ph the numerical solution
that approximates the exact solution p). If A−1 ≥ 0, i.e. if each element of A−1 is nonnegative, then fh ≥ 0
implies that ph ≥ 0. Since this property is formally similar to the property describing the maximum principle
of the continuum case, we say that the discrete formulation satisfies a DMP.



According to [33], we refer to a nonsingular matrix A whose inverse has the sign property defined above as
a monotone matrix and we say that a numerical method is monotone if it leads to a monotone matrix [28].
Such a monotonicity property holds when matrix A is an M-matrix [1] and building a numerical method
that leads to an M-matrix is sufficient to ensure the monotonicity of the approximate solution. This fact
explains how M-matrices have been so successful in the spatial finite difference discretizations of second-order
elliptic problems [3–6, 12–14], while only a few papers deal with discretizations not yielding an M-matrix
[4, 6, 28, 34].

The property of providing an M-matrix is strictly correlated to the mesh and to the diffusion tensor.
Therefore, classical finite volume and finite element schemes may fail to satisfy a DMP for strong anisotropic
diffusion tensors and/or distorted meshes [15, 28]. In the case of a scalar diffusion tensor, the monotonicity of
the numerical scheme may be achieved for a specific range of the diffusion value and under some restrictive
conditions on the shape of the parallelograms [15, 28]. A different approach that also leads schemes preserv-
ing the maximum principle is based on a nonlinear discretization in finite volumes [2, 25, 29] and in finite
elements [22]. The positivity condition can also be recovered from a numerical solution that does not satisfy
a maximum principle using a post-processing technique based on a “repair” concept [26]. For higher-order
finite element and finite volume methods the analysis of the DMP mainly cope with 1-D problems [30, 34].

In [23], a set of local monotonicity criteria is proposed that can be imposed in the construction of the
mimetic inner product to obtain positivity and sparsity at the elemental level. These conditions hold for
quite general (also anisotropic) diffusion tensors and several families of meshes that are widely in use in
the scientific community. For instance, parallelograms in 2-D and oblique parallelepipeds in 3-D are used
to represent tilted layers, while meshes from Adaptive Mesh Refinement (AMR) techniques [32] are used to
increase local accuracy of the numerical solution. Moreover, using such conditions implies that the resulting
matrix for the Lagrange multipliers of the mixed-hybrid form is a nonsingular M-matrix, and its inverse
matrix has only nonnegative elements. Concerning accuracy and stability, using these criteria does not
affect the convergence behavior of the numerical flux and the superconvergence of the pressure variable [8]).

The outline of this paper is as follows. In Section 2 we discuss how the mixed MFD scheme for diffusion
problems can be reformulated in the mixed-hybrid form by introducing an additional unknown on each mesh
edge (in 2-D problems) and on each mesh face (in 3-D problems) to approximate the average of the trace of
the scalar variable. An estimate of the approximation error is derived in a suitable mesh-dependent norm.
The use of such additional degrees of freedom makes it possible a different algebraic implementation of
the family of mixed mimetic schemes, which leads to a well-conditioned linear system for the Lagrangian
multiplier unknowns through static condensation. In Section 3, we recall the Hopf’s Lemma, which is the
fundamental theoretical result on Maximum/Minimum Principles, and study the algebraic monotonicity
conditions for mixed-hybrid discretizations. Then, we formulate sufficient monotonicity conditions for the
mixed-hybrid MFD method. We study separately the case of simplicial meshes, quadrilateral meshes, hex-
ahedral meshes and orthogonal AMR meshes. In Section 4, we illustrate how these condition perform on a
set of representative test cases.

2. The mixed-hybrid mimetic finite difference method

Let Ω be a bounded, simply connected, open subset of Rd for d = 2, 3 with boundary Γ. For simplicity,
we assume that Ω is either a polyhedral domain for d = 3 or a polygonal domain for d = 2. We consider the
diffusion of a scalar quantity p in an anisotropic heterogeneous medium filling Ω, which is governed by the
second-order elliptic partial differential equation

−div(K∇p) = f in Ω, (1)

p = gD on ΓD, (2)

n · K∇p = gN on ΓN , (3)

where K is the diffusion tensor coefficient, f is the volumetric source, gD is the Dirichlet condition defined
on ΓD, n is the unit normal vector to Γ pointing out of Ω, and gN is the Neumann condition defined on
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ΓN ⊂ Γ. We require that Γ = Γ̄D ∪ Γ̄N . To guarantee the uniqueness of the solution to (1)-(3) and to
the discrete problem that will be defined in the next section, we also require a positive measure of ΓD, i.e.
|ΓD| > 0. Moreover, we assume that f , gD and gN are given functions that belong to L2(Ω), H1/2(ΓD) and
H−1/2(ΓN ), respectively. We also assume that K is a strongly elliptic tensor on Ω, i.e., K(x) is a symmetric
and positive definite (SPD) matrix for every point x ∈ Ω. We will refer to this regularity assumption on K
as “Assumption (K)”. From this assumption it follows immediately that K(x) is a non-singular matrix for
every x ∈ Ω, and that K−1(x) is also a symmetric and positive definite matrix for every x ∈ Ω.

We reformulate problem (1)-(3) in a mixed form by introducing the vector variable u, the flux of p, through
the equation

u + K∇p = 0, (4)

and rewriting equation (1) as follows

div u = f. (5)

Under the assumptions introduced so far both differential formulations (1) and (4)-(5) with boundary con-
ditions (2)-(3) are mathematically well-posed [17].

Let Ωh be a partition of Ω into control volumes P. We assume that Ωh belongs to a sequence of mesh
partitions of Ω that satisfy the shape-regularity condition stated in [8]. Accordingly, the control volumes
P are general polyhedrons (polygons in 2-D) that may have non-convex shapes, as, for example, the ones
encountered in finite volume methods. Moreover, we assume that Ωh is conformal, i.e., the intersection of
any two distinct cells P′ and P′′ is either empty, or a few mesh points, or a few mesh edges or a few mesh
faces (in 3-D), since the adjacent cells may share more than one edge or face. Furthermore, we assume that
Ωh is face-connected, i.e. any two control volumes can be connected by a continuous line going through
centers of interior mesh faces. This last assumption is not restrictive since the majority of computational
meshes are face-connected.

The degrees of freedom of the scalar variable p are associated with both mesh control volumes P and mesh
faces f. In the first case, the degree of freedom is denoted by pP and approximates the average of p over P.
In the second case, the degree of freedom is denoted by pf and approximates the average of p over f.

The degrees of freedom of the vector variable u are associated with the mesh faces and approximate the
normal components of u. We denote these degrees of freedom by uP,f , uP,f ≈ u · nP,f , where nP,f is the
normal vector to f pointing out of P. Consequently, any internal face, which is shared by two cells P′ and
P′′, is characterized by two distinct flux unknowns uP′,f and uP′′,f that must satisfy the condition of flux
conservation:

uP′,f + uP′′,f = 0 where f ⊆ ∂P′ ∩ ∂P′′. (6)

Let the boundary of cell P be formed by the m faces fi, i = 1, . . . ,m, with measure |fi| (length in 2-D,
surface area in 3-D). We now consider the numerical discretization of (4) that reads as

uP,f1
uP,f2

...
uP,fm

 = −WP


|f1|(pf1 − pP)
|f2|(pf2 − pP)

...
|fm|(pfm − pP)

 , (7)

where WP = (wij) is a symmetric and positive definite (SPD) with size m×m. The construction of WP will
be detailed in the next subsection.

Let uP = (uP,f1 , uP,f2 , . . . , uP,fm)T be the m-sized vector of numerical fluxes across faces fi of P. We
approximate (5) using vector uP as:

divPuP = fP, (8)

where fP is the average of f over P, and

divPuP =
1

|P|

m∑
i=1

|fi|uP,fi .
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The Dirichlet boundary condition (2) is taken into account by setting each pf corresponding to a face
f ∈ ΓD as follows

pf = gDf :=
1

|f|

∫
f

gD dS ∀f ∈ ∂P ∩ ΓD. (9)

The Neumann boundary condition (3) is taken into account by setting the numerical fluxes corresponding
to f ∈ ΓN as follows

uf = gNf :=
1

|f|

∫
f

gN dS ∀f ∈ ΓN . (10)

The hybrid mimetic scheme is defined by formulas (6), (7), (8) with bounday conditions specified by (9),
and (10).

2.1. Construction of the matrix WP

In the mixed-hybrid MFD method, matrix WP is built in accordance with a stability and a consistency
conditions [9]. The stability condition states that

σ∗
|P|

uTPuP ≤ uTPWPuP ≤
σ∗

|P|
uTPuP (11)

for any NF -sized flux vector uP where σ∗ and σ∗ are two constant factors independent of P and of the mesh
Ωh. This condition states that matrix WP is spectrally equivalent to the scalar matrix |P|−1 IP, where IP is
the m×m-sized identity matrix.

Let xP and xf be the centers of gravity of cell P and face f, respectively. Furthermore, let nfi be the
outward unit normal vector to the i-th face fi. Now, let us introduce the following two m× d-sized matrices

RP =


|f1|(xf1 − xP)T

|f2|(xf2 − xP)T

...
|fm|(xfm − xP)T

 and NP =


nTf1
nTf2
...

nTfm

K. (12)

A straightforward calculation shows that

NTP RP = |P|K,

from which we deduce that NTPRP is a d× d-sized SPD matrix The consistency condition takes the form

WPRP = NP,

and, in according to this formula, matrix WP is given by

WP = W0
P + W1

P = NP(NTPRP)−1NTP + DPUPD
T
P , (13)

where DP is a maximum rank d×(m−d)-sized matrix such that RTPDP = 0, and UP is a (m−d)×(m−d)-sized
matrix of parameters.

Two possible choices for the matrix of parameter are given by taking ŨP = γPIP or ŨP = γP(DTPDP)−1.
Remark 2.1 On a rectangular mesh there exists a choice of UP such that WP is diagonal. When WP is
diagonal, the MFD method reduces to the cell-centered discretization. However, the method remains second-
order accurate only when the mesh is K-orthogonal. Extension of the mimetic construction to multiple fluxes
per mesh edge (face in 3D) allows us to reproduce a family of MPFA O-methods [24]. This connection has
been used to analyze convergence and stability of the MPFA methods.On simplicial meshes the MFD method
is strongly connected with the lowest order Raviart-Thomas mixed finite element method. For a specific choice
of the parameters on triangular and tetrahedral meshes we recover such method [11].
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3. Maximum and minimum principles, monotonicity conditions and the Karush-Kuhn-Tucker
optimization strategy

3.1. Hopf’s lemma, strong and weak maximum principles

Let L(·) be a second-order elliptic operator with regular coefficients and f a square integrable function,
both defined in the open domain Ω. We consider the elliptic problem L(p) = f for the solution field p. The
maximum principle states that p cannot have any minimum in Ω whenever the source term is nonnegative.
More precisely, if f ≥ 0 and there exists a point x0 ∈ Ω such that p(x0) ≥ p(x) for all other x ∈ Ω, then
the solution field p is constant in Ω. This result, also known as Hopf’s lemma [18], is proved under the
condition that the diffusion tensor is continuously differentiable. Other versions of the maximum principle
also exist [31]. Let us recall the fundamental results from the theory of elliptic partial differential equations
in accordance with the strong and the weak formulations.

Theorem 3.1 (Strong Maximum Principle) Let us suppose that p satisfies

−div(K∇p) ≤ 0 in Ω

under assumption (K) on K and for Ω enough regular. If p attains a nonnegative maximum p̂ at an interior
point of Ω, then:

p = p̂ in Ω.

Theorem 3.2 (Weak Maximum Principle) Let us suppose that p satisfies

−div(K∇p) ≤ 0 in Ω

under assumption (K) on K and for Ω enough regular. Then,

max
x∈Ω

p(x) ≤ max
(

0,max
x∈Γ

p(x)
)
.

From the Weak Maximum Principle it is immediate to derive a monotonicity property for the Dirichlet
problem. In case of mixed boundary conditions, the monotonicity property is as follows [20].

Corollary 3.1 (Monotonicity Property) Let us suppose that p satisfies

−div(K∇p) ≥ 0 in Ω,

n · K∇p ≥ 0 on ΓN ,

p ≥ 0 on ΓD,

under assumption (K) on K and for Ω enough regular. Then,

p ≥ 0 in Ω.

3.2. Algebraic monotonicity conditions

Now, let us review the derivation of the algebraic conditions that allows us to select the monotone schemes
within the family of the mixed MFD schemes. To obtain sufficient criteria for a monotone mimetic-hybrid
scheme, we introduce these two assumptions on the pattern of the local matrix WP.

Assumption 3.3 Let WP = (wij)
m
i,j=1. Then,

(A1), matrix WP satisfies the geometric constraint:

wii|fi|+
∑
j 6=i

wij |fj | ≥ 0 ∀i,

and the inequality is strict for at least one matrix row;

5



(A2), matrix WP is a Z-matrix, i.e., wij ≤ 0 for i 6= j.
Using assumptions (A1) and (A2), we recall the fundamental monotonicity result that are proved in [23].

Let F denote the set of all mesh faces except the Dirichlet boundary faces.

Theorem 3.4 (Discrete Maximum Principle) Let ph = (pP)P∈Ωh
and λh = (pf)f∈F be the solution of

the hybrid mimetic method under assumptions (A1) and (A2) applied to problem (1)-(3). If f is a nonnegative
function in Ω and gD and gN are nonnegative functions on ΓD and ΓN , respectively, then pP ≥ 0 for any
P ∈ Ωh.

A Discrete Minimum Principle can also be obtained if f is a nonpositive function.

Theorem 3.5 (Discrete Minimum Principle) Let ph = (pP)P∈Ωh
and λh = (pf)f∈F be the solution

of the hybrid mimetic method under assumptions (A1) and (A2) applied to the problem (1)-(3). If f is a
nonpositive function in Ω and gD and gN are nonpositive functions on ΓD and ΓN , respectively, then pP ≤ 0
for any P ∈ Ωh.

Using both Theorems 3.4 and 3.5 allows us to obtain a discrete version of Theorem 3.2.

Theorem 3.6 Let ph = (pP)P∈Ωh
and λh = (pf)f∈F be the solution of the hybrid mimetic method under

assumptions (A1) and (A2) applied to the problem (1)-(3). Furthermore, let f = 0 and ΓN = ∅. Then,
the values of pP for any P ∈ Ωh are bounded by the maximum and minimum components of the Dirichlet
conditions set in (9).

3.3. Karush-Kuhn-Tucker optimization technique

The local sufficient conditions of assumptions (A1) and (A2) can be rewritten as a Nonlinear Programming
Problem (NLP) for the SPD matrix UP. To take care of the fact that UP is an SPD matrix, we consider its
Cholesky decomposition UP = LPL

T
P , where LP is a lower triangular matrix. Matrix WP(LP) defined in (13)

becomes

WP(LP) = W0
P + (DPLP)(DPLP)T . (14)

We rescale WP(LP) as follows

W̃P(L̃P) = W̃0
P + (D̃PL̃P)(D̃PL̃P)T , (15)

where the scaled matrices are defined as

α2W̃P(L̃P) = CPWP(LP)CP, α2W̃0
P = CPW

0
PCP, βD̃P = CPDP, (α/β) L̃P = LP.

through the scaling factors α and β and the diagonal matrix collecting the measures of the cell faces CP =
diag(|f1|, |f2|, . . . , |fm|). We determine the scaling factors α and β by respectively requiring that ||W̃0

P||2 = 1

and ||D̃PD̃
T
P ||2 = 1, where || · ||2 denote the matrix norm induced by the euclidean norm. We obtain:

α =
√
||CPW0

PCP||2, β =
√
||CPDPDTPCP||2.

According to Assumptions (A1)-(A2), we have to maximize the diagonal dominance of the scaled matrix

W̃P(L̃P) with the constraint that the off-diagonal elements of this matrix are zero or negative. This is
equivalent to maximize a quantity F by changing the matrix of parameter LP so that the following inequalities
are satisfied:

w̃ii(L̃P) +
∑
j 6=i

w̃ij(L̃P) ≥ F ∀i, (16a)

w̃ij(L̃P) ≤ 0 ∀i 6= j. (16b)

If such a constrained optimization problem admits a solution LP that is associated with a non-negative
quantity F , then matrix WP satisfies both conditions (A1) and (A2), and discrete Maximum and Minimum
principles for the mimetic scheme can be proved. However, a solution to this problem does not exist in
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general because the sign condition in (16b) on the off-diagonal elements in W̃P(L̃P) can be too restrictive.
We tackle this issue by substituting (16b) with the weaker condition

w̃ij(L̃P) ≤ max{0, E} ∀i 6= j. (17)

Now, conditions (16a)-(17) define a non-empty solution set for some pair (E,F ). If we can determine a
parameter matrix LP such that E ≤ 0 and F ≥ 0, assumptions (A1)-(A2) are satisfied.

To determine the best possible choice of LP, we apply a divide-and-conquer strategy implemented in a
two-step algorithm. In the first step, we solve an NLP problem to determine a parameter matrix L̃P such
that, if possible, E ≤ 0 and W̃P(L̃P) is a Z-matrix. Matrix L̃P can be optionally required to be close to

a matrix L̂P such that L̂PL̂
T
P = γPIP or L̂PL̂

T
P = γP(D̃TP D̃P)−1. In practice, matrix L̂P is returned by the

Cholesky decomposition of one of the (scaled) matrices ŨP listed at the end of subsection 2.1. This NLP

problem always admits a solution L̃P but the resulting matrix W̃P(L̃P) is not guaranteed to be a Z-matrix.

However, if the first step is successful, i.e., E ≤ 0, and W̃P(L̃P) is a Z-matrix, we perform a second step by
solving an NLP problem that maximizes the diagonal dominance of WP(LP).

The first NLP problem reads as:

minimize the objective function: f(E, L̃P) = E + ωL
∑
i≤j

(l̃ij − l̂ij)2 (18a)

subject to the unilateral constraints: fpq(E, L̃P) = E − w̃pq(L̃P) ≥ 0, ∀p < q (18b)

where ωL is a tuning factor that controls how L̃P differs from L̂P. The quantity E controls the off-diagonal
elements of matrix WP and if the solution of problem (18) satisfies E ≤ 0, then condition (A2) is satisfied.
On the other hand, if E is strictly positive, the optimization algorithm cannot produce a Z-matrix.

The second NLP problem read as:

minimize the objective function: g(F, L̃P) = −F + ωL
∑
i≤j

(l̃ij − l̂ij)2 (19a)

subject to unilateral constraints: gpq(F, L̃P) = E+ − w̃pq(L̃P) ≥ 0, ∀p < q (19b)

and: gpp(F, L̃P) = w̃pp(L̃P) +
∑
j 6=p

w̃pj(L̃P)− F ≥ 0, ∀p, (19c)

where ωL is the same tuning factor of step 1 that controls how L̃P differs from L̂P. The quantity F controls
the property of WP of being a diagonally dominant matrix.

Thus, the first step is used only for the computation of E+ = max{0, E}, which defines a feasible set
of constraints for the second step. If E+ = 0 and the solution of NLP (19) satisfies F > 0, then solution
respects assumptions (A1) and (A2).

The solutions of NLPs (18) and (19) are characterized by the Karush-Kuhn-Tucker (KKT) first order
necessary conditions (see [27] chapter 12). The first order KKT necessary condition uses the two Lagrangian
functionals defined by:

L(E, L̃P,µ) = f(E, L̃P)−
∑
p<q

µpqfpq(E, LP), for NLP (18)

L(F, L̃P,µ) = g(F, L̃P)−
∑
p≤q

µpqgpq(F, LP), for NLP (19)

where we introduced the Lagrangian multipliers µpq to take into account the constraints fpq and gpq. The
first order KKT condition becomes
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for NLP (18):



∂L
∂E

=
∂L
∂lij

= 0

µpqfpq(E, L̃P) = 0

fpq(E, L̃P) ≥ 0

µpq ≥ 0

for NLP (19):



∂L
∂F

=
∂L
∂lij

= 0

µpqgpq(F, L̃P) = 0

gpq(F, L̃P) ≥ 0

µpq ≥ 0

(20)

3.4. Implementation of the two-step algorithm

Our implementation of the two-step algorithm is based the open source software IPOPT [36]. IPOPT
requires the gradient and Hessian of both the objective function and the unilateral constraints. The gradient
of the objective function f(E, L̃P) and of the constraints fpq(E, L̃P) has the following components:

∂f

∂E
= 1,

∂f

∂l̃ij
= 2ωL(l̃ij − l̃0ij),

∂fpq
∂E

= 1,
∂fpq

∂l̃ij
= −∂w̃pq

∂l̃ij
(21)

The gradient of the objective function g(F, L̃P) and of the constraints gpq(F, L̃P) has the following compo-
nents:

∂g

∂F
= −1,

∂g

∂l̃ij
= 2ωL(l̃ij − l̃0ij),

∂gpq
∂F

= −1,
∂gpq

∂l̃ij
=


−∂w̃pq
∂l̃ij

p < q,

∑
k

∂w̃pk

∂l̃ij
p = q.

(22)

The Hessian matrices of the targets f(E, L̃P) and g(F, L̃P) satisfy

∇2f(E, L̃P) =

(
0 0
0 2ωLIP

)
, ∇2g(F, L̃P) =

(
0 0
0 2ωLIP

)
,

The Hessian matrices of the constraints fpq(E, L̃P) and gpq(F, L̃P) satisfy

∇2fpq(E, L̃P) =

(
0 0
0 Gpq

)
, ∇2gpq(F, L̃P) =

(
0 0
0 Gpq

)
,

where

Gpq =


−

(
∂2w̃pq

∂l̃ij∂l̃i′j′

)
p < q,(∑

k

∂2w̃pk

∂l̃ij∂l̃i′j′

)
p = q.

The partial derivative of w̃pq can be computed efficiently by the formula provided by the following lemma.

Lemma 3.1 Let D̃P = (d̃ij) then

∂w̃pq

∂l̃ij
=
∑
k≥j

l̃kj(d̃qkd̃pi + d̃pkd̃qi). (23)

∂2w̃pq

∂l̃ij∂l̃i′j′
=

{
d̃qi′ d̃pi + d̃pi′ d̃qi j′ = j and i′ ≥ j;
0 otherwise.

(24)

Proof 3.1 Let ep be the p-th vector of the canonical basis of Rp, i.e., the vector that has 1 in the p-th

position and zero elsewhere. Since w̃pq(L̃P) = w̃0
pq + ((D̃PL̃P)(D̃PL̃P)T )pq and w̃0

pq is constant, we have:

∂w̃pq

∂l̃ij
(L̃P) =

∂

∂l̃ij

(
(D̃PL̃P)(D̃PL̃P)T

)
pq

=
∂

∂l̃ij

(
eTp (D̃PL̃P)(D̃PL̃P)Teq

)
pq
.

8



Using the chain rule, the derivative becomes:

∂w̃pq

∂l̃ij
(L̃P) = eTp

(
D̃P

∂L̃P

∂l̃ij

)
(D̃PL̃P)Teq + eTp

(
D̃PL̃P

)(
D̃P

∂L̃P

∂l̃ij

)T
eq,

and since ∂L̃P/∂l̃ij = eie
T
j a straightforward calculation gives:

∂w̃pq

∂l̃ij
(L̃P) = eTp (D̃Peie

T
j )(D̃PL̃P)Teq + eTp (D̃PL̃P)(D̃Peie

T
j )Teq

= (eTp D̃Pei)e
T
j (D̃PL̃P)Teq + eTp (D̃PL̃P)ej(e

T
i D̃

T
Peq)

= d̃pie
T
j (D̃PL̃P)Teq + eTp (D̃PL̃P)ej d̃qi

= d̃pie
T
q D̃PL̃Pej + eTp (D̃PL̃P)ej d̃qi

= d̃pi(D̃PL̃P)qj + (D̃PL̃P)pj d̃qi.

Equation (23) follows by noticing that

(D̃PL̃P)sj =
∑
k≥j

d̃sk l̃kj for s = p, q

since L̃P is a lower triangular matrix. Equation (24) follows immediately.

An initial guess for NLP (18) is any L̃P, for example L̃P = L̂P while a guess for E is E = max{w̃ij(L̃P)}.
An initial guess for NLP (19) is the computed L̃P from NLP (18) with F

F = min
p

(
w̃pp(L̃P) +

∑
j 6=p

w̃pj(L̃P)

)
.

Remark 3.7 When E ≤ 0 matrix WP(LP) is a Z-matrix, thus minimization of E should be done only for
E > 0. Hence, the optimization problem can be written as

minimize: − ωFF + E+, subject to (16a) and (17) (25)

where ωF is a weight for the diagonal dominance and E+ = max{0, E} is the positive part of E. This

minimization is not smooth and does not guarantee that L̃P be nonsingular.

A smoothed approximation of NLP (25) uses the following regularized functions:

f(E,F, L̃P) = E+
ε − ωFF + ωL

∑
i≤j

(l̃ij − l̃0ij)2, (26)

gpq(E,F, L̃P) =

{
w̃pp(L̃P) +

∑
j 6=p w̃pj(L̃P)− F p = q

E − w̃pq(L̃P) p 6= q
(27)

where E+
ε is a smoothed positive part of E defined as

E+
ε =

E − ε+
√
ε2 + E2

2
. (28)

Moreover, ωL weights a convex term which avoids that L̃P becomes too large and speeds up convergence.
Matrix L0

P is the scaled version of LPL
T
P = γPIP or LPL

T
P = γP(DTPDP)−1. Finally, ε > 0, ωF > 0 and ωL ≥ 0

are tuning parameters. The smoothed NLP problem is

minimize the objective function: f(E,F, L̃P) (29a)

subject to unilateral constraints: gpq(E,F, L̃P) ≥ 0, ∀p ≤ q (29b)
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4. Numerical experiments

4.1. Effects related to the mesh and permeability

In this subsection, we investigate how mesh distortion impacts on the property of the stiffness matrix of
being an M-matrix. In particular, we consider three different test cases that are representative of realistic
meshes.

Mesh tilting We review how the optimization algorithm discussed in this paper works on the sequence of
tilted meshes considered in [23]. The theoretical analysis of the M-matrix properties of the stiffness matrices
on these meshes has been presented in [23]. According to [23], the monotonicity property is satisfied for angles
θ ≥ θ, where the value of this latter depends on the aspect ratio and the eigenvalues of the diffusion tensor.
For K equal to the identity matrix the critical angle θ for some aspect ratios satisfying the monotonicity
condition (A1)-(A2) are reported in Table 1. Fig. 1 shows the value of the parameter E on the mesh cells
for θ = 60◦ and aspect ratio equal to 2 (left plot) and θ = 84.5 and aspect ratio equal to 10 (right plot).
For such aspect ratios, these are the critical values of θ for which the monotonicity condition (A1) is first
violated. In both cases, as shown in Fig. 2 (top panels), the parameters E and F are, respectively, negative
and positive, thus ensuring the monotonicity of the discretization. The bottom panels of Fig. 2 also shows
the dependence of the condition number of the global stiffness matrix and the number of negative values of
the formal inverse (computed using the routine dgetri of LaPack). The behavior shown by these curves is in
perfect agreement with the theoretical results of [23]. In other words, the proposed optimization algorithm
applied on this type of meshes is always able to find the stiffness matrix with M-matrix properties when
such solution exists. The four curves reported in the plots of this figure are for aspect ratios equal to 1, 2, 5,
and 10. The condition number versus θ is clearly deteriorating and its value increases significantly when the
θ becomes bigger that θ. The number of negative values of the inverse of the stiffness matrix, which must
be zero if the stiffness matrix is an M-matrix, also increases significantly for θ > θ.

Anisotropic permeability
We solve the Poisson problem with the 2D anisotropic permeability:

K =

(
ε x2 + y2 + ε −(1− ε)xy
−(1− ε)xy x2 + ε y2 + ε

)
. (30)

The loading term is given by

f(x, y) =

{
1 if (x, y) ∈ [3/8, 5/8],

0 otherwise,
(31)

and we impose boundary conditions everywhere. The exact solution u(x, y) is unknown but the minimum
principle states that it is non-negative. Numerical oscillations were seen in the solution computed by MPFA.

Fig. 3 shows the numerical solution for different values of the parameter ε. Figs 4 shows the maximum
value of E (top-right plot), the minimum value of F (bottom-left plot), the condition number (bottom-left
plot), and the number of negative entries (bottom− rightplot) versus ε.

Mesh deformation Here, we investigate how this algorithm performs on a sequence of progressively dis-
torted meshes. Given a regular partition of the domain Ω =]0, 1[×]0, 1[, the position of the internal nodes
with coordinates (ξij , ηij) is remapped according to

xij = ξij + w
(
1− esin(πξij) sin(πηij)

)
,

yij = ηij + w
(
1− esin(πξij) sin(πηij)

)
,

where w is the distortion parameter. Fig.5 shows the cell values of the parameters E and F for w = 0.11,
when the monotonicity (A1) is first violated. Fig. 6 characterizes the behavior of the method for values of
w ranging from 0 to 0.16. In particular, we show the maximum value of E (top-right plot), the minimum
value of F (bottom-left plot), the condition number (bottom-left plot), and the number of negative entries
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(bottom − rightplot). The same calculation is repeated for a mesh of hexagons. The results are shown in
Figs. 7 and 7.

Mesh pinching Here, we apply the algorithm to a sequence of meshes that are pinched along the vertical
direction on one side. In this test case, the node on the top-right corner is collapsed along the vertical
direction towards the bottom-right corner. Fig. 9 shows the cell values of the parameters E and F on the
most distorted mesh such that the monotonicity condition is first violated. Fig. 10 show the maximum value
of E (top-right plot), the minimum value of F (bottom-left plot), the condition number (bottom-left plot),
and the number of negative entries (bottom− rightplot) versus the parameter that controls the position of
the vertically collapsing node.

5. Conclusions

In this work, we proposed a new strategy for the construction of monotone schemes in the framework of
the mimetic finite difference method. These schemes are suitable to the approximation of diffusion problems
on unstructured polygonal and polyhedral meshes. The monotonicity of the resulting mimetic method is
obtained by the construction of the local stabilization term of the stiffness matrix that satisfies two sufficient
conditions in order to have an M-matrix. The presented numerical tests show that whenever the local mimetic
family of stiffness matrices contains at least one an M-matrix as a member, a non-linear algorithm based on
KKT optimization allows us to determine this matrix. In other situation the imposed requirement are too
restrictive for the local mimetic family.

A set of numerical experiments illustrates the performance of the method.
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A.R. 1 2 5 10

θmin −− 60 78.4 84.3
Table 1

Tilted quadrilateral cells; K is the identity matrix; minimum angle θ for some aspect ratios satisfying the monotonicity condition
(A1)-(A2)

Fig. 1. Tilted quadrilateral cells; map of F when the monotonicity condition (A1) is first violated, i.e., for (left panel) θ = 60
when aspect ratio is 2 and (right panel) θ = 84.3 when aspect ratio is 10. In both cases, E is strictly negative.
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Fig. 2. Tilted quadrilateral cells; K is the identity matrix; the four plots corresponds to the aspect ratios 1, 2, 5 and 10.
These curves shows the behavior of the parameters E (top-left plot) and F (top-right plot) as well as the condition number
(bottom-left) and the number of negative entries of the formal inverse of the stiffness matrix with respect to the value of the

titling angle θ. The critical values of θ that were found theoretically in [23] are perfectly reflected by these experimental results.
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Fig. 3. Anisotropic permeability on regular quadrilateral cells; K is given by (30) numerical solution for ε = 1 (top-left), ε = 10−1

(top-right), ε = 10−2 (bottom-left), ε = 10−3 (bottom-right).
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Fig. 4. Anisotropic permeability on regular quadrilateral cells; K is given by (30)
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Fig. 5. Distorted quadrilateral cells; map of E (left) and F (right) when the monotonicity condition (A1) is first violated
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Fig. 6. Distorted quadrilateral cells; K is the identity matrix
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Fig. 7. Distorted hexagonal cells; map of E (left) and F (right) when the monotonicity condition (A1) is first violated. Note
that the violation occurs only for the F quantity.
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Fig. 8. Distorted hexagonal cells; K is the identity matrix
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Fig. 9. Slope, quadrilateral cells; map of E (left) and F (right) when the monotonicity condition (A1) is first violated
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Fig. 10. Distorted hexagonal cells; K is the identity matrix
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