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Abstract. This work presents a methodological framework, based on an indirect 
approach, for the automatic generation and numerical solution of Optimal Control 
Problems (OCP) for mechatronic systems, described by a system of Differential Algebraic 
Equation (DAEs). The equations of the necessary condition for optimality were derived 
exploiting the DAEs structure, according to the Calculus of Variation Theory. A collection 
of symbolic procedures was developed within a general-purpose Computer Algebra 
Software. Those procedures are general and make it possible to generate both OCP 
equations and their jacobians, once any DAE mathematical model, objective function, 
boundary conditions and constraints are given. Particular attention has been given to the 
correct definition of the boundary conditions especially for models described with set of 
dependent coordinates. The non-linear symbolic equations, their jacobians with the 
sparsity patterns, generated by the procedures above mentioned, are translated into a 
C++ source code. A numerical code, based on a Newton Affine Invariant scheme, was 
also developed to solve the BVPs as generated by such procedures. The software and 
methodological framework here presented were successfully applied to the solution of the 
minimum-lap time problem of a racing motorcycle. 

1 INTRODUCTION 

The main objective of this paper is to present a combination of a symbolic-numeric 
indirect method to solve efficiently in a semi-automatic way Optimal Control Problems for 
large multibody systems. 

In the last decade the applications of the Optimal Control Problems (sometimes called also 
Dynamic Optimization) have spread over many research and industrial fields as proved by the 
bibliography (for a review see1-2-3.). However, even if the theoretical framework (namely 
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Calculus of Variation, Dynamic Programming, Non Linear Program (NLP)) has been quite 
clearly defined, its application to industrial or real problems is still difficult for the complexity 
and dimensionality of the system of equations to deal with. Two groups of techniques are 
commonly employed to solve this kind of problem. The first group involves the so called direct 
methods, which instead of solving the necessary condition discretize the problem in order to 
obtain a NLP, which may be solved by means of consolidated numerical schemes, such as Initial 
Value Solver (IVS) and Sequential Quadratic Programming (SQP). In this sense they are easier 
to implement, and probably this is the main reason why they are widely employed. The second 
group consists of indirect methods, which are based on the solution of the necessary condition of 
optimality, as derived by the Calculus of Variation. Indirect Methods usually produce very 
accurate solution and are quite sensitive to design parameters variations, since they solve 
directly the equations of first necessary condition. However, to fully exploit the Indirect Method 
one has to produce the symbolical expressions of the necessary conditions of optimality. In 
other words, according to the calculus of variations, the adjoint equations have to be calculated 
hopefully along with their jacobians for the numerical solution of the arising Two Point 
Boundary Value Problem (TPBVP). In addition, the number of adjoint equations (also called 
co-state equations) is equal to the original problem dimension, thus the indirect approach at least 
doubles the problem dimensionality. Actually, adjoint equations should be solved also in the 
direct methods. However, in many cases, this is done as a post processing proof and adjoint 
variables can be obtained by a post-optimal calculation using the Lagrange multipliers of the 
resulting nonlinear optimization problem. 

In addition the difficulty of the problem is worsened by the fact that the mathematical models 
of multibody and mechatronic systems  have been growing in complexity, to better simulate and 
study prototypes and industrial products. They are composed of many bodies connected each 
others by various kind of constraints. In particular they include subsystems that reproduce 
non-linear behavior of different elements or entities such as tyre, control blocks, aerodynamic 
forces, etc. Thus, these models, very often, consists of hundreds of higly non-linear algebraic 
differential equations. It is clear that the application of the indirect method to such large systems 
requires massive symbolic manipulations that has discouraged researchers of this field to adopt 
this technique, as emerges from the bibliography4-5. Moreover, the use of commercial multibody 
software is commonly preferred because it is easier to build the multibody model, they are 
integrated with FEM and CAD software and can be used as IVS in the NLP approach.  

Anyway, in both cases (direct or indirect method) it is essential to find a solution of the 
TPBVP in reasonably fast time. Thus, in dealing with such large problems, the numerical 
algorithm plays a major. The most important numerical schemes are three. Single Shooting, 
which suffers from high sensitivity to guessed values and the fact that some equations 
(typically the co-state equations) may be very-fast diverging. Multiple shooting that follows 
the same idea as single shooting, but the domain is divided in smaller subintervals reducing 
sensitivity to guessed values and divergence specially when combined with direct collocation. 
Finally, there are the discretization or global methods, which are reckoned to be the most 
stable, and the solution is obtained simultaneously for the whole domain. An hybrid solution 
were presented by Burlish et al.6 where a direct method is used to find a quite good guess 
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solution for indirect method whose equations (symbolically derived) are solved with a 
Multiple Shooting technique, to obtain an accurate solution. 

The approach presented in this work wants to exploit the advances made in the symbolic 
manipulation tools to fully use an indirect approach for solving OCP. It is shown how the first 
necessary condition of optimality can be derived symbolically exploiting the structure of the 
DAEs of the multibody system even if they are very large. The obtained system of equations 
is solved with a global method based on a Newton Affine Invariant scheme. To simplify the 
generation of equations, a collection of symbolic procedures were developed in a general-
purpose Computer Algebra Software. Those procedures are general and automatically 
generate the equations for the OCP and the jacobian blocks for its finite difference 
discretization, once any DAE system, objective function, boundary conditions and trajectory 
constraints are given. The obtained equations are translated into C++ source code and the 
BVPs is solved by means of a software based on an affine invariant Newton scheme.  

In particular a new formulation for the boundary conditions is presented, being them 
critical for numerical method convergence. This formulation is intended for large multibody 
system described with set of dependent coordinates. In this work was tested on the motorcycle 
model by M. Da Lio et al.3 for future application to a more complex model. An example of 
solution a minimum-lap time problem for a real circuit is also shown. 

2 EFFICIENT SYMBOLIC GENERATION OF NECESSARY CONDITION 
EQUATIONS OF OPTIMALITY AND THEIR JACOBIANS 

2.1 The formulation of Optimal Control Problem for a multibody systems 

The general variational formulation of an OCP consists in finding the controls u(s) ∈ ℜm 
that minimizes the functional: 

 J x,u[ ]= f (x(s),u(s))ds
si

s f∫  , (1) 

under differential and algebraic constraints. Here, the symbol denotes the state vector x(s) ∈ 
ℜn and s is the independent variable (which can have physical meaning or as the considered 
case it is a re-parametrization of the time domain). The minimum is constrained and it is 
assumed to satisfy the following ODE (or DAE): 

 ( )( ( ), ( ), ( )) ,        ,i fs s s s s s= ∈a x x u 0  (2) 

where ( ) 1
( , , ) ( , , ) n

i i
a

=
=a x x u x x u . Equation (2) represents multibody or mechatronic systems 

dynamics. Algebraic constraints are also present and are divided in two groups, equality and 
inequality ones. The equality constraints are pointwise and are used to set initial and final 
boundary conditions as follows: 

 c(x(si),x(sf ),ρ) = 0, (3) 
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where ( )
1

( ( ), ( ), ) ( ( ), ( ), )
p

i f i i f i
s s c s s

=
=c x x x xρ ρ . Vector ρ  is a list of parameters used to “set” 

unknown or cyclic boundary conditions. Boundary condition aspects will be discussed in 
more details in section 2.3. 
Inequality constraints are set along the trajectory on state variables and controls and are 
written as follows: 

 d(x(s),u(s)) ≤ 0,      s ∈ si,sf( ) (4) 

where d(x,u) = di(x,u)( )i=1

q . These inequalities are used to describe the domain of the solution 
and limitation of the control variable u(s). 

The OCP based on equations (1)—(4) is formulated in a constrained variational way, and 
can be transformed into an unconstrained formulation. Inequality constraints are 
approximated by means of penalty functions, while differential and equality constraints can 
be eliminated by introducing a set of suitable Lagrangian multipliers (λ, µ). This formulation 
is possible at the cost of n more unknowns for the elimination of the differential constraints an 
p more unknowns for the eliminations of the equality constraints. The resulting functional is 
the following: 

 [ ] ( ) ( )( ), , , , , ( ( ), ( )) ( ) ( ( ), ( ), ( ))f

i

s

i f ps
J s s f s s s s s s ds = ⋅ + + ⋅ ∫x u c x x x u a x x uλ µ µ ρ λ , (5) 

where:  

 f p (x(s),u(s)) = f (x(s),u(s)) + pi di x,u( )( )
i=1

q

∑ , 

and pi is the penalty function associated to the i-th components of inequalities (4) and takes 
the form desired. 

2.2 The necessary condition of Optimality for multibody system  

The Theory of the Calculus of Variations states that the necessary condition of optimality 
of functional (5) is a system of equations, which comes from the stationary condition of its 
first variation. The theory is well established and in many papers and textbooks it is possible 
to find the equation derivation7-8. However, in deriving these equations, some simplifications 
can still be introduced if the particular structure of the multibody DAE system is considered. 
Those simplifications reduce computation time of the symbolic manipulations, which can be 
an advantage with multibody systems described with hundreds of state variables.  

Typically the equation of motions of multibody system (2) can be reduced to a system of 
differential equations linear in x . Thus: 

 ( , , ) ( ) ( , )= +a x x u A x x b x u , (6) 
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where A(x) = Aij x( )( )i, j=1

n
 and b(x) = bi x( )( )i=1

n
. If the system is described with a minimal set 

of coordinates, then matrix A(x)  is not singular. However, the majority of multibody systems 
are described with set of dependent coordinates, such as natural coordinates, Euler 
parameters, etc9. This approach lets consider each body as an independent entity connected to 
others by means of constraints. The resulting kinematics relationships and equations of 
motion are simpler compared to models described with a minimal set of coordinates 
especially when the kinematic chain is quite long. As a drawback one gets that the number of 
equations is greater. Constraints that have to be added can be both differential and algebraic 
equations and the final system is a differential algebraic system (DAEs) that leads to a 
singular matrix A(x)  in (6). However, it is again possible to transform the DAEs into a ODEs 
by means of some stabilization technique (Baumgarte, penalty formulation for example9). In 
both cases from the assumption (6) follows some simplifications when deriving the equations 
of the first necessary condition of optimality. Taking the first variation of (5) and setting it to 
zero, (see Appendix I) one obtain the following boundary value problem (BVP) written in a 
vector form: 

 ( ) ( )( ) ( ) ( ), ( ) ,        ( , )i fs s s s s s s+ = ∈M y y n y u 0  (7A) 

 h y(si),y(sf ),ρ( )= 0 (7B) 

 g y(s),u(s)( )= 0,    s ∈ (si,sf )  (7C) 

The expressions of the previous vectors are: 

 M y( )=
T x,λ( ) −A x( )T

A x( ) 0

 

 
  

 

 
  , ( )

( )

( )

, ,

,
, ,

d

d

∂
∂

∂
∂

 
 
 =
 
 
 

x u
xn y u

x u

λ

λ
λ

, ( ) ( ), ,
,

d∂
∂

=
x u

g y u
u
λ

, (7D) 

where:  

y =
x
λ

 

 
 

 

 
 , d x,λ,u( )= f p x,u( )+ λTb x,u( ) and ( )

( )( ) ( )( )
,

TT T∂ ∂

∂ ∂
= −

A x A x
T x

x x

λ λ
λ , 

and the form of h y(si),y(sf ),ρ( )is discussed forward. 

The equation system composed of (7A)—(7C) is derived from first variation necessary 
condition. Vector form (7A) is the ODEs (DAEs if A x( ) is singular), which includes the 
initial problem system of equations (6) plus the adjoint equations. In fact, if one substitutes 
the structure of matrix M y( ) and vector n y,u( ) into (7A), it can be rewritten as follows: 
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 ( ) ( ) ( ) ( ), , ,T T
pf∂

∂
 − + = T x x A x x u b x u 0

x
λ λ + λ , (8A) 

 ( ) ( ), 0+ =A x x b x u , (8B) 

where (8B) is the starting multibody system of equation (6) and (8A) are the adjoint equations.  
It is clear that simplifications come from (6) in the generation of the adjoint equations. 

Only T x,λ( ) and n y,u( ) must be calculated while the other terms are already available. It is 
also interesting to point out that the multibody equations have to be kept with their implicit 
form since the explicit one requires the inversion of matrix A x( ), which for large system is 
impractical and can end to subsequent numerical ill-conditioning. 

The vector form (7B) represents boundary conditions and (7C) is the vector form of system 
of algebraic equations, which give the optimal inputs as function of y. Usually (7C) is a 
system of non-linear equations in controls u and becomes linear if the controls are 
quadratically penalized.  

2.3 Boundary conditions formulation 

The boundary conditions are a very important aspect in the OCP. They can deeply change or 
even compromise the OCP solution. This is the reason for dedicating a whole paragraph to this 
issue. By means of boundary conditions it is possible to fix the whole multibody initial and final 
motion or more often only part of it. In principle it is also possible to leave all state variable 
values unset (also referred as “free”) being this case, for example, meaningful for a minimum 
lap time problem. This means that equation (3) is empty and initial and final system conditions 
will be computed according the calculus of variations in order to be the best possible ones that 
minimize the functional J  in equation (5). However, while it is practicable the case with all 
final states unset, it seems that it is quite difficult to do the same with initial states unless some 
precautions are taken. The reasons lay in the influence of trajectory constraints that should also 
act on the boundary conditions and actually they act in the continuous formulation, but this is 
not any more true when the problem is discretized. This fact it is partially hidden by the 
constraint elimination via penalties, which includes the constraints in the integral of (5) and not 
on the boundary conditions with µ Lagrange multipliers. As a consequence equation (7E) does 
not contains trajectory constraints. 

Thus, it is necessary to include them at the boundary values in the discretized formulation. 
This is especially critical for the initial conditions since the solution at the final boundary it is 
a result of the past motion, while the initial one has no memory of what was before. Thus, the 
best initial motion can be anyone that respects system equations (2) and eventually equation 
(3). Very often the highest values for control forces are choosen and the initial motion can end 
up in a non physical solution (if constraints on the initial states are not enforced on 
boundaries) or worst in a numerical instability, when high state variable rates are involved. In 
the following figure a numerical oscillation induced by high force rate at the initial boundary 
is shown. (It is referred to case 2 introduce in section 4).  



E. Bertolazzi, F. Biral, and M. Da Lio. 

7 

-1000

-800

-600

-400

-200

0 2 4 6 8 10

grid dimension: 0.5m
grid dimension: 0.2m fr

on
t l

at
er

al
 fo

rc
e 

(N
)

curvilinear abscissa (m)

case 2: "IC almost free"

 
Figure 1: influence of grid dimension close to boundary conditions 

Thickening mesh point close to boundaries may cure numerical instability. However to 
prevent non-physical solution trajectory constraints have to be enforce on boundary 
conditions. 

Anyway in many practical cases one might desire to put some conditions on initial and 
final states. While this is straightforward with mathematical models described with set of 
independent coordinates, which have direct physical meaning, especially if they correspond to 
system’s degree of freedoms, it is not so simple if mathematical models are described with set 
of dependent coordinates. In the last case a map between independent coordinates and 
dependent ones has to be supplied, in order to easily put boundary conditions on state 
variables. 

x

y

θ

x1

y1

L

O

 
Figure 2: Pendulum; one degree of freedom (θ), two natural coordinates (x1, y1) 

To let the reader better understand the concept a simple example will be used. Let us 
consider a simple pendulum (see figure 2). This system has one degree of freedom, the 
rotation about point O, indicated with variable θ. If the system is described by means of the 
variable θ, it is quite easy to put an initial condition on the pendulum position and velocity. In 
fact, in that case the initial conditions would be: θ t = 0( )= θ0  and ( ) 00tθ θ= = . On the other 
hand, if the set of coordinates used to describe the pendulum are (x1, y1) (see figure 2), the 
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initial conditions would be: 
( )
( )

1 0

1 0

0 sin( )

0 cos( )

x t L

y t L

θ

θ

= =


= =
 and 

( )
( )

1 0 0

1 0 0

0 cos( )

0 sin( )

x t L

y t L

θ θ

θ θ

 = =


= = −
. The last 

one represents the map introduced above.  
Thus with large multibody systems which are commonly described with set of dependent 

coordinates (in many cases not directly linked to the system degree of freedom) a map that 
transforms a minimal set of physical coordinates into the system set of coordinates is 
required. Of course it is possible that not all physical coordinates are known or one may not 
desire to set a value for all of them.  

We restrict the form of boundary conditions to the following form: 

 c x i,x f ,ρ( )=
x i − Li(ρ)
x f − L f (ρ)

 

 
 

 

 
  (9) 

where ρ  are the unknown or not-set physical coordinates. The idea of not distinguish between 
parameters for initial and final conditions, let one easily put cyclic boundary conditions. In 
fact going back to the simple pendulum example a cyclic condition for the angular position is: 

 

x1 t = 0( )= Lsin(θ0)

y1 t = 0( )= Lcos(θ0)

x1 t = T( )= Lsin(θ0)

y1 t = T( )= Lcos(θ0)

 

 

 
 

 

 
 

 (10) 

where only one parameter is used: θ0. 

2.4 Automatic symbolic generation of necessary conditions and their jacobians 

The matrix formulation used for the necessary conditions (equations (7A), (7C) and (11)) 
and the assumption of equation (6) let one easily automatise the equation generation in a 
general-purpose Computer Algebra Software. Moreover, as one may see in (7D) the 
calculation of matrix M y( ) means computing only the matrix T x,λ( ), being matrix A x( ) 
already available. This turns out in a saving of computation time when generating the 
equations. Symbolic computation time is a key issue. Then, since for the numerical solution 
of the BVP-DAE system the jacobian matrices of the equations are also necessary and the 
authors of this paper consider very important the availability of the jacobian symbolic 
expression for numerical method convergence. From this point of view, beign the symbolic 
jacobian calculation the heaviest part it is still possible to exploit the structure in order to 
reduce computation time. Finally being the jacobian matrices very sparse they are 
symbolically analyzed to extract the sparsity of non zero elements. Sparsity patterns and 
non-zero elements are stored to be exploited both to speed up numerical algorithm. 

It is interesting to point out that these procedure for symbolic generation are general 
independent from the multibody system used or the mechatronic system, provided that it is 
given in the form of (6). 
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3 GLOBAL METHOD FOR THE FAST NUMERICAL SOLUTION OF THE 
MPBVP 

3.1 Discretization of the BVP-DAE 

The solution of the infinite dimensional problem (7A-C) is approximated by a finite 
dimensional one by discretizing it. The interval si,sf[ ] is split into N  subintervals, 

  si = s0 < s1 < . < sN = sf  

Equations (7C) are evaluated on the node sk +1/ 2 =
sk + sk +1

2
, 

 21
1/ 2 1/ 2 1/ 2

( ) ( )( ( ), ( )) , ( ) ( )
2

k k
k k k

s ss s s O h+
+ + +

+ = = + 
 

y y0 g y u g u  (11) 

where   h = max sk − sk−1,k =1,2,…,N{ }. Equations (7A) are approximated by using the 
midpoint quadrature rule to average on sk ,sk +1[ ] and by using finite differences in place of the 
derivative terms: 

  

1

1

21 1 1
1/ 2

1

1 ( )) ( ) ( ( ), ( ))

( ) ( ) ( ) ( ) ( ) ( ) , ( ) ( )
2 2

k

k

s

k k s

k k k k k k
k

k k

s s s s ds
s s

s s s s s s s O h
s s

+

+

+ + +
+

+

= +
−

+ − +   = + +   −   

∫0 M(y y n y u

y y y y y yM n u

 (12) 

Using (12) and (11), and neglecting the truncation term of order O(h2)  we obtain the 
following non-linear system: 

 ( )

1 1 1
1/ 2

1

0

1
1/ 2

, 0,1, , 1
2 2

, . )

, 1, 2, , 2
2

k k k k k k
k

k k

N

k N k N
k N

k N
s s

k N

k N N N

+ + +
+

+

− − +
− −

 + − +   + = −    −   Φ = =
 +  = + +   

y y y y y yM n u

W h(y y q
y yg u

…

…

 (13) 

where   W = y0,y1.….yN ,q,u1/ 2,u3 / 2,…,uN−1/ 2( ) 

3.2 Elimination of control 

Map (13) can be simplified if controls equations  g y k−N + y k−N +1

2
,uk−N−1/ 2

 
 
 

 
 
 = 0 are solved 

separately. In particular we assume that we are able to obtain a function u(y)  such that 
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g y,u(y)( )= 0 . With u(y)  we can construct the reduced map Ψ(Z)  derived from (13) as 
follows: 

 
1 1 1 1

1

0

, 0,1, , 1
( ) 2 2 2

, . )

k k k k k k k k

k k

N

k N
s s

k N

+ + + +

+

 + −  + +    + = −     Ψ = −     
 =

y y y y y y y yM n u
Z

h(y y q

…
 (14) 

where   Z = y0,y1.….yN ,q( ). The function u(y)  when necessary is evaluated by solving the 
problem g y,u(y)( )= 0  while derivative of u(y)  are evaluated by using derivative of g y,u( ) 
and implicit function theorem. 

3.3 The solution algorithm 

As a solution algorithm a variant of Newton-Raphson scheme is used. In particular affine 
invariant Newton scheme10 is used to solve (14). The scheme read as: 

• Let Z0 assigned 
• For k = 0,1,... until convergence 

1 1 ( )k k k
k kα+ −= − ΨZ Z J Z  

where ( )k
k

∂
∂

Ψ
=J Z

Z
 and αk  is chosen to satisfy 

Jk
−1Ψ(Z k +1) ≤ C 1−

α k

2
 
 
 

 
 
 Jk

−1Ψ(Z k )  

the constant C  in the original algorithm is 1 but this enforce monoticity and produce 
stagnation for large residual. We choose to use C >>1 when residual are large in order to 
speed up the convergence process. 

4 MINIMUM LAP TIME PROBLEM FOR A RACING MOTORCYCLE 

4.1 Motorcycle model and problem definition: racing competitions  

The application of Optimal Control to racing engineering problems my produce large 
improvements in vehicle performance. Competition among teams is getting harder and harder, 
and technological innovation together with engineering and mechanic experience is a 
dominant factor. It is well known that the result of a racing vehicle is a combination of driver 
skills and vehicle performance11. However, in practice, it is very difficult to estimate such 
different contributions because they are deeply connected and influence each other. The OC 
gives the possibility to estimate the vehicle performance simply by driving it in the best 
possible way. Once the vehicle is always operated in the best way, one can carry out analysis 
on its design parameters to improve its intrinsic performance. Few examples are present in 
bibliography12-13, but what makes the difference in this field is the sensitivity to parameters 
variations. 
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The methodology proposed above, applied to a motorcycle model turned out to be capable 
of reproducing important issue of the vehicle gross motion, despite its simplicity (when 
compared to other literature models14) as the comparison with telemetry witnesses3. In this 
work the same model is used to test the new formulation of the boundary condition and 
investigate their influence on motorcycle maneuvers. An example of a minimum lap time with 
is also presented. 
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Figure 3: Influence of boundary conditions on motorcycle trajectories 

4.2 The influence of boundary conditions: “U” shaped curve test  

The initial and final boundary conditions can be fixed to a precise value or left free in 
order that the best conditions are found as solution (a desirable condition for simulating a real 
minimum lap time problem). The road geometry used in this test is a “U” shaped curve with 
curvature radius of 50m. This is a simple case that lets easily appreciate the influence of 
boundary conditions on motorcycle maneuvers. On this test two cases were considered: case 
1 that consider initial motorcycle motion completely fixed and case 2 with initial motorcycle 
motion completely free (except vertical and longitudinal forces). Both had final motion 
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completely free. The following figures show that the maneuvers differ only on the first part of 
the U curve (as highlighted in figure in the grey area). Of course for case 2 the best possible 
initial motion is found. Figure 3 compares the trajectories and shows that the initial lateral 
position of case 2 is closer to the right road edge than case 1. Figure 4 shows that the initial 
lateral velocity of case 2 is higher than case 1 (which had it fixed). However being 
longitudinal forces for case 2 fixed to zero, the initial velocity could have been higher if they 
were left free. Figure 5 and 6, shows respectively motorcycle roll and steering angles, and 
interestingly the so called “out tracking maneuver”15 is not present in case 2. The reason is 
that the found initial motion is with the motorcycle already rolled. As a consequence it is not 
necessary to lean the motorcycle inside the curve with the usual stroke on the handle bar 
known as out tracking as did in case 1. The gain in term of time between the two cases is of 
0.75s and is obtained completely on the first part of the curve for the reasons explained above. 

4.3 Minimum lap time: the circuit of Adria 

A minimum lap time on a real circuit was also solved. Computational mesh consists of 
3010 points resulting in a non linear system of about 120000 equations. The Affine Invariant 
Newton scheme converged in 115 iterations, with an accuracy of 10-10 on scaled residual. 

Figure 7 shows the computed motorcycle trajectory. As highlighted final position does not 
coincide with initial one since final boundary conditions were left free. Figure 8 shows 
motorcycle velocity for the whole track. 

 

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

case 1: "whole IC set"
case 2: "IC almost free"

fo
rw

ar
d 

sp
ee

d 
(m

/s
)

curvilinear abscissa (m)  
Figure 4: influence of boundary conditions on motorcycle velocity 



E. Bertolazzi, F. Biral, and M. Da Lio. 

13 

-1,2

-0,8

-0,4

0

0,4

0,8

1,2

0 50 100 150 200 250 300 350

case 1: "whole IC set"
case 2: "IC almost free"

ro
ll 

an
gl

e 
(r

ad
)

curvilinear abscissa (m)  
Figure 5: influence of boundary conditions on motorcycle roll angle 

-0,04

-0,02

0

0,02

0,04

0 50 100 150 200 250 300 350

case 1: "whole IC set"
case 2: "IC almost free"

st
ee

rin
g 

an
gl

e 
(r

ad
)

curvilinear abscissa (m)

"Out tracking" maneuver

 
Figure 6: influence of boundary conditions on motorcycle steering angle 

-150

-100

-50

0

50
100

150
200

-300 -200 -100 0 100 200 300 400 500

y 
(m

)

x (m)  
Figure 7: motorcycle trajectory on Adria circuit 



E. Bertolazzi, F. Biral, and M. Da Lio. 

14 

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500

forward velocity [m/s]

fo
rw

ar
d 

sp
ee

d 
(m

/s
)

curvilinear abscissa (m)  
Figure 8: motorcycle velocity profile on Adria circuit 

5 CONCLUSIONS 

This paper presents a full direct approach technique for solving OCP applied to multibody 
and mechatronic systems. A collection of symbolic procedure were used to obtain the 
optimality necessary condition equations, included adjoint ones. In these procedures the 
particular structure of multibody system is exploited, to better handle problem with large 
number of equations. The resulting TPBVP is discretized by a finite difference scheme 
resulting nonlinear system of equations are automatically translated into high-level 
programming language along with their jacobian matrices. The solution algorithm is based on 
a modified version of the Affine Invariant Newton scheme. A new formulation for the 
boundary condition was introduced and it was intended to be further applied to a larger 
multibody system described with set of dependent coordinates. 

Examples of the influence of boundary conditions on motorcycle maneuvers are shown on 
a U curve. A minimum lap time on a real circuit is also shown.  
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APPENDIX I: DERIVATION OF OPTIMALITY NECESSARY CONDITIONS AND 
BOUNDARY CONDITIONS 

In this Appendix the optimality necessary conditions are derived. A lot had already been 
done in the past, and from this point of view there is nothing new. However, here the 
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multibody DAEs structure is exploited and more attention is give to the correct setting of 
boundary conditions. 

Conventions are: lower case letter used for column vectors, upper case for matrix. 
Variables vector x,u,λ  are function of s. 

The OCP based on equations (1)—(4) and (6) formulated in a non-constrained functional 
is: 

 [ ] ( ) ( ) ( ) ( ), , , , , ( , ) ( ) ,f

i

sT T
i f i f ps

J q q f ds = + + + + +   ∫x u c x x x x x u A x x b x uλ µ,ρ µ ρ λ (A1) 

where q x( ), is the penalties function applied to the initial and final state. Using the maps (9) 
to put the boundary conditions one obtains the following functional: 

 
[ ] ( ) ( ) ( ) ( )
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λ µ µ ρ µ ρ

λ
 (A2) 

Performing the first variation and setting it to zero (stationary condition for the functional) 
variables and using the shortcut z i = z(si), z f = z(sf ) for a generic function z(s): 
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Integrating by parts the following: 
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Substituting and collecting the variations: 
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where, it is possible to rewrite the following term in a more compact way, as indicated 
below: 
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Finally the equations of necessary conditions are: 
- the original multibody system of dynamics equations: 

 ( )( ( )) ( ) ( ), ( )s s s s+ =A x x b x u 0  (A8a) 

- the adjoint (or co-state) euqations: 
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- the optimal control u(s)  equations: 
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- the boundary condition equations: 
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Solving the third and fourth rows of (A8d) with respect to µ i
T , µ f

T , it is possible to 
re-manipulate the boundary conditions as follow, eliminating the langrange multipliers µ  
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