
SparseTool: an Extensible Toolkit to Handle Sparse
Matrices

Enrico Bertolazzi
Dip. Ingegneria Meccanica e Strutturale – Università di Trento

SparseTool is a collection of simple and efficient classes for manipulating large vectors and large
sparse matrices. Operator overloading permits to hide complex storage format and manipulate
sparse matrix in simple and transparent way. The implementation is in C++ programming lan-
guage using expression templates and static polymorphism programming paradigm for better
performance. The toolkit consisting in only one large header file so that it does not require any
installation or compilation procedure.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra – Sparse, struc-
tured, and very large systems (direct and iterative methods); G.4 [Mathematical Software]: User interfaces;
D.1.3 [Programming Techniques]: Object-oriented Programming

General Terms: Algorithms, Design

Additional Key Words and Phrases: Sparse Matrices, C++

1. INTRODUCTION

Sparse matrices are widely used in scientific computation and are ubiquitous in many ap-
plications in science, engineering and finance. For example, sparse matrices can be found
in computational fluid dynamics, large scale optimization, electric circuit simulation and,
in general, in the numerical solution of Partial Differential Equations (PDEs). A number of
these problems are easy to manage due to the regularity of the underlying data. For exam-
ple, Finite Difference or Finite Element over regular grids in numerical solutions of PDEs
fall in this category. Regular grids often produce structured matrices that permit efficient
storage and management. In any case, other problems are built over irregular grids, thus,
the resulting matrices may have arbitrary patterns. To manage general unstructured ma-
trices, there are various storage schemes with different performance and storage overhead.
The manipulation of sparse matrices, as for example, nonzero insertion and multiplication
by a vector is normally an easy task. However, it may involve few or more lines of code
that can make the algorithm obscure in a large application. An effective way to reduce the
development effort and minimize the probability of making mistakes in the software im-
plementation is to use libraries for the most common (and repetitive) tasks. For non sparse

Dipartimento di Ingegneria Meccanica e Strutturale
Università degli Studi di Trento
via Mesiano 77, I – 38050 Trento, Italia
Enrico.Bertolazzi@ing.unitn.it

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · E.Bertolazzi

linear algebra. de facto standard is provided by the BLAS/LAPACK library [Anderson et al.
1992; Demmel 1989; Oppe and Kincaid. 1990; Dongarra and Walker 1995; Dongarra et al.
1998]. This library consists in a wide collection of FORTRAN routines that cover a large
number of algorithms of Linear Algebra for different types of matrices, i.e. symmetric,
banded etc.

For sparse matrices the situation is less satisfactory. Indeed, there are many different
formats for the sparse matrix storage that are suitable for different matrix types. For this
reason, an approach similar to the BLAS/LAPACK choice would produce an explosion in
the number of routines to cover all the data/algorithm combinations. Moreover only a
selected subset of operations and algorithms is normally implemented, as for example, in
SPARSKIT [Saad 1990] and SparseLib++ [Dongarra et al. 1994]. These libraries uses
some standard sparse storage formats the most important of which are the Compressed
Coordinate (CCOOR) format, the Compressed Row (CROW) format and the Compressed
Column (CCOL) format [Barrett et al. 1994]. According to this approach, even if the user
is forced to adhere to the choice made by the creator of the libraries every application
area may have a different way of efficient storing and accessing the nonzeros entries of the
sparse matrix so a storage scheme that work well for an application can be bad for another
one.

To circumvent this problem the approach used in Sparse BLAS [Duff et al. 2002] is to
avoid the choice of a particular storage scheme abstracting the the representation of the
sparse matrix. This is done in a non-Object-Oriented language by using the concept of
handle.

In an Object Oriented Language as the C++ programming language the storage scheme
is hidden by using a combination of inheritance and polymorphism [Lippman 2000; Strous-
trup 1998]. In particular, in C++ the polymorphism can be realized by using virtual meth-
ods or templates. Dynamic polymorphism, where type dependence for the actual method
is resolved at runtime, is obtained by using virtual methods. This results in an overhead
for calling the method. Static polymorphism implemented by using templates does not
incur in the runtime overhead but needs to bound the method to the code at compile time.
For very simple methods like insertion of nonzero the overhead of a virtual call can be
comparable to the computational cost of the method. Thus, for performance reason, static
polymorphism is preferable whenever is possible [Manzini and Mazet 2002; Veldhuizen
1998; Glass and Schuchert 1995; Musser and Saini 1996; Plauger et al. 2000].

SparseTool is an object-oriented software designed to simplify the construction and
manipulation of sparse matrices in numerical solver for physics and engineering applica-
tions by hiding to the user the details of the matrix structure and its memory management.
SparseTool offers a full support of variable length full vectors, some matrix-vector func-
tions and few iterative algorithms for linear system solution. The toolkit do not offer a
complete interface to sparse direct solver as in Sala et al. [2008] but instead furnish tools
to easily interface with other libraries.

The toolkit can be used standalone or can be used as a glue with an external high perfor-
mance sparse matrix library or a sparse linear solver.

A sparse matrix library must have one or more linear system solvers. For these reason,
some well known semi-iterative methods such as BiCGSTAB [van der Vorst 1992] or GM-
RES [Saad and Schultz 1986; Frayssé et al. 2005] are normally found in these libraries (for
example in SPARSKIT or IML++ [Dongarra et al. 1994]). Direct methods are competitive
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 3

but extremely complex to implement. If the sparse matrix is in one of the standard formats
(CCOOR, CROW or CCOL) a library like SuperLU [Demmel et al. 1999; Li and Dem-
mel 2003; Li 2005], UMFPACK [Davis 2004; Davis et al. 2004; Amestoy et al. 2004] and
MA48 [Duff et al. 1996] can be used. For symmetric linear system a review of available
solver can be found in Gould et al. [2007].

To obtain flexibility, extensibility and good performance the toolkit uses some special
C++ techniques such as Template Metaprograms and Expression Templates [Veldhuizen
1995b; 1995a].

In this last decades, several preliminary versions of SparseTool (called SparseLib) in
combination with P2MESH [Bertolazzi and Manzini 2002] have been proved to be an ef-
fective device for managing sparse matrices in the implementation of numerical solvers
for PDEs. Specific software developments concern fluid dynamics simulations of diffusion
and transport in porous media using finite volumes [Bertolazzi and Manzini 2004b; 2004a;
2006; 2007; Manzini and Putti 2007; Manzini and Russo 2008], coupling mixed finite ele-
ments and finite volumes [Gallo and Manzini 1998b; 1998a], and applying mimetic finite
difference methods [Cangiani and Manzini 2008; Beirão da Veiga and Manzini 2007].

The paper is organized as follows: in Section 1, we present the base structure of the
toolkit, in Section 2, we display the base classes defining vectors and matrices, in Section 3,
we expose the implemented matrix formats and auxiliary routines, in Section 4, we show
the potentiality and the application of the toolkit, by discussing some simple applications,
and in Section 5 we offer final remarks and conclusions.

2. BASE INTERFACE STRUCTURE

In the spirit of P2MESH the toolkit is contained in a unique header file (SparseTool.hh),
thus, there is no need of installation or compilation. The toolkit consists of less than 7000
C++ code lines including the DOXYGEN documention [van Heesch. 1997]. The classes
are parameterized and are derived from three general container classes

— VectorBase<Type,V>

— Sparse<Type,Matrix>

— Preco<Type>

The generic Type can be any standard type (e.g. float, double) or any user defined type.
The classes VectorBase<Type,V> and Sparse<Type,Matrix> are parameterized with the
derived classes, for example, the definition of full vector class Vector<Type> or CCOOR
matrix CCoorMatrix<Type> is as follows

template <typedef T>
class Vector : public VectorBase<T, Vector<T> >, public std::vector<T> {
....

};

template <typedef T>
class CCoorMatrix : public Sparse<T, CCoorMatrix<T> > {
....

};

This piece of code, which is compliant to teh C++ standard, implements the curiously
recurring template pattern, also know as Barton and Nackman [1994] trick. This pattern

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · E.Bertolazzi

allows us to avoid the use of virtual functions, thus improving the runtime performance.
There are base classes used in the toolkit:

(1) The template class VectorBase<Type,V> is the base class for:
— Vector<Type> for full vector.
— VectorSlice<Type> for subvector or remapping of C-pointers.

(2) The template class Sparse<Type,Matrix> is the base class for:
— SparsePattern to manage a sparse pattern.
— CCoorMatrix<Type> for Compressed Coordinate Storage matrix.
— CRowMatrix<Type> for Compressed Rows Storage matrix.
— CColMatrix<Type> for Compressed Columns Storage matrix.
— TridMatrix<Type> for Tridiagonal matrix.

(3) A set of iterative algorithm for the solution of linear system.
— cg: for the Conjugate Gradient method [Hestenes and Stiefel 1952].
— gmres: for the GMRES algorithm [Saad and Schultz 1986];
— bicgstab: for the BiCGSTAB algorithm [van der Vorst 1992] ;
The algorithm needs preconditioner derived from the common class Preco<Type>. The
following standard preconditioner are defined in SparseTool:
— IdPreco<Type> identity matrix preconditioner;
— DPreco<Type> the diagonal preconditioner;
— ILDUpreco<Type> incomplete LDU preconditioner.

In addition to these classes, there is the class MatrixMarket to read matrices in Matrix
Market format, and the function Spy that produce a postscript file with a “silhouette” of the
nonzeros pattern for any object derived from Sparse<Type,Matrix>.

Remark 2.1. The schemata is a little bit simplified, in fact SparsePattern is derived
from SparsBase and Sparse<Type> is derived from SparseBase. Moreover there are many
other support classes, for example the trait classes [Meyers 2005] and the classes storing
intermediate partial expression [Veldhuizen 1995b; 1995a].

2.1 The base class for vectors

The class VectorBase<Type,V> is the base class for any vector-like object of SparseTool.
If a user want to extend the toolkit with its own vector-like class he or she must inherit from
this base class. With VectorBase<Type,V> objects it is possible to write a vector expression
in a simple way like in Blitz++ [Veldhuizen 1999; 1998] although only a subset af the
available operators is overloaded. The operators and functions considered are showed in
the following table where OP is any of +, -, * or / and f1∈ { absval, sin, cos, tan, asin,
acos, atan, cosh, sinh, tanh, sqrt, ceil, floor, log, log10 } and f2 ∈ { pow, atan2,
minval, maxval }.

Expression C-code equivalent n = a.size()

a = s for (i = 0 ; i < n ; ++i) a[i] = s ;

a OP= s for (i = 0 ; i < n ; ++i) a[i] OP= s ;

Expression C-code equivalent n = min(a.size(),b.size())

a = b for (i = 0 ; i < n ; ++i) a[i] = b[i] ;

a OP= b for (i = 0 ; i < n ; ++i) a[i] OP= b[i] ;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 5

a = b OP s for (i = 0 ; i < n ; ++i) a[i] = b[i] OP s ;

a = s OP b for (i = 0 ; i < n ; ++i) a[i] = s OP b[i] ;

a = f1(b) for (i = 0 ; i < n ; ++i) a[i] = f1(b[i]) ;

Expression C-code equivalent n = min(a.size(),b.size(),c.size())

c = a OP b for (i = 0 ; i < n ; ++i) c[i] = a[i] OP b[i] ;

c = f2(a,b) for (i = 0 ; i < n ; ++i) c[i] = f2(a[i],b[i]) ;

The template functions absval, minval and maxval correspond to abs, min and max of
STL [Glass and Schuchert 1995; Musser and Saini 1996; Plauger et al. 2000]. The val
suffix is added to avoid conflict with the template functions of STL. Some useful functions
are also defined for the class VectorBase<Type,V> and are resumed in the following table:

dot(a,b) =
∑

i aibi dist(a,b) =
(∑

i(ai − bi)2
)1/2

dist2(a,b) =
∑

i(ai − bi)2

normi(a) = maxi |ai| norm1(a) =
∑

i |ai| norm2(a) =
(∑

i |ai|
2
)1/2

maxval(a) = maxi ai minval(a) = mini ai normp(a,p) =
(∑

i |ai|
p
)1/p

sum(a) =
∑

i ai prod(a) =
∏

i ai

Using the Expression Template technique [Veldhuizen 1995a], complex expressions in-
volving vectors do not produce big temporaries. For example, the following code shows
the effect of the Expression Template technique where n is the minimum of the size of the
vectors involved:

a += ((atan2(b,c))/sin(d)-e+3.1)*f ; // is expanded to

for (i = 0 ; i < n ; ++i)
a[i] += ((atan2(b[i],c[i]))/sin(d[i])-e[i]+3.1)*f[i] ;

The choice of the minimum size in vector operation permits avoiding runtime error if the
vector are of different size and simplify the resulting code.

2.2 The base class for sparse matrices

Sparse matrix classes have different internal structures but are derived from a unique base
classes Sparse<Type,Matrix>. This class is used as a pivot class for matrix/vector mixed
operations. It contains minimal information and methods to access elements of the derived
classes. To improve the performance, virtual methods are avoided by using the Barton–
Nackman trick for the vector and matrix classes . The public methods of this class are
listed in the following table:

Method Description
Type & operator (i,j) Return the reference of the (i,j) element of matrix

A. If the element does not exists an error is issued.
Type const & value(i,j) Return the reference of the (i,j) element of matrix A.

If the element does not exists a reference to a 0 value
is returned.

bool exists(i,j) true if (i,j) is a nonzero of the sparse matrix.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · E.Bertolazzi

Type const & operator [i] The constant reference of the i-th element of the in-
ternal vector of the nonzeros of the matrix.

unsigned numRows() Row size of the matrix
unsigned numCols() Column size of the matrix
unsigned minSize() min(numRows(), numCols())
unsigned maxSize() max(numRows(), numCols())
unsigned nnz() Total number of stored values
void nnz(l,d,u) Total number of stored values under the diagonal l,

on the diagonal d and over the diagonal u
bool isOrdered{} Return true is the internal structure is oredered
void setZero() Set to 0 all the nonzeros of the sparse matrix
void scaleValues(val) Multiply by val all the nonzeros
void setRow(nr,val) Set to val all the nonzeros of the nr row
void setColumn(nc,val) Set to val all the nonzeros of the nc column
void scaleRow(nr,val) Multiply by val the nr row
void scaleColumn(nc,val) Multiply by val the nc column

A small number of operators to initialize a matrix or set values on its diagonal is provided
by the toolkit. The operators are resumed in the following table

Expression C-code equivalent n = A.minSize()

A = s for (i = 0 ; i < n ; ++i) A(i,i) = s ;

A OP= s for (i = 0 ; i < n ; ++i) A(i,i) OP= s ;

Expression C-code equivalent n = min(A.minSize(),b.size())

A = b for (i = 0 ; i < n ; ++i) A(i,i) = b[i] ;

A OP= b for (i = 0 ; i < n ; ++i) A(i,i) OP= b[i] ;

Elements iterators. To access the nonzeros elements of a sparse matrix, the user can in-
voke the operator()with exists(i,j). This way of looping on elements is very inefficient
especially if the matrix is very sparse. To access the nonzeros elements more efficiently in
a sequential way, SparseTool uses a simple iterator-like combination of methods. These
methods must be defined in the derived classes and are the core of SparseTool.

Method Looping on elements
void Begin() Initialize iterator
void Next() Advance the iterator to next element
bool End() false when all elements are iterated
Method Accessing elements
unsigned row() Row index of the actual element
unsigned column() Column index of the actual element
Type & value() The value of the actual element

If S is a sparse matrix derived from the object Sparse<Type,Matrix>, the following loop
permits accessing all the elements and print all the stored values:
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 7

for (S . Begin() ; S . End() ; S . Next())
cout << " row = " << S . row()

<< " column = " << S . column()
<< " value = " << S . value() << ’\n’ ;

Depending on the internal structure of the sparse matrix, the realization of iterator methods,
can be easy or complex to implement The big advantage in using iterators is the abstraction
of the sparse matrix, which, for example, simplifies the conversion between formats. In this
way, if a user adds its own sparse matrix class derived from Sparse<Type,Matrix>, all the
classes of the toolkit are able to convert from the user class to the SparseTool classes.
Finally, if the user is able to convert to its sparse storage format using only the iterators,
then it can import any other matrix storage format of SparseTool.

Matrix multiplication. The base class Sparse<Type,Matrix> provides two methods that
are used as a building blocks for expressions involving matrix-vector multiplications.
These methods implement the multiplication of a matrix by a vector and the multiplica-
tion of the transpose matrix by a vector.

Method Expression equivalent
A.add_S_mul_M_mul_V(res, s, x) res += s * (A*x)

A.add_S_mul_Mt_mul_V(res, s, x) res += s * (Aˆx) (transpose multiply)

These operations are implemented by using the iterators previously described so that
they are available in all the derived classes. The use of iterators may be inefficient for
some storage format. Therefore, these methods are normally overloaded in the derived
class to gain a better performance.

Constructor. The classes derived from Sparse<Type,Matrix> – with the exception of
TridMatrix<Type> – have the same constructors. The constructors initialize the sparse
matrix structure to an empty sparse matrix or to a sparse matrix whose pattern is a copy of
the pattern of another Sparse<Type,Matrix> object.

Constructor Description
Matrix() Create an empty sparse object of 0 × 0 size
Matrix(nrow, ncol) Create an empty sparse object of nrow × ncol size
Matrix(nrow, ncol, nnz) Create an empty parse object of nrow × ncol size with

preallocated room for nnz values
Matrix(pattern) Create a sparse object getting size and allocation infor-

mation from the object pattern of type derived from
Sparse<Type,Matrix>

Matrix(pattern,cmp) Create a sparse object getting size and allocation in-
formation from the object pattern of type derived
from Sparse<Type,Matrix>. Only the index such that
cmp(i,j)==true are added to the object.

For each constructor, there is a method resize having the same argument that reinitial-
izes the Sparse<Type,Matrix> object. The comparison method is implemented by using

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · E.Bertolazzi

cmp a class with overloaded the operator () used as a functor [Musser and Saini 1996;
Plauger et al. 2000]. For example to select the lower triangular part of a sparse matrix the
comparator can be:

struct lower_triangular {
bool operator () (unsigned i, unsigned j) const { return i > j ; }

}

In the constructors of the previous Table, nnz is the estimated size of nonzeros for pre-
allocating the memory of the sparse object. If not specified, the default value is 100,
however, if necessary this size is enlarged transparently to the user by internal reallocation
of the memory. The user can gain efficiency by preallocating in advance enough storage
(nnz) for the pattern hence avoiding costly memory reallocation.

2.3 The base class for preconditioners

The class Preco<P> is the base class for the implementation of a preconditioner. Precondi-
tioners are widely used to accelerate convergence of many iterative methods and formally
are matrices that approximate the matrix to be preconditioned and easy to invert. Using
a preconditioner formally require a matrix-vector multiplication so that only this last op-
eration is defined in the class. The base class has only two methods: a method for the
construction of the preconditioner and a method for the application of the preconditioner
to a vector.

Method Description
P.build(M) Build the preconditioner for the object M of type derived from

Sparse<T,Matrix>

P.assPreco(res,v) Apply the preconditioner to the vector v. This method is called
from VectorBase<T,V> object res in expression like res = P*v

2.4 Operator overloading and expression templates

To simplify the use of the toolkit, a number of mathematical operators are overloaded thus
allowing expression involving matrix and vector in a human readable way. For expressions
involving only scalars and vectors, the expression templates technique is used to avoid
temporaries and to obtain the peak performance [Veldhuizen 1995b; 1995a; 1998]. The
same technique can be used in principle for any expressions involving vectors and matri-
ces, however, in this case it become difficult to parse and optimize the resulting software
implementation. For example, it is impossible to implement efficiently an expression like

res = A * (B * c + d) ;

where A and B are matrices and res, c and d are vectors, without the introduction of tem-
porary vectors. By introducing the temporary vector “e” we can split the expression as
follows
e = B * c + d ; res = A * e ;

and this expression can be parsed in an efficient way by SparseTool.
To simplify the toolkit and maintain good performance, a reduced number of expres-

sions involving matrix-vector products are supported while matrix-matrix products are not
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 9

considered. The expressions supported are listed in the following table

Expression Description Expression Description
r = A*x r← Ax r OP= A*x r← r OP Ax
r = s*(A*x) r← sAx r OP= s*(A*x) r← r OP sAx
r = b + A*x r← b + Ax r OP= b + A*x r← r OP b + Ax
r = b - A*x r← b − Ax r OP= b - A*x r← r OP b − Ax
r = b + s*(A*x) r← b − sAx r OP= b + s*(A*x) r← r OP b − sAx
r = Aˆx r← AT x r OP= Aˆx r← r OP AT x
r = s*(Aˆx) r← sAT x r OP= s*(Aˆx) r← r OP sAT x
r = b + Aˆx r← b + AT x r OP= b + Aˆx r← r OP b + AT x
r = b - Aˆx r← b − AT x r OP= b - Aˆx r← r OP b − AT x
r = b + s*(Aˆx) r← b − sAT x r OP= b + s*(Aˆx) r← r OP b − sAT x

OP is one of + -

Although in limited number, these expressions should be enough in most of applications
eventually splitting expressions in two or more subexpressions.

3. THE CLASSES FOR LINEAR ALGEBRA IMPLEMENTATIONS

3.1 Vector and matrix formats

Class Vector<Type>. This class extends the STL class vector<Type> so that all the
algorithms and functionality of the class std::vector<Type> are available [Plauger et al.
2000] in addition to the methods and operators of the class VectorBase<Type,V>.

Class VectorSlice<Type>. This class is used to partition vectors of the class
Vector<Type> or remap a C-array into a VectorBase<Type,V> object. For example, the
following code shows an example of the use of VectorSlice<Type>

Vector<double> v(100) ; double w[100] ; VectorSlice a, b, c, d ;
a.slice(v, 0, 50) ; b.slice(v, 50, 100) ;
c.slice(a, a+50) ; d.slice(a+50, a+100) ;

In the previous code fragment, vectors a, b, c, d inherit all the operators and functions
previously described for class VectorBase<Type,V>. Notice that this class does not allocate
memory so that the object pointed by a VectorSlice<Type> instance must not be release
or resized to avoid unpredictable errors.

SparsePattern. This class implement the Compressed Coordinate structure which
consists of two vectors of unsigned integers that contain the coordinate of nonzero ele-
ments. We call I the vector that stores the first coordinate and J the vector that stores the
second coordinate. For example, the following 3 × 7 sparse matrix pattern

S =

∗ ∗ ∗

∗ ∗

∗ ∗

 , I 0 0 0 1 1 2 2
J 0 1 6 1 2 3 4

(1)

is stored in the vectors I and J. Notice that the index starts from 0 following the C conven-
tion. The class SparsePattern manages such a structure in a simple way for the user.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · E.Bertolazzi

To complete the basic description of the SparsePattern, we list the remaining methods
in the following table

Method Description
SparsePattern & insert(i,j) insert a nonzero at position (i,j)
void internalOrder() order the pattern and eliminate duplicate elements
bool isOrdered() return true if the pattern is ordered

For example pattern S in equation (1) can be constructed as

SparsePattern sp_for_S(3,7) ;
sp_for_S . insert(0,0) . insert(0,1) . insert(0,6) . insert(1,1) ;
sp_for_S . insert(1,2) . insert(2,3) . insert(2,4) ;
Sp_for_S . internalOrder() ;

Notice that the method insert return a reference of SparsePattern so that it permits a
multiple call with the same object. The method internalOrder() reorder the nonzero
elements eliminating duplicate elements. The order is such that if k1 ≤ k2 we have one of
the two following cases

(1) I(k1) < I(k2)
(2) I(k1) = I(k2) and J(k1) ≤ J(k2)

This order is the column-oriented scheme that has been widely used in sparse matrix com-
putation. This method is considered when we use SparsePattern to construct a sparse
matrix or before using random access to the sparse matrix elements.

CCoorMatrix<Type>. This class implements a Compressed Coordinate storage sparse
scheme. It is essentially the class SparsePattern with in addition the vector A that stores
the nonzero values. For example the following 3 × 7 sparse matrix

M =

1 2 9

−1 0

3 4

 ,
I 0 0 0 1 1 2 2
J 0 1 6 1 2 3 4
A 1 2 9 -1 0 3 4

(2)

is stored in the vectors A, I and J. The methods of the class CCoorMatrix<Type> are the
same of the class SparsePatternwith the difference that insert(i,j) returns the reference
of the inserted element so that it can be initialized. For example matrix M of equation (2)
can be constructed with the following piece of code:

CCoorMatrix<double> A(6,7) ;
A.insert(0,0)=1 ; A.insert(0,1)=2 ; A.insert(0,6)=9 ; A.insert(1,1)= -1 ;
A.insert(1,2)=0 ; A.insert(2,3)=3 ; A.insert(2,4)=4 ; A.internalOrder() ;

When we execute the internalOrder() method, if a pair of indices (i,j) occurs more
than once the corresponding values are accumulated. Notice that the sparse pattern of M
is the same of S of equation (1) so that the following commands produce the same results
of the previous code:

CCoorMatrix<double> A(sp_for_S) ;
A(0,0) = 1 ; A(0,1) = 2 ; A(0,6) = 9 ; A(1,1) = -1 ; A(1,2) = 0 ;
A(2,3) = 3 ; A(2,4) = 4 ; A . internalOrder() ;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 11

Therefore, we can use a sparse pattern (from any derived class from Sparse<Type,Matrix>)
to allocate and initialize a sparse matrix.

CRowMatrix<Type> and CColMatrix<Type>. These classes implement the Com-
pressed Rows (CROW) and Compressed Columns (CCOL) sparse storage scheme, respec-
tively. The CROW format substitutes the vector column coordinate I with a row pointer R
while the CCOL format substitutes vector row coordinate J with a column pointer C. For
example the sparse matrix (2) can be stored in the two previous formats as follows

R 0 3 5 7
J 0 1 6 1 2 3 4
A 1 2 9 -1 0 3 4

C 0 1 3 4 5 6 6 7
I 0 0 1 1 3 3 0
A 1 2 -1 0 3 4 9

Matrices of type CROW and CCOL cannot be constructed incrementally (so insert,
isOrdered and internalOrder method are not available) but need a pattern from a
Sparse<Type,Matrix> object to be initialized. For example, the matrix M of equation
(2) can be built using the CROW storage as follows:

CRowMatrix<double> A(sp_for_S) ;
A(0,0) = 1 ; A(0,1) = 2 ; A(0,6) = 9 ; A(1,1) = -1 ; A(1,2) = 0 ;
A(2,3) = 3 ; A(2,4) = 4 ;

TridMatrix<Type>. This class is used to manage tridiagonal matrices. It consists of 3
vector L, D, U for the three diagonals. For example the following tridiagonal matrix can be
stored as follows:

T =

2 −1

1 2 −2

2 2 −3

3 2

L D U
1 2 -1
2 2 -2
3 2 -3

2

To define a TridMatrix<Type> class we can use one of the constructors listed in the fol-
lowing table:

Constructor Description
TridMatrix() create an empty 0 size tridiagonal matrix
TridMatrix(n) create an empty n × n tridiagonal matrix
TridMatrix(TridMatrix const & T) create a copy of tridiagonal matrix T

For TridMatrix<Type> objects, the operator / is overloaded to define the solution of a
tridiagonal system. For example:

TridMatrix<double> T; Vector<double> b, x ;
...
x = b / T ; // solve the system T*x == b

Accessing the internal structure. Sometimes it is useful to access to the internal structure
of a sparse matrix. This occurs when SparseTool is interfaced with a high performance
direct solver or, in general, when is used with other sparse matrix libraries. To access to
the internal structure, the following methods are available:

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · E.Bertolazzi

Method Description
Vector<Type> & getA() return the pointer to the values internal vector A
Vector<unsigned> const & getI() only for CCOOR and CCOL return the rows in-

dex vector
Vector<unsigned> const & getJ() only for CCOOR and CROW return the column

index vector
Vector<unsigned> const & getR() only for CROW return the pointer to the rows

index displacement
Vector<unsigned> const & getC() only for CCOL return the pointer to the column

index displacement

Preconditioners. SparseTool furnishes only two standard preconditioners: the diagonal
preconditioner DPreco<Type> and the incomplete LDU preconditioner ILDUPreco<Type>.
The LDU preconditioner has the additional builder method: build(A,pattern), where the
pattern of the incomplete factorization is loaded from the object pattern and not from
the matrix A. For the preconditioner only the / operator is overloaded and means the
application of the preconditioner.

Expression Description
r = x / P r← P−1x

Sometimes we do not want to use a preconditioner. In such a case, the IdPreco class
allows to use the identity matrix as preconditioners.

3.2 Iterative solvers

SparseTool implements a minimal set of iterative solvers for linear systems. Two solvers
applies to general unsymmetric matrices and one to simmetric and positive definite ma-
trices. The iterative solvers are cg, implementing the Conjugate Gradient method, gmres,
implementing the GMRES algorithm, and bicgstab, implementing the BiCGSTAB algo-
rithm. The parameters for calling the iterative solvers are summarized in the following
table:

Method
res = cg(A, b, x, P, epsi, maxIter, iter, pstream = NULL)

res = bicgstab(A, b, x, P, epsi, maxIter, iter, pstream = NULL)

res = gmres(A, b, x, P, epsi, maxSiter, maxIter, iter, pstream)

res the infinity norm of the last residual
A input: coefficient matrix
b input: rhs of the linear system
x input/output: guess and the solution of the linear system
P input: a preconditioner for A
epsi input: admitted tolerance
maxIter maximum number of allowable iteration
maxSiter for gmres is the maximum number of iteration before restarting
iter performed iteration

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 13

stream a pointer of object of type ostream if not NULL used for messages

3.3 Matrix Market interface

A standard way to store and exchange large sparse matrices is to save the matrices ac-
cordingly to some file exchange format. For sparse matrices, there are two widely used
formats: the Harwell-Boeing (HB) Sparse Matrix Format [Duff et al. 1989] and Matrix
Market (MM) Sparse Matrix Format [Boisvert et al. 1997]. The HB format is strongly de-
pendent on the FORTRAN programming language and is difficult to manage in a different
language without using a sophisticated parser. The alternative is to use a dedicated FOR-
TRAN routine to manage such a format. The design of SparseTool is based on a unique
header file, i.e. SparseTool.hh, that contains the whole library so that the HB format is
not supported. The MM format is easier to manage; therefore, a simple support is included
in the toolkit through the class MatrixMarket. In any case, free software product are avail-
able to convert from one format to another one [Demmel and Yelick 1999; Boisvert et al.
1997]. The methods to read a MM file and load it into Sparse<Type,Matrix> object are
the following:

Method Description
void read(fname) read the file in MM format specified by the string fname.

The result is stored in the class instance.
void read(istream & s) read the file in MM format from the opened stream s. The

result is stored in the class instance.
void print(ostream & s) print to the stream object s some information about the

last load matrix.
void load(V) copy the last loaded array to the vector V
void load(pattern) copy the pattern of the last loaded matrix in the

SparsePattern object sparse
void load(M) copy the last loaded matrix in the object M which is de-

rived from Sparse<Type,Matrix> class. I.e. it can be for
example a CCoorMatrix<Type> object.

The following code shows how MatrixMarket should be used:

MatrixMarket mm ; // define the object mm to manage Matrix Market file
CCoorMatrix<double> A ; // an empty sparse CCOOR matrix
SparsePattern sp ; // an empty sparse pattern
mm . read("hor__131.mtx") ; // read matrix and store in mm object
mm . load_pattern(sp) ; // extract the pattern
mm . load_matrix(A) ; // copy loaded matrix in sparse matrix A

The class MatrixMarket is not a template class because the value type of the nonze-
ros is specified by the format. The available type in MM format are int, double and
complex<double>. The representation of sparse matrices in MM format is of type CCOOR,
so that MatrixMarket stores in this form the loaded matrix. Full matrices are stored in col-
umn major order. Sometimes it can be useful to access directly the structure of the loaded
matrix with the following methods:

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · E.Bertolazzi

Method Description
unsigned numRows() number of rows of loaded matrix
unsigned numCols() number of columns of loaded matrix
unsigned nnz() total number of nonzeros
unsigned coor_type() type of storage 0 = by coordinate, 1 = full

matrix in column major order
unsigned value_type() value type: 0 = no values, only pattern, 1 =

values of type int, 2 = values of type double,
3 = values of type complex<double>.

unsigned matrix_type() 0 = general matrix, 1 = symmetric matrix, 2 =
skew symmetrix matrix, 3 =Hermitian matrix.

Vector<unsigned> const & getI() return the vector of the row index
Vector<unsigned> const & getJ() return the vector of the column index
Vector<unsigned> const & getAi() return the vector of nonzeros for matrices with

int type entries
Vector<unsigned> const & getAr() return the vector of nonzeros for matrices with

double type entries
Vector<unsigned> const & getAc() return the vector of nonzeros for matrices with

complex<double> type entries

To write a sparse pattern or matrix in MM format the following functions are available:

—MatrixMarketSaveToFile(fname,A,vType,mType): save the sparse matrix A to file with
name fname and with value type vType with matrix type mType.

—MatrixMarketSaveToFile(fname,S,mType): save the sparse pattern S to file with name
fname with matrix type mType.

3.4 Spy command

Graphics visualization of the structure of a sparse matrix is often a useful tool. The function
Spy, writes a postscript file for the “silhouette” of the nonzero structure of A. The result is
similar to the MATLAB spy command [Gilbert et al. 1992].

Methods
void Spy(fname,M,size) void Spy(fname,M,size,rl,cl)

void Spy(stream,M,size) void Spy(stream,M,size,rl,cl)

Parameters
string const & fname the name of the output file
Sparse<Type,Matrix> const & M pattern to be drawn
double size dimension of the plot in cm
vector<unsigned> const * rl vector containing the index of horizontal

line to be drawn. If for example (*rl)[0]
contains 5 then a line between row 4 and 5
is drawn.

vector<unsigned> const * rc vector containing the index of vertical line
to be drawn.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 15

The command accepts any object derived from Sparse<Type,Matrix>, so that any de-
rived class can plot its pattern by the command Spy. For example the following code

#include "SparseTool.hh"
using namespace SparseToolLoad ; using namespace std ;

int main() {
SparsePattern sp(10,20) ;
sp.insert(0,0) .insert(1,1) .insert(2,2) .insert(3,3) .insert(3,15) ;
sp.insert(4,3) .insert(5,10).insert(5,11).insert(5,12).insert(6,14) ;
sp.insert(7,13) .insert(8,6) .insert(8,14).insert(9,14).insert(9,19) ;
sp.internalOrder() ;
vector<unsigned> rc, rr ; rc . push_back(3) ; rr . push_back(5) ;
Spy("S.eps", sp, 12.0, &rr, &rc) ;
return 0 ;

}

produces the file S.eps, which contains the following picture:

The command Spy is the translation in C++ of the routine pspltm of SPARSKIT with minor
adjustment.

4. APPLICATION EXAMPLES

4.1 Some examples of usage

The following two examples illustrate the simplicity of the use of SparseTool.

Elliptic Equation. We want to approximate by finite difference the solution of the fol-
lowing problem:

∇2u(x, y) = 1, (x, y) ∈ Ω = (0, 1) × (0, 1),

u(x, y) = 0, (x, y) ∈ ∂Ω.
(3)

By setting h = 1/n and xi = yi = i h, the finite differences approximation ui j of the exact
solution u(xi, y j) satisfies the following equations:

ui−1, j + ui+1, j + ui, j−1 + ui, j+1 − 4ui, j = h2, i, j = 1, 2, . . . , n − 1

u0, j = un, j = ui,0 = ui,n = 0, i, j = 1, 2, . . . , n − 1

This constitutes a sparse linear system in the unknown ui j. The solver is contained in the
22 lines of the following code.

1 #include "SparseTool.hh"
2 using namespace ::SparseToolLoad ; using namespace ::std;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · E.Bertolazzi

3 int main() {
4 unsigned iter, n = 10, neq = (n-1)*(n-1) ;
5 CCoorMatrix<double> A(neq,neq,5*neq) ;
6 Vector<double> b(neq), x(neq) ;
7 ILDUPreco<double> P ;
8 b = 1.0/n*n ;
9 for (unsigned nr=0 ; nr < neq ; ++nr) {

10 unsigned i = nr % (n-1), j = nr / (n-1) ;
11 A . insert(nr,nr) = -4 ;
12 if (i > 0) A . insert(nr,nr-1) = 1 ;
13 if (i < n-2) A . insert(nr,nr+1) = 1 ;
14 if (j > 0) A . insert(nr,nr-(n-2)) = 1 ;
15 if (j < n-2) A . insert(nr,nr+(n-2)) = 1 ;
16 }
17 A . internalOrder() ; P . build(A) ;
18 double res = bicgstab(A, b, x, P, 1E-10, 100u, iter, &cout);
19 b -= A*x ;
20 cout << "Verify Residual = " << normi(b) << ’\n’ ;
21 return 0;
22 }

— Line 1 includes the SparseTool library.
— Line 2 loads the toolkit function, the classes contained in SparseToolDefs namespace,

and the standard namespace.
— Line 5 instantiates a neq × neq CROW sparse matrix class with room for 5 · neq preal-

located nonzeros.
— Line 6 instantiates two full vector of size neq. b will be the r.h.s of the linear system, x

will be its solution.
— Line 7 instantiates an uninitialized object of the incomplete LDU preconditioner class.
— Line 8 initializes the r.h.s vector b to 1/h2.
— Lines 9–16 performs a loop on the internal nodes of the mesh and sets the matrix

coefficients.
— Line 10 gets the (i,j)-node coordinates from the equation number.
— Line 11 sets a diagonal element of the matrix A.
— Lines 12 − 15 sets the non-diagonal element if this is not on the boundary.

— Line 17 consolidates the matrix A and builds the sparse LDU preconditioner.
— Line 18 calls the bicgstab solver.
— Line 19 computes the true residual for checking purpose.

The output produced by the code is listed here:

iter = 1 residual = 0.986534
iter = 2 residual = 0.0629651
iter = 3 residual = 0.00287048
iter = 4 residual = 0.000128241
iter = 5 residual = 5.94365e-06
iter = 6 residual = 7.34315e-07
iter = 7 residual = 9.54058e-08
iter = 8 residual = 7.98651e-09
iter = 9 residual = 1.19073e-10

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 17

iter = 10 residual = 5.46827e-11
Verify Residual = 8.24221e-11

This code is incomplete, for example, the solution is not saved and our aims is only to
show the key idea. However, a full program solving problem (3) can be written with less
than 100 code lines.

Least square problem. Minimize the norm of an overdetermined sparse linear system:

x = arg min
z
‖Az − b‖2 where A =

1
1

1
1

1 1 1 1
1 2

1 2

, x =

x1
x2
x3
x4

 , b =

1
1
1
1
1
1
1

The solution of this problem is the solution of the linear system:

AT Ax = AT b,

which can be written as the solution of the following augmented linear system [Gilbert
et al. 1992]: I A

AT 0

 x

r

 =
 b

0

The coefficients matrix is symmetric but not positive definite. For this reason, the Conju-
gate Gradient method cannot be applied. Instead, the BiCGSTAB method with an incom-
plete LDU preconditioner works pretty well. A possible implementation with SparseTool
uses iterators to build the block matrix and VectorSlice<double> to access the solution.
A sample code is depicted below.

1 #include "SparseTool.hh"
2 #include <fstream>
3 using namespace SparseToolLoad ; using namespace std ;

4 int main() {
5 unsigned i, iter, nr = 7, nc = 4, nnz = 12 ;
6 unsigned I[] = { 0, 4, 5, 1, 4, 5, 2, 4, 6, 3, 4, 6 } ;
7 unsigned J[] = { 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3 } ;
8 unsigned V[] = { 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2 } ;

9 CCoorMatrix<double> A(nr,nc), M(nr+nc,nr+nc) ;
10 Vector<double> rhs(nr+nc), X(nr+nc), bf1(nr), bf2(nc) ;

11 for (i = 0 ; i < nnz ; ++i) A . insert(I[i],J[i]) = V[i] ;
12 A . internalOrder() ;

13 for (A . Begin() ; A . End() ; A . Next()) {
14 unsigned i = A . row(), j = A . column() ;
15 M . insert(i,j+nr) = A . value() ;
16 M . insert(j+nr,i) = A . value() ;
17 }

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · E.Bertolazzi

18 for (i = 0 ; i < nr ; ++i) M . insert(i,i) = 1 ;
19 M . internalOrder() ;

20 VectorSlice<double> b1, b2, r, x ;
21 b1 . slice(rhs, 0, nr) = 1 ; b2 . slice(rhs, nr, nc+nc) = 0 ;
22 r . slice(X, 0, nr) = 0 ; x . slice(X, nr, nr+nc) = 0 ;

23 ILDUPreco<double> P ; P . build(M) ;
24 double res = bicgstab(M, rhs, X, P, 1E-15, 100u, iter, &cout);

25 bf1 = b1 - (A*x) ; bf2 = Aˆbf1 ;
26 cout << "solution = " << x << "\nresidual = " << normi(bf2) << ’\n’ ;
27 return 0 ;
28 }

— Lines 6–8 are the array with the matrix A in CCOOR format.
— Lines 11–12 build matrix A from the C array I, J and V.
— Lines 13–20 build coefficients block matrix from sparse matrix A.
— Lines 20–22 map vectors b1, b2, r, x to the corresponding block of the partitioned

system.
— Line 23 defines and builds the incomplete LDU preconditioner.
— Line 24 solves the linear system applying BiCGSTAB.
— Line 25 checks the residual AT (b − Ax).

The output produced by the code is listed here:

iter = 1 residual = 0.502522
iter = 2 residual = 0.00687773
iter = 3 residual = 5.17208e-15
iter = 4 residual = 1.03036e-16
solution = [0.416667 , 0.333333 , 0.416667 , 0.333333]
residual = 4.44089e-16

4.2 Extending the toolkit

The toolkit is very flexible and can be easily extended. To show how this can be done, we
discuss the interface with SuperLU and UMFPACK. The original interface are hidden in
the classes UMF and SuperLU that has only two public methods aslisted in the table:

Methods
int load(A) load matrix A to the solver class UMF or SuperLU and per-

form sparse LU factorization. Matrix A should be of type
CColMatrix<double>. If A is derived from Sparse<double,MT>
the a conversion is done intenally. If some error occur the
method return a value different from 0.

int solve(b,x,t) solve the linear system Ax = b with matrix A previously loaded.
If the boolean t=true then solve AT x = b. In some error occur
the method return a value different from 0. If t is not specified
it is set to false.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 19

The following code sketches how to use the UMF class

1 #include "SparseTool.hh"
2 #include "SparseToolUmf.hh"
3 using namespace SparseToolLoad ; using namespace std ;

4 int main() {
5 MatrixMarket mm ; UMF umf ; CCoorMatrix<double> A ;
6 Vector<double> x, rhs, resid ;

7 mm . read("af23560.mtx") ; mm . load(A) ;

8 unsigned n = A . numRows() ;
9 x . resize(n) ; rhs . resize(n) ; residual . resize(n) ;

10 rhs = 1 ;

11 umf . load(A) ; umf . solve(rhs,x) ;
12 residual = rhs - A*x ;

13 cout << "\nresidual = " << normi(residual) << ’\n’ ;
14 return 0 ;
15 }

— Lines 1 includes the SparseTool toolkit.
— Lines 2 includes the interface extension for UMFPACK.
— Lines 7 reads the matrix af23560.mtx in Matrix Market format and loads it into CCOOR

matrix A.
— Lines 8–10 initializes work vectors and r.h.s.
— Lines 11 factorizes and solves the linear system using UMFPACK.
— Line 12 computes the residual for checking purpose.

Extending the toolkit is thus easy but require the knowledge of C++ and the sparse matrix
format as in very simple example based on the class DiagMatrix<Type>, which is a possible
implementation of a sparse diagonal matrix type.

1 #include "SparseTool.hh"
2 namespace SparseToolDefs {
3 template <typename T>
4 class DiagMatrix : public Sparse<T,DiagMatrix<T> > {
5 public:
6 typedef Sparse<T,DiagMatrix<T> > SPARSE ; typedef T valueType ;
7 private:
8 Vector<valueType> D ; mutable indexType ipos ;
9 public:

10 DiagMatrix(void) {} ;
11 DiagMatrix(indexType n) { resize(n) ; }

12 DiagMatrix<T> & operator = (DiagMatrix<T> const & M)
13 { D = M.D ; return *this ; }

14 void resize(indexType n)
15 { D.resize(n+1) ; D=0 ; SPARSE::setup(n,n) ;
16 SPARSE::sp_diag_nnz = SPARSE::sp_nnz = n ; }

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · E.Bertolazzi

17 valueType const & value(indexType i, indexType j) const
18 { return i==j ? D(i) : D(SPARSE::sp_nnz) ; }

19 valueType const &
20 operator () (indexType i, indexType j) const { return D(i) ; }

21 valueType &
22 operator () (indexType i, indexType j) { return D(i) ; }

23 // ITERATOR
24 void Begin (void) const { ipos = 0 ; }
25 void Next (void) const { ++ipos ; }
26 bool End (void) const { return ipos < SPARSE::sp_nrows ; }

27 indexType row (void) const { return ipos ; }
28 indexType column (void) const { return ipos ; }
29 valueType const & value (void) const { return D(ipos) ; }

30 template <typename VR, typename VB> void
31 add_S_mul_M_mul_V(VectorBase<T,VR> & res, T const & s,
32 VectorBase<T,VB> const & x) const
33 { res += s * D * x ; }

34 template <typename VR, typename VB> void
35 add_S_mul_Mt_mul_V(VectorBase<T,VR> & res, T const & s,
36 VectorBase<T,VB> const & x) const
37 { res += s * D * x ; }
38 } ;
39 SPARSELIB_MUL_STRUCTURES(DiagMatrix)
40 }

41 namespace SparseToolLoad { using SparseToolDefs::DiagMatrix ; }
42 using namespace SparseToolLoad ; using namespace std ;

43 int main() {
44 DiagMatrix<double> DM(6) ; Vector<double> a(6), b(6) ;
45 DM(0,0) = 1 ; DM(1,1) = 2 ; DM(2,2) = 3 ;
46 DM(3,3) = 4 ; DM(4,4) = 5 ; DM(5,5) = 6 ;
47 b = 1 ; a = b - DM * b ;
48 cout << DM << "\na=" << a << ’\n’ ;
49 Spy("D.eps", DM, 12.0) ;
50 return 0 ;
51 }

As one can notice, the class DiagMatrix inherits from the base class Sparse and by itself
thorough the mechanism of the Barton and Nackman trick. In this class, the operator ()
is defined in lines 19–22 and the iterator is defined in lines 24–29. Lines 30–37 redefine
the methods add_S_mul_M_mul_V and add_S_mul_Mt_mul_V. These methods are already
defined in the base classes by the use of the iterator. Normally, this methods should be
redefined for performance reason. The macro in line 33 defines the glue for the use of the
class in vector/matrix expressions. The code in line 43–51 shows an example of use of this
class, which produces the following output:
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 21

size = 6 x 6
nnz = 6 (diag=6, lower=0, upper=0)
ordered = YES
(0,0) = 1
(1,1) = 2
(2,2) = 3
(3,3) = 4
(4,4) = 5
(5,5) = 6

a=[0 , -1 , -2 , -3 , -4 , -5]

figure D.eps:

4.3 Performance tests

To check performance, a simple comparison with Sparse BLAS and SPARSKIT is done.
The test is performed by comparing the computational time of a vector/matrix product.
The matrices are taken from the Matrix Market collection while the test are performed on
a 2.16 GHz Intel Core Duo. All the tests code are compiled using the Intel Fortran and
C++ Compiler version 10.1 with maximum optimization level. The results are shown in
the following table, where numbers are the estimated millions of double precision floating
point multiplications by second.

Matrix CCOOR CCOL CROW Sparse BLAS SPARSKIT
hor__131.mtx 189 202 189 213 259
af23560.mtx 150 202 212 130 227
s3dkt3m2.mtx 159 218 228 136 253
plat1919.mtx 182 250 347 228 304

These numbers are only indicative but they show that SparseTool has good average
performance. In any case if a user needs peak performance on a specific architecture, a
specialized sparse matrix class can be derived.

5. CONCLUSIONS

In this paper we presented SparseTool, an Object-Oriented interface software designed for
handling sparse matrices. One of the most important features of SparseTool is its sim-
plicity of usage and extensibility. Although small, this toolkit can be used standalone to
develop non trivial code for sparse matrix manipulation and solving sparse linear systems.
The use of Expression Templates and static polymorphism permits obtaining good perfor-
mance while maintaining an intuitive user interface. SparseTool easily link to other high
performance sparse matrix libraries such as SuperLU or UMFPACK, therefore, it can be
used as a glue with other high performance sparse matrix libraries.

REFERENCES

A, P. R., D, T. A., D, I. S. 2004. Algorithm 837: AMD, an approximate minimum degree
ordering algorithm. ACM Trans. Math. Software 30, 3, 381–388.

A, E., A, E., B, Z., B, Z., B, C., B, C., D, J., D, J., D, J.,
D, J., C, J. D., C, J. D., G, A., H, S., H, S., MK, A.,
O, S., O, S., S, D., S, D. 1992. LAPACK’s user’s guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · E.Bertolazzi

B, R., B, M., C, T. F., D, J., D, J., D, J., E, V., P, R., R, C.,
 V, H. V. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition. SIAM, Philadelphia, PA.

B, J. J. N, L. R. 1994. Scientific and engineering C++. Addison-Wesley.
B̃ V, L. M, G. 2007. An a-posteriori error estimator for the mimetic finite difference

approximation of elliptic problems. To appear in Int. J. Numer. Methods Engrg.
B, E. M, G. 2002. Algorithm 817 P2MESH: generic object-oriented interface between 2-D

unstructured meshes and FEM/FVM-based PDE solvers. ACM Trans. Math. Softw. 28, 1, 101–132.
B, E. M, G. 2004a. A cell-centered second-order accurate finite volume method for

convection-diffusion problems on unstructured meshes. Mathematical Models and Methods in Applied Sci-
ences 14, 8, 1235–1260.

B, E. M, G. 2004b. Limiting strategies for polynomial reconstructions in the finite volume
approximation of the linear advection equation. Applied Numerical Mathematics 49, 3–4, 277–289.

B, E. M, G. 2006. A second-order maximum principle preserving finite volume method for
steady convection-diffusion problems. SIAM Journal on Numerical Analysis 43, 5, 2172–2199.

B, E. M, G. 2007. On vertex reconstructions for cell-centered finite volume approximations
of 2-D anisotropic diffusion problems. Mathematical Models and Methods in Applied Sciences 17, 1, 1–32.

B, R. F., P, R., R, K., B, R. F., D, J. J. 1997. Matrix market: a web resource
for test matrix collections. In Proceedings of the IFIP TC2/WG2.5 working conference on Quality of numerical
software. Chapman & Hall, Ltd., London, UK, UK, 125–137. http://math.nist.gov/MatrixMarket/.

C, A. M, G. 2008. Flux reconstruction and solution post-processing in mimetic finite difference
methods. Comput. Methods Appl. Mech. Engrg. 197/9-12, 933–945.

D, T. A. 2004. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans-
actions on Mathematical Software 30, 2, 196 – 199.

D, T. A., G, J. R., L, S. I., N, E. G. 2004. Algorithm 836: Colamd, a column approximate
minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3, 377–380.

D, J. 1989. LAPACK: A portable linear algebra library for supercomputers. In IEEE Control Systems
Society Workshop on Computer-Aided Control System Design,. IEEE.

D, J. Y, K. 1999. Berkley Benchmarking and Optimization Group. http://bebop.cs.
berkeley.edu/.

D, J. W., E, S. C., G, J. R., L, X. S., L, J. W. H. 1999. A supernodal approach to sparse
partial pivoting. SIAM J. Matrix Analysis and Applications 20, 3, 720–755.

D, J., L, A., P, R., R., K. 1994. A sparse matrix library in c++ for high
performance architectures. In Proceedings of the Second Object Oriented Numerics Conference. 214–218.

D, J. J., D, I. S., S, D. C., V, H. A. 1998. Numerical linear algebra for
high-performance computers. Software, Environments, and Tools, vol. 7. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA.

D, J. J. W, D. W. 1995. Software libraries for linear algebra computations on high performance
computers. SIAM Rev. 37, 2, 151–180.

D, I. S., D, I. S., R, J. K., R, J. K. 1996. The design of ma48: a code for the direct solution of
sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22, 2, 187–226.

D, I. S., G, R. G., L, J. G. 1989. Sparse matrix test problems. ACM Trans. Math. Softw. 15, 1,
1–14.

D, I. S., H, M. A., P, R. 2002. An overview of the sparse basic linear algebra subprograms: The
new standard from the blas technical forum. ACM Trans. Math. Softw. 28, 2, 239–267.

F́, V., G, L., G, S., L, J. 2005. Algorithm 842: A set of gmres routines for real and
complex arithmetics on high performance computers. ACM Trans. Math. Softw. 31, 2, 228–238.

G, C. M, G. 1998a. 2-D numerical modeling of bioremediation in heterogeneous saturated soils.
Transport in Porous Media 31, 67–88.

G, C. M, G. 1998b. A mixed finite element/finite volume approach for solving biodegradation
transport in groundwater. International Journal on Numerical Methods in Fluids 26, 5, 533–556.

G, J. R., M, C., S, R. 1992. Sparse matrices in matlab: Design and implementation. SIAM
Journal on Matrix Analysis and Applications 13, 1, 333–356.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

SparseTool: an Extensible Toolkit to Handle Sparse Matrices · 23

G, G. S, B. 1995. The STL Primer. Prentice Hall PTR.
G, N. I. M., S, J. A., H, Y. 2007. A numerical evaluation of sparse direct solvers for the solution

of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33, 2, 10.
H, M. R. S, E. 1952. Methods of conjugate gradients for solving linear systems. Journal of

Research of the National Bureau of Standards 49, 6.
L, X. S. 2005. An overview of superlu: Algorithms, implementation, and user interface. ACM Trans. Math.

Softw. 31, 3, 302–325.
L, X. S. D, J. W. 2003. SuperLU DIST: A scalable distributed-memory sparse direct solver for

unsymmetric linear systems. ACM Trans. Math. Softw. 29, 2, 110–140.
L, S. B. 2000. Essential C++. Addison Wesley.
M, G. M, S. 2002. An object-oriented interface for the dynamic memory management of sparse

discrete mathematical operators in numerical scientific applications. Software - Practice and Experience 32, 7,
621–644.

M, G. P, M. 2007. Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion
equations. Journal of Computational Physics 220, 2, 751–771.

M, G. R, A. 2008. A finite volume method for advection-diffusion problems in convection-
dominated regimes. Comp. Methods Appl. Mech. Engrg 197/13-16, 1242–1261.

M, S. 2005. Effective C++ : 55 Specific Ways to Improve Your Programs and Designs, third ed. Addison-
Wesley Professional.

M, D. S, A. 1996. STL tutorial & reference guide: C++ programming with the Standard Template
Library. Addison-Wesley.

O, T. C. K., D. R. 1990. Are there iterative BLAS? Tech. Rep. CNA-240, Center for Numerical
Analysis, University of Texas at Austin.

P, P., S, A. A., L, M., M, D. R. 2000. The C++ Standard Template Library. Prentice
Hall.

S, Y. 1990. SPARSKIT: A basic toolkit for sparse matrix computation. Tech. rep., Center for Supercomputing
Research and Development, University of Illinois at Urbana Champaign.

S, Y. S, M. H. 1986. GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Statist. Comput. 7, 3, 856–869.

S, M., S, K. S., H, M. A. 2008. On the design of interfaces to sparse direct solvers. ACM
Trans. Math. Softw. 34, 2, 1–22.

S, B. 1998. The C++ Programming Language (third edition). Addison-Wesley.
 V, H. A. 1992. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of

nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 2, 631–644.
 H., D. 1997. Source code documentation generator tool. http://www.stack.nl/˜dimitri/
doxygen/.

V, T. L. 1995a. Expression templates. C++ Report 7, 5, 26–31. Reprinted in C++ Gems, ed. Stanley
Lippman.

V, T. L. 1995b. Using C++ template metaprograms. C++ Report 7, 4, 36–43. Reprinted in C++
Gems, ed. Stanley Lippman.

V, T. L. 1998. Arrays in blitz++. In Proceedings of the 2nd International Scientific Computing in
Object-Oriented Parallel Environments (ISCOPE’98). Lecture Notes in Computer Science. Springer-Verlag.

V, T. L. 1999. The Blitz++ Home Page. http://oonumerics.org/blitz/.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

