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Abstract

A cell-centered Finite-Volume method is proposed to solve the unsteady reactive dif-
fusive transport of a contaminant in porous media. Two theoretical properties of the
analitical solution, namely non-negativity and maximum principle, are mentioned and
their implication on the approximation method are discussed.
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1. Introduction

A cell-centered Finite-Volume (FV) scheme for the transport of contaminant in porous media
is presented. The contaminant is advected by the groundwater bulk flow, it is diffused in the
porous media and can react. In this paper we discuss the derivation of the scheme and we
mention two analytical properties of the continuous problem, namely the non-negativity of
the solution and the existence of a global maximum principle, that are ensured in a discrete
form by the FV approximation.

The paper is organized as follows. In section 2 we show the governing equations and we
mention the analytical properties that we want to focus on. In section 3 we discuss the FV
framework. In section 4 we illustrate the properties of the reconstruction algorithm required
to attain second-order accuracy. Finally, in section 5 we present the conclusions.

2. Reactive and Diffusive Transport

Let us indicate by Ω the computational domain where the model equation is defined. Math-
ematically, Ω is a connected polygonal domain in R2 defined by a closed (1-D) surface ∂Ω.
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We assume that Ω is homogeneously filled by a porous medium where the bulk flow takes
place. The governing equation of the phenomenon we are interested in reads as

(RC )t +∇ · (VC −D∇C ) = S in R+× Ω. (1)

Equation (1) describes the time-dependent reaction-advection-diffusion of a contaminant
whose spatial concentration distribution is denoted by C (t, x). The contaminant is passively
advected by V(t, x), which is an assigned convection field; D(t, x) is the diffusion tensor,
R(t, x) is the retardation factor, and S (t, x) is the contaminant production/consumption
source term [5].

This model problem is completed by furnishing an initial solution, that is the spatial
distribution of the contaminant at time t = 0 within the domain Ω,

C (0,x) = C0(x), x ∈ Ω,

and a set of suitable boundary conditions that can be either of Dirichlet-type or of Neumann
type. The boundary ∂Ω is usually the union of two non-overlapping and possibly empty
subsets, ΓD and ΓN , where respectively Dirichlet and Neumann type conditions are specified:
∂Ω = ΓD ∪ ΓN . Formally, the boundary conditions are expressed by using two smooth
functions, gd and gn, such that we have

Dirichlet : C = gd on R+× ΓD,

Neumann : D∇C · n = gn on R+× ΓN .
(2)

Furthermore, the reactive source term, which can take into account both production of con-
taminants, due for example to pollution leakage, and consumption, due for example to a
remediation intervention, takes the following rather general form,

S (t,x,C ) = −A(t,x,C )C (t, x) + B(t,x,C ),

where A(t,x,C ) and B(t,x,C ) are two smooth and non-negative functions.

2.1. Basic Analytical Results

Under some general assumptions on the initial contaminant distribution and the boundary
conditions imposed on the model problem, it is possible to prove the non-negativity of the
contaminant concentration and a global maximum principle [6]. This is stated by the two
following propositions.

Proposition 1 (Non-Negativity)

If C0(x) ≥ 0, gd(t,x) ≥ 0, and gn(t,x) ≥ 0

then 0 ≤ C (t,x) for t > 0, and x ∈ Ω.

Proposition 2 (Global Maximum Principle)

If C0(x) ≥ 0, gd(t,x) ≥ 0, gn(t,x) = 0, and S = 0,

then 0 ≤ C (t,x) ≤ M(t) for t > 0, and x ∈ Ω,

where M(t) = max
{

sup
x∈Ω

C0(x), sup
τ∈(0,t)

sup
x∈ΓD

gd(τ,x)
}

.
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In the rest of the paper we illustrate the design of a cell-centered FV method that ensures a
discrete version of these properties. Basically, the discrete version of Proposition 1 guaran-
tees that the numerical approximation of C is a non-negative field, while the discrete version
of Proposition 2 guarantees that the numerical approximation of C satisfies a stability con-
straint.

3. The Finite Volume Formulation

The design of our FV method starts as usual by reformulating in an integral form the model
problem defined by equations (1) and (2) on a set of closed and non-overlapping control
volumes Ti ∈ Th, where Th is a conformal triangulation of Ω [4]. Integrating equation (1)
over Ti, applying the Gauss divergence theorem and imposing when required the boundary
conditions given in (2), we have

∂

∂t

∫
Ti

R(·,x)C (·,x) dx +
∑

j∈Th(i)

∫
eij

[
C (·,x)V(·,x)−D(·,x)∇C (·,x)

]
· nij d` +

∑
j′∈T d

h (i)

∫
eij

gd(·,x)V(·,x) · nij d`−
∑

j′∈T n
h (i)

∫
eij

gn(·,x) · nij d` =

∫
Ti

[
−A(C (·,x))C (·,x) + B(C (·,x))

]
dx, for every Ti ∈ Th.

(3)

In (3) Th(i) is the index set of volumes adjacent to Ti, eij is the edge shared by Ti and Tj ,
i.e. eij = Ti∩Tj , and T d

h (i) and T n
h (i) the index set of the edges of Ti located on the domain

boundary, i.e. eij = Ti ∩ ∂Ω. The symbol nij denotes the vector that is normal to the edge
eij and oriented from Ti to Tj when the edge is internal, or outward-directed when the edge
is on the boundary.

The Finite Volume method is formulated on each volumes Ti ∈ Th by the equation

|Ti|
drici

dt
+

∑
j∈Th(i)

[
Gij(c)︸ ︷︷ ︸

convection

+ Hij(c)︸ ︷︷ ︸
diffusion

]
+

∑
j∈T ′

h(i)

Fij′(c)︸ ︷︷ ︸
boundary

= Si(c)︸ ︷︷ ︸
source

, (4)

where we indicate the numerical flux integral terms corresponding to the ones in (3). In (4)
ri is the Ti cell-average of the retardation factor R.

We denote the piecewise-linear FV approximation of C by c̃(·,x). The restriction of
c̃(·,x) to the cell Ti ∈ Th is

c̃i(·,x) = ci + G̃i(c) · (x− xi), x ∈ Ti, (5)

where ci is the approximation of the cell average of C within Ti,

ci ≈
1
|Ti|

∫
Ti

C (·,x) dx,

and G̃i is the approximation of the gradient of the solution within the same cell. The gradient
approximation is calculated by using the FV cell average in Ti and the ones within the
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surrounding cells and a special limited reconstruction algorithms. The limiter is introduced
to control the numerical oscillations that can appear in the approximation process. Major
details about these issues are described in the next section.

3.1. Least-Square Vertex Reconstruction

The calculation of the integrals of the convective and diffusive numerical fluxes in (4) involves
both cell -centered and edge-centered estimates of the solution gradient. The formers were
introduced in (5) and are denoted by the symbol G̃i, while the latters by the symbol G̃ij(c).
The first step in the calculation of these quantities consists in the recovery of the solution
approximation at the mesh vertices from the cell-average solution values. To this purpose,
we consider a linear Least-Square (LS) approximation of the set of triplets{(

xi, yi, ci

)
, i ∈ Th(α)

}
,

where Th(α) is the set of cells sharing the vertex α. That is, we seek for the following
representation of the solution at each vertex α with coordinates (xα, yα)

cα = a + bxα + cyα, (6)

where a, b and c are the minimizers of

E(a, b, c) =
∑

i∈Th(α)

λαi (a + bxi + cyi − ci)
2 ,

and {λαi} is an assigned set of normalized non-negative weights. After some algebraic ma-
nipulations equation (6) takes the form

cα =
∑

j∈Vh(α)

wαjcj ,

where

wαj = λαj

(
1 + (xα − xG

α )TS−1
α (xj − xG

α )
)
,

xG
α =

∑
j∈Th(α)

λαjxj , and Sα =
∑

j∈Th(α)

λαj(xj − xG
α )(xj − xG

α )T . (7)

The relation between the set of coefficients wαj and λαi is expressed by the equations (7). A
possible and usual choice for the latters is

λαi =
|Ti|∑

k∈Th(α) |Tk|
,

but the weights wαj can be negative or take very large values when the mesh cells are
stretched [7]. However, it is possible to show that there exists λαi such that wαj are strictly
positive weights [1].
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3.2. Limited Gradient Reconstruction and Discretization of the Advection
Term

The piecewise-constant gradient G̃i(c) within the cell Ti is reconstructed by using the formula

G̃i(c) = `i
1

2 |Ti|
R

[
cα(xβ− xγ) + cβ(xγ− xα) + cγ(xα− xβ)

]
.

This gradient is such that the vector (̃Gi(c), 1) is orthogonal to the plane for the 3-D vectors
(xα, cα), (xβ , cβ) and (xγ , cγ).

The scalar limiting factor `i is the largest real number in [0, 1] such that

(i) min{ci, cj} ≤ c̃i(·,xij) ≤ max{ci, cj} eij ∈ EI
h

(ii) min{ci, gdij′} ≤ c̃i(·,xij′) ≤ max{ci, gdij′} eij′ ∈ ED
h

(iii)
(
G̃i(c) · nij

)
· gnij ≥ 0∣∣∣dijG̃i(c) · nij

∣∣∣ ≤ ∣∣gnij

∣∣ eij′ ∈ EN
h ,

and dij =
∫

eij

D(·,x) d`.

The advection term in equation (3) is discretized by using a standard upwind technique.
We have

Gij(C ) = ν+
ij c̃i(·,xij) + ν−ij c̃j(·,xij) = ν+

ij c̃i(·,xij)− ν+
ji c̃j(·,xij),

≈
∫

eij

C (·,x)V(·,x) · nij d`, j ∈ Th(i),
(8)

where we introduced the edge-average integral of the velocity field and its upwind value

νij =
∫

eij

V(·,x) · nij d`, ν±ij =
νij ± |νij |

2
,

and exploited the fact that ν−ij = −ν+
ji .

3.3. Edge Limited Gradient Reconstruction and Discretization of the Dif-
fusive Term

The gradient reconstruction at each internal edge proceeds throughout the following three
steps:

(i) compute Gij(c) =
3

2 |Ti|
R [(xβ− xi)(cα− ci)− (xα− xi)(cβ− ci)] ,

which is such that the vector (Gij(c), 1) is orthogonal to the plane for the 3-D points
(xk, ck) with k = i, α, β;

(ii) compute Gji(c) =
3

2 |Tj |
R [(xα− xj)(cβ− cj)− (xβ− xj)(cα− cj)] ,

which is such that the vector (Gij(c), 1) is orthogonal to the plane for the 3-D points
(xk, ck) with k = j, α, β;
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(iii) compute the non-linear average between Gij(c) and Gji(c)

G̃ij(c) = Wij(c)Gij(c) + Wji(c)Gji(c),

Wij(c), Wji(c) ≥ 0, Wij(c) + Wji(c) = 1,
(9)

which is finally taken as the gradient estimate at the edge eij .

The terms Wij(c) in equation (9) are the scalar weights of the final average and are
generally assumed to depend on the set of neighbour cell-averaged and vertex-reconstructed
values.

This approach generalises the “diamond scheme” average [3], which corresponds to a
choice of the weights which depends only on the area of the closest cells,

Wij(c) = |Ti| /(|Ti|+ |Tj |),

but is independent from the cell-average solution values.
We propose a different and original non-linear average, where the weights are

Wij(c) =


|gji(c)|

|gij(c)|+ |gji(c)|
, if |gij(c)|+ |gji(c)| > 0

1/2 if |gij(c)|+ |gji(c)| = 0

and gij(c) = Gij(c) · nij .
Finally, the integral of the numerical flux for the diffusive term in equation(3) is defined

by

Hij(c) = h̃ij(c)ci − h̃ji(c)cj , (10)

where the factor h̃ij(c) and its corresponding one without tilde, hij(c), are such that

0 ≤ hij(c), h̃ij(c) ≤ 4dij cotg(θmin/2),

c̃ij = c̃(·, xij), xij being the midpoint of the edge eij , and the following relations hold

dij |eij | G̃ij(c) · nij = hij(c)(̃cij − ci) for all eij ∈ Eh,

hij(c)(̃cij − ci) = h̃ji(c)cj − h̃ij(c)ci for all eij ∈ EI
h.

3.4. Numerical Approximation of the Source Term

The volume production/consumption source term is numerically discretized in every cell
Ti ∈ Th by the second-order quadrature formula

Si(c) = |Ti|B(·,xi, ci)− |Ti|A(·,xi, ci)ci,

=
∫

Ti

B(·,x, c(·,x))−A(·,x, c(·,x))c(·,x) dx +O
(
h3

)
.
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4. Formal Properties of the FV Formulation

In this section we introduce a matrix-like formalism that allows us to reformulate the FV
scheme (4) in a more compact form. Using a suitable definition of the matrix operators G,
G̃(c), H(c), F, F̃(c) and the vectors f , f̃(c) – see [2] for the details – the integral of the
upwind numerical flux in (8) and of the diffusive numerical flux in (10) can be written as[

Gc− G̃(c)c
]
i

=
∑

j∈Th(i)∪T ′
h(i)

Gij(c),

[
H(c)c

]
i

=
∑

j∈Th(i)∪T ′
h(i)

Hij(c),
(11)

while the integral of the numerical flux at boundary edges takes the more compact form[
Fc− F̃(c)c− (f − f̃(c))

]
i
=

∑
j∈T ′

h(i)

Fij(c). (12)

The r.h.s. source also takes a matrix-like form as

S(c) = bS(c)−A(c)c. (13)

Using the previous compact definitions (11), (12), and (13), we obtain the following matricial
form of the FV scheme (4)

d

dt
(Mc) + N(c)c = Ñ(c)c + b(c),

where b(c) = f−f̃(c)+bS(c) takes into account the discretization of the boundary conditions,
and we introduced the non-linear matrix operators N(c) = F+G+H(c)+A(c) and Ñ(c) =
F̃(c)+G̃(c). Under the assumptions given in the previous section it is possible to show both
N(c) and Ñ(c) possess strong properties, that we formalize in the next propositions. The
proofs are in [1].

Proposition 3 (Properties of the Matrix Operators)

1. N(c) is an M-matrix;

2. Ñ(c) is a Stieltjes matrix.

Two discrete analogues of Propositions 1 and 2 also hold. These are stated by the following
two propositions.

Proposition 4 (Non-Negativity)
The analytical property 1 becomes:

if ci(0) ≥ 0, for all Ti ∈ Th;

gdα(t) ≥ 0, for all α ∈ V ′h, t > 0;

gnij(t) ≥ 0, for all eij ∈ EN
h , t > 0;

then 0 ≤ ci(t), for all Ti ∈ Th t > 0.
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Proposition 5 (Global Maximum Principle)
The analytical property 2 becomes:

if ci(0) ≥ 0, for all Ti ∈ Th;

gdα(t) ≥ 0, for all α ∈ V ′h, t > 0;

gnij(t) = 0, for all eij ∈ EN
h , t > 0;

bS(c) = 0, t > 0;

then 0 ≤ ci(t) ≤ M(t), for all t > 0.

5. Conclusions

A FV scheme is proposed to solve the time-dependent reaction-advection-diffusion for the
contaminant transport in porous media. The scheme is based on a special limited reconstruc-
tion for gradients within cells and at mesh edges. The introduction of a suitable matrix-like
formalism allows us to reformulate the scheme in a more compact way. The matrix operators
that appear in the new formulation show strong properties (M-matrices, Stieltjes matrices).
Finally we mention that using these properties it is possible to prove that under quite gen-
eral assumptions the discrete solution is non-negative and there holds a global maximum
principle.
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