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Abstract

A 2-nd order cell-centered Finite-Volume method is proposed to solve
the steady advection-diffusion equation for contaminant transport in porous
media. This method is based on a linear least square reconstruction that
maintains the approximate cell-average values. The reconstruction is com-
bined with an appropriate slope limiter to prevent the formation of spuri-
ous oscillations in the convection-dominated case. The theoretical conver-
gence rate is investigated on a boundary layer problem, and the preliminar
results show that the method is promising in the numerical simulation of
more complex groundwater flow problems.
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1. Introduction

The process of groundwater transport of a solute in porous media is usually
captured by mathematical models based on the advection-diffusion equation.
The numerical approximation of transport phenomenon can be quite difficult
because of the advective term. When the advection effects are dominant on the
diffusive ones, sharp fronts of solute concentration can form and move through-
out the computational domain. It is a well-known fact that in such a situation,
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spurious O (1) non-physical oscillations known as Gibbs’ phenomena, can de-
velop and deteriorate the accuracy of the numerical solution obtained using
standard finite difference and finite element methods. To overcome the process
of oscillation formation and ensure a type of numerical stability with minimal
artificial diffusion, shock-capturing numerical schemes have been developed and
widely investigate in the last two decades [1]. Many schemes are thus based
on the splitting of the advection and the diffusion terms into two separate par-
tial differential equations, and in this context, the coupling of quite different
methods, such as Finite Volumes and Finite Elements, is not unusual: let us
mention the Eulerian-Lagrangian schemes [2, 3] and the fully Eulerian Godunov
mixed methods [4, 5, 6]. In almost all of the aforementioned methods, time-
explicit, spatially second-order accurate Godunov method is basically used to
treat advection, and a time-implicit, spatially second-order accurate mixed finite
element method is used for modeling the diffusion.

The numerical schemes that is investigated in this work is instead based on
a Finite Volume discretization of both the advective and the diffusive flux. The
advective term is approximated using an upstream technique, while a central
scheme is applied to the diffusion one. The second-order accuracy is formally
achieved by employing a linear reconstruction that maintains the approximate
cell-average values computed by the scheme. The stability of the scheme is
ensured by an appropriate slope limiter combined with the reconstruction.

2. Advective and Diffusive Transport

Let Ω a connected polygonal domain in R2 defined by a closed (1-D) surface
∂Ω. The governing equation of the phenomenon we are interested in reads as

∇ · (VC −D∇C ) = S in Ω. (1)

Equation (1) describes the steady advective-diffusive transport of a contaminant
whose spatial concentration distribution is denoted by C (x). The contaminant
is passively advected by V(x), which is an assigned convection field; D(x) is
the diffusion tensor, and S (t, x) is the contaminant production/consumption
source term [7].

The border ∂Ω may be partitioned into the union of two non-overlapping and
possibly empty subsets, ΓD and ΓN , where respectively Dirichlet and Neumann
boundary conditions are specified: ∂Ω = ΓD ∪ ΓN . The boundary conditions
are given by

Dirichlet : C = gd on ΓD,

Neumann : −D∇C · n = gn on ΓN ,
(2)

where gd and gn are assumed to be smooth functions.

46



3. The Finite Volume Formulation

The design of our FV method starts as usual by reformulating in an integral form
the model problem defined by equations (1) and (2) on a set of closed and non-
overlapping control volumes Ti ∈ Th, where Th is a conformal triangulation of
Ω [8]. Integrating equation (1) over Ti, applying the Gauss divergence theorem
and imposing when required the boundary conditions given in (2), we have

∑
j∈Th(i)

∫
eij

[
C (x)V(x)−D(x)∇C (x)

]
· nij d` +

∑
j′∈T d

h (i)

∫
eij

gd(x)V(x) · nij d`−
∑

j′∈T n
h (i)

∫
eij

gn(x) d` =
∫

Ti

S (x,C ) dx,

(3)

for every Ti ∈ Th. In (3) Th(i) is the index set of volumes adjacent to Ti, eij

is the edge shared by Ti and Tj , i.e. eij = Ti ∩ Tj . T d
h (i) and T n

h (i) are the
index set of the edges of Ti located on the domain boundary, i.e. eij = Ti ∩ΓD

and eij = Ti ∩ ΓN respectively. The symbol nij stands for the vector that is
normal to the edge eij and oriented from Ti to Tj when the edge is internal, or
outward-directed when the edge is on the boundary.

The Finite Volume method is formulated on each volumes Ti ∈ Th by the
equation ∑

j∈Th(i)

[
Gij(c)︸ ︷︷ ︸

convection

+ Hij(c)︸ ︷︷ ︸
diffusion

]
+

∑
j∈T ′

h(i)

Fij′(c)︸ ︷︷ ︸
boundary

= Si(c)︸ ︷︷ ︸
source

, (4)

where we indicate the numerical flux integral terms corresponding to the ones
in (3). The source term Si(c) is numerically discretized in every cell Ti ∈ Th by
a second-order quadrature formula.

The cell-wise linear approximation to the solution of (1) is defined within
Ti by c̃i(x) = ci + G̃i(c) · (x − xi) for any x ∈ Ti where G̃i(c) is an O (h) cell-
centered estimate of the solution gradient. The diffusive flux contribution Hij(c)
also requires that an O (h) edge-centered gradient G̃ij(c) be estimated for each
edge eij . Cell-centered and edge-centered gradients are necessarly reconstructed
using the only information available from the scheme, that is the approximate
cell averages c, as follows.

First, we apply the Least Square method to approximate solution values at
mesh vertices. For any vertex of position xα, the least square method yields
the vertex value cα in the form of a weighted average of the centroid values ci

taken from the triangles incident to α

cα =
∑

j∈Vh(α)

wα
j cj , (5)

where a suitable set of weights {wαj} has been introduced.
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Then, we apply the Gauss-Green theorem to a closed integration path, which
is the cell boundary ∂Ti for G̃i(c) and the triangle defined by the centroid of Ti

and the vertices of the edge eij for G̃i(c).
The gradient approximation is thus determined by using the FV cell av-

erage in Ti together with the ones within the surrounding cells and is finally
constrained by a special limiting algorithm. The limiter is introduced to con-
trol the numerical oscillations that can appear in the approximation process.
Further details about these issues are described in Reference [9].

3.1. Limited Gradient Reconstruction and Discretization
of the Advection Term

The piecewise-constant gradient G̃i(c) within the cell Ti is recovered by using
the formula

G̃i(c) = `i
1

2 |Ti|
R

[
cα(xβ− xγ) + cβ(xγ− xα) + cγ(xα− xβ)

]
.

This gradient is such that the vector (̃Gi(c)T , 1)T is orthogonal to the plane for
the 3-D vectors (xα, cα), (xβ , cβ) and (xγ , cγ).

The scalar limiting factor `i is the largest real number in [0, 1] such that

(i) min{ci, cj} ≤ c̃i(·,xij) ≤ max{ci, cj} eij ∈ EI
h

(ii) min{ci, gdij′} ≤ c̃i(·,xij′) ≤ max{ci, gdij′} eij′ ∈ ED
h

(iii)
(
G̃i(c) · nij

)
· gnij ≥ 0,

∣∣∣dij G̃i(c) · nij

∣∣∣ ≤ ∣∣gnij

∣∣ eij′ ∈ EN
h ,

where in (iii), dij is the edge-average viscosity

dij =
1
|eij |

∫
eij

D(·,x) d`. (6)

This limiting strategy ensures that the recovered gradient is null when ci is a
local minimum or a local maximum. In this way, the linearly reconstructed
solution is monotonized, thus providing also that a TVD stability constraint is
satisfied.

The advection term in equation (3) is discretized by using a standard upwind
technique. We have

Gij(C ) = ν+
ij c̃i(xij) + ν−ij c̃j(xij) = ν+

ij c̃i(xij)− ν+
ji c̃j(xij),

≈
∫

eij

C (x)V(x) · nij d`, j ∈ Th(i),
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where we introduced the edge-average integral of the velocity field and its up-
wind value

νij =
∫

eij

V(x) · nij d`, ν±ij =
νij ± |νij |

2
,

and use has been made of the property ν−ij = −ν+
ji.

3.2. Edge-Centered Gradient Reconstruction and Discretiza-
tion of the Diffusive Term

The gradient reconstruction at each internal edge proceeds throughout the fol-
lowing three steps:

(i) compute Gij(c) =
3

2 |Ti|
R [(xβ− xi)(cα− ci)− (xα− xi)(cβ− ci)] ,

so that the vector (Gij(c)T , 1)T is orthogonal to the plane for the 3-D
points (xk, ck) with k = i, α, β;

(ii) compute Gji(c) =
3

2 |Tj |
R [(xα− xj)(cβ− cj)− (xβ− xj)(cα− cj)] ,

so that the vector (Gij(c)T , 1)T is orthogonal to the plane for the 3-D
points (xk, ck) with k = j, α, β;

(iii) compute the non-linear average between Gij(c) and Gji(c)

G̃ij(c) = Wij(c)Gij(c) + Wji(c)Gji(c),

Wij(c), Wji(c) ≥ 0, Wij(c) + Wji(c) = 1,
(7)

which is finally taken as the gradient estimate at the edge eij .

The terms Wij(c) in equation (7) are the scalar weights of the final average. A
non-linear average can be envisaged as detailed in Reference [9]. Let us first
identify the minimum common contribution – in a sense that is specified below
– to the edge-centered gradients Gij and Gji within the cells Ti and Tj and split
them as the sum of the common term plus a correction gradient (indicated by
the “hat”-symbols)

Gij(c) = Dij(cj − ci)nij + Ĝij .

Assuming that Dij = Dji, and that the weights are

Wij(c) =


|gji(c)|

|gij(c)|+ |gji(c)|
, if |gij(c)|+ |gji(c)| > 0

1/2 if |gij(c)|+ |gji(c)| = 0
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with gij(c) = Ĝij(c) · nij , we obtain a non-linear numerical definition of the
edge-centered gradients. In [9], it is shown that this approach yields an FV
scheme that satisfies a global maximum principle.

Let us now discuss how the quantity Dij , which dimensionally plays the
role of a characteristic grid-dependent numerical diffusion times a characteristic
length, is defined. Let c̃ij be the linear interpolation of cα and cβ at the point
xij ∈ eij , orthogonal projection of the centroid xi onto eij

c̃ij = sα
ijcα + sβ

ijcβ ,

where the non-negative linear interpolation coefficients sα
ij and sβ

ij are such that
sα
ij + sβ

ij = 1.
Using the fact that cα and cβ are least-square interpolated values and can

be written as given in (5) and by identifying the contribution from the cell Tj ,
we have

c̃ij − ci = (sα
ijw

α
j + sβ

ijw
β
j )(cj − ci) +

sα
ij

∑
k∈Vh(α)\{j}

wα
k (ck − ci) + sβ

ij

∑
k∈Vh(β)\{j}

wβ
k (ck − ci).

A similar expression can be written for the cell Tj , thus leading to the definition

Dij = Dji = min

[
sα
ijw

α
j + sβ

ijw
β
j

hij
,

sα
jiw

α
i + sβ

jiw
β
i

hji

]
, (8)

where hij and hji are the distances of the centroids xi and xj from the edge eij .
Taking into account properly the definition of G̃ij(c) given in step (iii), the

component of this latter vector orthogonal to eij can be written as

Hij(c) = dij G̃ij(c) · |eij |nij for all eij ∈ Eh,

where dij is defined in (6) and hij(c) is a bounded non-negative scalar function
of the cell averages c.

3.3. The semi-discrete FV Formulation

In this section we re-formulate the FV scheme (4) in a more compact form.
Introducing a suitable definition of the matrix operators G, G̃(c), H(c), F,
F̃(c) and the vectors f , f̃(c) – see [10] for the details – the discrete cell-wise
advective and diffusive flux balances can be rewritten as:[

Gc− G̃(c)c
]

i
=

∑
j∈Th(i)∪T ′

h(i)

Gij(c),

[
H(c)c

]
i

=
∑

j∈Th(i)∪T ′
h(i)

Hij(c),
(9)
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Table 1: Absolute and relative errors and convergence rates.

NX ×NY EAbs Erel Rate ẼAbs Ẽrel Rate

5× 5 2.21 10−3 3.40 10−3 — 2.69 10−3 2.39 10−3 —
10× 10 5.59 10−4 8.62 10−4 1.98 7.20 10−4 6.40 10−4 1.90
20× 20 1.41 10−4 2.17 10−4 1.98 1.85 10−4 1.64 10−4 1.96
40× 40 3.54 10−5 5.45 10−5 1.99 4.66 10−5 4.15 10−5 1.98

D = 1
5× 5 4.47 10−3 6.26 10−3 — 6.39 10−3 5.16 10−3 —

10× 10 1.15 10−3 1.61 10−3 1.95 1.76 10−3 1.43 10−4 1.85
20× 20 2.91 10−4 4.08 10−4 1.98 4.61 10−4 3.73 10−4 1.93
40× 40 7.33 10−5 1.03 10−5 1.99 1.17 10−4 9.48 10−5 1.97

D = 0.5
5× 5 9.98 10−3 1.23 10−2 — 1.54 10−2 1.10 10−2 —

10× 10 2.71 10−3 3.34 10−3 1.88 4.72 10−3 3.36 10−3 1.70
20× 20 6.99 10−4 8.62 10−4 1.95 1.29 10−4 9.21 10−4 1.86
40× 40 1.77 10−4 2.19 10−5 1.98 3.37 10−5 2.40 10−4 1.94

D = 0.25
5× 5 2.91 10−2 3.15 10−2 — 3.13 10−2 1.96 10−2 —

10× 10 9.18 10−3 9.96 10−3 1.66 1.41 10−2 8.84 10−3 1.15
20× 20 2.58 10−3 2.79 10−3 1.83 4.60 10−3 2.88 10−3 1.61
40× 40 6.75 10−4 7.32 10−4 1.93 1.29 10−3 8.10 10−4 1.82
40× 40 1.77 10−4 2.19 10−5 1.98 3.37 10−5 2.40 10−4 1.94

D = 0.1

while the contribution from boundary edges becomes[
Fc− F̃(c)c− (f − f̃(c))

]
i
=

∑
j∈T ′

h(i)

Fij(c). (10)

The r.h.s. source is denoted by the symbol S(c). Using the definitions (9) and
(10) the final matrix-vector form is obtained for the FV scheme (4)

N(c)c = Ñ(c)c + b(c). (11)

In equation (11), the term b(c) = f−f̃(c)+bS(c) collects all of the contributions
from the boundary edge fluxes. We have also introduced the non-linear matrix
operators N(c) = F + G + H(c) + A(c) and Ñ(c) = F̃(c) + G̃(c).

4. Numerical Results

In this section a set of numerical results is shown on the following test case
to illustrate experimentally both the accuracy of the proposed method and its
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shock-capturing capabilities.
The contaminant concentration C is advected within the domain Ω = [0, 1]×

[0, 1] by a constant velocity field V = (1, 0) and homogeneously and isotropically
diffused by a constant viscosity D which takes values in the range [10−4, 1].

The boundary conditions are set as follows. At x = 0 we set the Dirichlet
condition C = 1, at x = 1 we set the Dirichlet condition C = 0, and at the
domain edges y = 0 and y = 1 we set the homogeneous Neumann condition of
null concentration flux, which is compatible with the direction of the velocity
field. A boundary layer forms in the steady solution at x = 1, whose width
depends on the value of the viscosity coefficient D .

The computational grids are built by subdividing Ω into a set of regular and
equal squares and each square in four equally sized triangles by using the square
diagonals.

Four calculations have been performed by considering the following parti-
tionings of the domain in sub-squares: 5×5, 10×10, 20×20 and 40×40. Notice
that partitioning Ω with the same number of sub-intervals along the X and Y
axis preserves the shape, that is the aspect ratio, of the triangular mesh cells.

The results of each simulation run is given in Table 1. The first column
reports the size of the mesh in terms of subdivisions along the X and the Y
axis, namely Nx × Ny. The second and third columns give the absolute and
relative errors Eabs and Erel of the cell-averaged concentration with respect to
the analytical solution. These errors are measured by using a discrete version
of the L2 norm; that is

Eabs =
√ ∑

i∈Th(Ω)

|Ti| |ci − C (t,xi)|2 and Erel(c) =
Eabs√∑

i∈Th(Ω) |Ti| |C (t,xi)|2
.

The fourth column gives the rate of convergence rate measured when the mesh
factor h is halved in the mesh refinement process. The next three columns
repeat the same information about the linearly-reconstructed vertex concentra-
tion. The errors are calculated by similar formulae. All the calculations have
been performed by turning off the limiter. It is evident from these results that
second-order convergence is attained in nearly all of the runs, thus confirming
the theoretical convergence rate. As the viscosity constant takes smaller val-
ues, the boundary layer decreases its width. The coarsest grids show the worst
resolution as one can expect, and consequently the worst accuracy in the spa-
tial approximation. Nevertheless, by increasing the mesh resolution, the spatial
accuracy increases and tends towards the order O

(
h2

)
, as predicted by the

theory.
The steady solutions for different viscosity calculation are shown in Figure 1.

When the viscosity constant attains very small values, the limiter is switched
on and prevents the formation of numerical oscillations. In this case, however,
the mesh resolution is insufficient to define properly a convergence rate, and for
this reason we do not show the corresponding error tables.
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5. Conclusions

A FV scheme is proposed to solve the time-dependent advection-diffusion equa-
tion for the contaminant transport in porous media. The scheme is based on
a special limited reconstruction for gradients within cells and at mesh edges.
The 2-nd order theoretical convergence rate has been confirmed on a steady
model problem, and the method is promising in the numerical simulation of
more complex groundwater flow problems.
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Figure 1: Steady advection-diffusion transport on an unstructured mesh, cell-
averaged solution (left) and linearly-reconstructed vertex solution (right) for
different viscosity D.
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