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Abstract

The knowledge of the hydrodynamic loading due to the impact of a

bore on a wall is crucial in the rational design of protection structures.

The numerical modeling of an inviscid dam{break surge as it advances

over a dry bed and strikes a wall is new in literature.

The aim of the present work is to present a �nite volume element

method, combined with a Crank-Nicolson scheme for time step ad-

vancing, that is capable of calculating the unsteady, incompressible,

free surface 
ow �eld due to the collision of a bore on a vertical plane

wall. The surge propagates along a dry bed and the 2{D impact is

modeled by a fully nonlinear potential approach. A discrete formula-

tion is implemented to trace accurately the pathline of the nodes on

the free surface.

By conjecturing realistic initial conditions, the present numerical

approach proved successful in obtaining a quantitative evaluation of

physical quantities, such as the maximum force acting on the wall,

so that meaningful predictions for wall pressures and wall force can

be obtained not only from laboratory tests but also from numerical

simulations.

The e�ect of air entrainment in the bore is brie
y discussed.



1 Introduction

The impacting steady 
ow is herein referred to as jet, while the unsteady


ow is termed as bore. The literature devoted to the many occurrences of the

water impact phenomenon is large and exhaustive results have been collected,

but none in the case of a bore generated by a dam{break and propagating

along a dry bed, if exception is made for the laboratory physical experiments

performed by (14) and (15). The papers that are more closely related to the

present work are only those of (2), (11) and (7). The presence of water in

the channel ahead of the surge does a�ect the shape of the wave tip as well

as the generation of forces (2); the experimental results of (11) are relevant

to assess the force experienced by a vertical wall due to the impact of a bore

generated by a broken solitary wave and propagating over a liquid bath at

rest; (7) solved the Euler's equations for the impact of a bore propagating

over a static liquid bath.

The knowledge of the dynamic loading is crucial in the rational design of

transversal structures; nowadays the assessment of dynamic loading is still

founded mostly upon both past experience and �eld observations. The aim

of this work is to verify whether an analytical approach, simpler than (7)'s

and based on a potential 
ow solver, can describe the complex dynamics of

the bore impact and to what extent can a potential model be accurate in

obtaining wall forces. The 2{D impact of a plunging wave on a rigid vertical

wall has been already simulated in the contest of potential 
ow by (16).

2 Experimental results

Physical experiments were conducted at the Hydraulic Laboratory of the

University of Trento (Italy) that were originally intended to simulate debris{


ow collisions on walls. The experimental apparatus comprised 6 meter long

tilting 
ume and the 
ume slopes varied from 0Æ through 25Æ; the 
ume cross{

section was 0:5m wide and 0:5m deep. In the upstream part of the 
ume, a

mixture of granular material and water was released into the 
ume to gener-

ate a bore, which then advanced in a dry bed. The downstream part of the


ume was made of a transverse wall that was instrumented with four gauges

to measure impact pressures. The diameter of the 
ush{to{the{wall pres-

sure membrane was 1 cm; a frequency response of 250Hz turned out to be

convenient in recording the unsteady phenomenon. The measured pressures

could reach 25 kPa. In spite of the great e�ort dedicated in performing accu-

rate experiments, a poor repeatability was detected in the tests: in fact, the

di�erence in pressure intensities among experiments sharing the same initial
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Figure 1: Example of wall force evolution.

conditions was as high as 5%�15%. This observation is consistent with what
already claimed by a number of authors, (3), (16) and (5). Poor repeatabil-

ity was mostly due to the ever{changing evolution of the breaking front, the

structure of which has strong 3-D patterns. Toe velocities uo and toe depths

hf of the bore near the wall were measured by a video{recording apparatus

(SVHS video{camera, 25 frames per second, shuttering time 1=1000 s). The

measurements of instantaneous toe velocities were performed by tracing the

location of the most advanced part of the ever{breaking front rushing down-

stream. The measured duration of the impact was found to be in accordance

with known values of similar phenomena, e.g., plunging waves on vertical

sea{walls, (11), (16).

As opposed to near{breaking sea waves impacts, in the experimental tests

no trapping of an air pocket between the surge and the wall was observed.

Important secondary circulations are generated at the instant of impact and

massive air entrainment occurs in the liquid toe before and after the impact;

due to the above phenomena, the temporal evolution of the wall pressure is

pulsating. Typical features of the laboratory impacts are (�g. 1): (i) an

initial sharp peak of force of short duration (� 10�1 s); (ii) a pulsating force

of long duration (� 1 s), normally decaying with time; (iii) a �nal peak of

force of short duration (� 10�1 s), due to the collapsing of the run{up jet

down onto the incoming surge at the bottom. This last peak has been found

to be less severe than the �rst one, as opposed to the case of tsunami and

sea bores, (2), (11).

As already claimed by (9), the thin crest of the run{up jet contributes

nothing to the force at the wall; thus the time of the maximum run{up follows
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the time the force attains its maximum.

The phenomenon of air entrainment is one of the major features occurring

during the propagation of the dam{break bore; the phenomenon is partic-

ularly developed in the ever{breaking front wave rushing downstream, even

for a surge propagating along a horizontal bottom. In the rear region, the


ow pattern is de�nitely more organized and most of the turbulence gener-

ated in the toe region is dissipated. The rear 
ow pattern evolves towards

super�cial self{aeration, i.e. air is entrained only at the free surface. E�ects

of air entrapment are 
ow bulking and reduction of the bore density which

becomes smaller than that of the pure water.

Prediction formulae of literature are only available for uniform or grad-

ually varied 
ows and therefore cannot be extended meaningfully to the

present instance of unsteady motion either in the front or in the rear region.

The pressures measured in laboratory physical experiments should corre-

spond to smaller values in the prototype where air entrainment is greater

and the density of the air{water mixture is less than that of the pure water;

(10) found a large reduction in pressure even for small air content. However,

in spite of the pressure reduction, the total force acting on the wall is likely

unmodi�ed since air entrainment increases bulking but at the same time it

decreases the mixture density, so that the total liquid mass involved in the

collision { and the total momentum likewise { is expected to be basically

unchanged.

The following simpli�ed reasoning can be of help in understanding the

constancy of the momentum. In case of no air entrainment, the momentum


ux of the bore as it advances along a horizontal bed is written as:

M = �Quo = �u
2
o
hf

The same quantity in case of air entrainment should be intended instead as:

Mm = �mu
2
o
hfm

where the subscript m stands for mixture (of air{water) and where it is

assumed in the �rst approximation that uo is not changed by the presence of

air. The ratio between the two momentum equations becomes:

Mm

M

=
1� 1:1C

1� C

; C =
Va

Va + Vw

(0:2 � C � 0:85)

where C is the mean air concentration and Va, Vw are the volumes of air

and water respectively; use has been made of the relations given by (12)

that holds true for evenly distributed air in the liquid and for chutes having

4



Figure 2: Sketch of the problem and notation.

rectangular cross sections. Both hypotheses are valid in the present contest.

The bore thrust is not remarkably a�ected by air{entrainment as long as air

concentration in the toe is as high as, just to �x the ideas, 0:3. Of course the

above reasoning is correct only if applied to steady state conditions but it

seems reasonable to extend it in the �rst approximation to unsteady motion

as well.

3 Analytical formulation of the problem

A clear water bore hitting upon a rigid, vertical, plane wall is considered

herein. The surge is generated by a dam break and propagates over a dry

horizontal bed. It is to be reminded that there seem to be no rigorous results

of general value in non{linear unsteady problems with both a free streamline

(a streamline which separates 
uid in motion from 
uid at rest) and a contact

line. Some simplifying hypotheses must therefore be formulated.

The �rst one concerns the compressibility of pure water that does not play

a signi�cant role in this kind of impact (9); also inertia forces are regarded

by far dominant as compared to surface tension, viscosity and gravity forces.

The dynamic interaction of a structure with a liquid jet should be solved

in principle as a uni�ed hydro{elastic system; however, the elastic response

of the structure would pose additional complexities in the computations and

therefore the wall has been regarded as a rigid body in the present simulation.

After all, calculated pressures would be on the safety side; in fact, a pressure

overestimation of only 3% � 6%, as compared to the more realistic case of
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elastic wall, was claimed by (16). Hence, assuming further that the 
ow is

irrotational and time{dependent in a simply connected domain, bounded by

impervious walls and a free streamline, it is clear that the essential features

involved in the collision process are described by a simpli�ed approach based

on the potential 
ow theory.

The computational liquid domain 
(t) is assumed to be simply connected

and time dependent (�g. 2). Its boundary, de�ned as @
(t) = �s(t) [
�w(t), includes the free surface �s(t) = fS(t; �) j 0 � � � 1g and the

rigid, impermeable wall boundary �w(t) = f(x; 0) j S1(t; 0) � x � 0g [
f(0; y) j 0 � y � S2(t; 1)g, where S(t; �) {the components of which are S1(t; �)
and S2(t; �){ is the parametric form of the moving free streamline, which can

be not univocal; � is a parameter running in the closed interval [0; 1]. The

velocity potential � = �(t;x) satis�es Laplace's equation in the domain 
(t)

at any time t, supplemented by suitable boundary conditions:

8><
>:
r2�(t;x) = 0; x in 
(t) and t � 0

r�(t;x) � n = 0 x on �w(t) and t � 0

�(t;S(t; �)) = �(t; �) � in [0; 1] and t � 0

(1)

where r2 = @
2
=@x

2 + @
2
=@y

2, n is the outward normal on the boundary

and �(t; �) stands for the potential function along the free surface. The

velocity vector V = (u; v) has horizontal u = u(t;x) and vertical v = v(t;x)

components of velocity, apparently the derivatives of the potential: V = r�:
The parametric equations of the free surface evolution can be derived knowing

the velocity �eld Vs on �s(t):

@S

@t

(t; �) = Vs(t; �) (2)

whereVs(t; �) = (u(t;S(t; �)); v(t;S(t; �)))
T
: Assuming constant atmospheric

pressure acting on the free surface, the boundary condition on the free stream-

line is given by:

@�

@t

(t; �) =
1

2
kVs(t; �)k2 (3)

where kVsk =
p
Vs �Vs is the familiar Euclidean norm. Equation (1) is used

to compute Vs(t; �). At the initial time t = 0 the surge strikes the wall and

the free surface is then de
ected upward. The calculation was started with

the liquid already in contact with the wall. The initial condition provides the
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starting value of the potential: �(0;x) = �0(x); x in 
(0) and on the free

surface: S(0; �) = S0(�); �(0; �) = �0(S0(�)); � in [0; 1] : The potential of the

initial 
ow �eld will be speci�ed in the section dealing with the numerical

simulation.

4 The solution algorithm

The domain of de�nition of � is divided into N � 1 equal intervals: 0 = �1 <

� � � < �N = 1: The computational domain 
(t) is approximated by 
h(t),

whose closed boundary @
h(t) is piecewise linear; 
h(t) is then triangulated

by the mesh generator TRIANGLE (see http:// almond.srv.cs.cmu.edu

/afs/cs/project/quake/public/www/triangle.html). The set of the gen-

erated triangles is assumed regular (1). The nodes of the mesh belonging to

the free surface are numbered from 1 to N , while the remaining ones are

numbered from N + 1 to K. The number N is set at the beginning of the

computation, while K(n) is a number that is controlled by the partition

generated at the n�th time step. Some de�nitions are useful for the sake

of conciseness: Si(t) = S(t; �i); �i(t) = �(t; �i); Vi(t) = Vs(t; �i): Evaluat-

ing (2) and (3) on �i, the following discrete formulation for the free surface

location and potential is obtained:

@Si

@t

= Vi ;

@�i

@t

=
1

2
kVik2 ; i = 1; 2; : : : ; N

It is assumed that the free surface location Sn
i
and the potential along the

free surface �n
i
are known at the time tn. The time marching is performed

by the Crank and Nicolson method by evaluating the free surface and the

surface potential at time tn+1 at any node i (i = 1; 2; : : : ; N) :

S
n+1
i

= S
n

i
+
�t

2

�
V

n

i
+V

n+1
i

�
; �

n+1
i

= �
n

i
+
�t

4

�
kVn

i
k2 +



Vn+1
i



2�

The implicit nature of the Crank and Nicolson scheme calls for an iterative

procedure to be started with the initial values S
n+(0)

i
= S

n

i
and �

n+(0)

i
= �

n

i
;

the iteration then proceeds until convergence is reached using the following

�xed point procedure:

S
n+(`+1)
i

= �S
n

i
+ (1� �)S

n+(`)
i

+ �

�t

2

�
V

n

i
+V

n+(`)
i

�
; (4a)

�

n+(`+1)
i

= ��
n

i
+ (1� �)�

n+(`)
i

+ �

�t

4

�
kVn

i
k2 +




Vn+(`)
i




2
�
; (4b)
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Figure 3: Evolution towards the steady state (
ow is from left to right).

where ` = 0; 1; 2; : : : ; L is the sub-iteration index at each time step, and

the relaxation parameter � = 0:5 was used in the present calculation. At

convergence Sn+1
i

= S
n+(L+1)

i
and �n+1

i
= �

n+(L+1)

i
, where L turned out to be

typically less than 10. The treatment of the numerical instabilities of the free

surface has been pursued in this work by modifying the free surface evolution

equation (2) as follows:

@S

@t

(t; �) = Vs(t; �) +
1

2N

@
2
S

@s
2

�
@S

@�

�
�1

where s(�) =
R
�

0
kdS=d�k d� is the arc length. The free surface nodal veloc-

ities Vn

i
are estimated by solving numerically the problem (1); likewise for

V
n+(`)
i

. A Finite Volume Element (FVE) scheme (4) has been implemented

to solve problem (1), after the meshing of the domain 
h(t). The meshing of


h(t
n) is performed by TRIANGLE, while the meshing of 
h(t

n+(`)) is done

by stretching the whole mesh computed at the time tn.

The mesh manager useful to construct the FVE approximation has been

performed by means of P2MESH (8), a free software package conceived for

the fast development of Finite Volume and Finite Element codes on 2{D

unstructured mesh. By modifying equation (4b) as follows:

�

n+(`+1)
i

= ��
n

i
+ (1� �)�

n+(`)
i

+ �

�t

4
kVn

i
k2 + �

�t

4
r�n+(`)

i
� r�n+(`+1)

i

the coupling of the discretized version of eqns. (1) and (4b) is improved. This

8



−0.3 −0.2 −0.1 0
0

0.1

0.2

0.3

[ m ]

[ m
 ]

1000

20
00

25
00 3000

50
0

Figure 4: Isobars at 0:26 s (
ow is from left to right; pressure in Pascal).

modi�cation only slightly increases the computational cost because its e�ect

is to add just few coeÆcients in some rows of the resulting linear system.

5 Results of the numerical simulations

5.1 Validation of the numerical model

The code has been at �rst validated by means of the steady state solution (6);

�g. 3 shows how the unsteady free surface pro�le is clearly evolving towards

the steady jet. The isobars are illustrated in �g. 4, where the symmetry

about the bisectrix of the axes has been reached by the numerical liquid jet.

This symmetry feature is embodied by the steady state analytical solution.

The computed wall pressure evolves towards a steady state (Fig. 5).

5.2 Application of the numerical model

The complete simulation of the dam-break surge, starting from the removal

of the gate and proceeding towards the impact wall, would clearly provide the

suitable 
ow �eld to start the calculation of the impact; but this is beyond the

scope of the present work, which is simply to demonstrate the feasibility of a

potential 
ow model to reproduce the bore impact. The laboratory experi-

mental impact chosen to run the numerical model has been derived from one

of the clear water impacts detailed in (14) and in (15). The initial condition

for the 
ow �eld is not known from the physical experiments; instead, only
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the toe velocity uo = 2:77m=s was measured, apparently a rough estimate

of the whole 
ow. This quantity is the picture of an instant of time and it

can hardly represent a highly unsteady phenomenon. It is to be recalled that

the measurements of instantaneous toe velocities were performed by tracing

the location of the most advanced part of the ever{breaking front rushing

downstream; therefore toe velocities do embody huge turbulent streamwise


uctuations, which are estimated to be as high as �10% the average velocity.

The 1{D Ritter's solution (13) was then adopted as the initial condition for

the 
ow �eld; the front region is simulated by a trapezoidal domain mov-

ing at constant velocity uo = 2:77m=s (Fig. 6). This initial computational

domain is a good approximation of the mildly elongated physical toe, as it

was observed in the video pictures of the experiments. Air entrainment and

gravity have both been neglected in the numerical computations. By trial

Figure 6: Initial domain (a=1 mm; b= 2.8 mm; c=6.3 mm; d=1m; e= 0.4cm)
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and error a convenient temporal step was found to be 10�4 s. The typical

number of generated triangles was 1000; the typical CPU time for a complete

simulation, involving 3:5 �103 time steps, was half an hour in an ordinary 500
Mhz processor. The grid is depicted in Fig. 7; the model predicts the mov-

ing free surface while verifying closely the mass conservation, the maximum

error being well less than 1%. It has to be pointed out that the accurate

modeling of the free surface is not important as far as the calculation of the

wall pressure is concerned; in fact it was observed in the present numerical

simulation that di�erent schematizations of the impacting liquid shape a�ect

the wall pressure evolution by a small amount, which is a result of relevant

value in practical circumstances. The free surface comparison (Fig. 8) shows

a clear discrepancy between the numerical and the physical pro�le due to

the huge air entrainment, phenomenon which has not been accounted for in

the numerical simulation; nevertheless it will be shown that the wall force

is predicted well (Fig. 9). The tiny oscillations of the force evolution are

due to the nodes of the moving mesh (which is rebuilt at any time step)

passing through the numerical gauge's location. The pressure on the wall

is illustrated in Fig. 10. The knowledge of the wall force is normally the

most relevant quantity for design; the force acting on the rigid surface was
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Figure 8: Measured and computed free surface (
ow is from left to right).

obtained by integrating the pressure diagrams, (15).

6 Conclusions

The aim of the present study is to explore the possibility to evaluate the

wall force with reasonable accuracy from rather simpli�ed assumptions of

the collision process. The very �rst version of the code was a simple one,

since it was based on a semi{implicit method with no numerical technique

to smooth the free surface. Roughly at the time 0:2 s a sort of sawtooth

instability started to develop on the free streamline, but remained limited

in size and did not increase; at the end of the 1 s simulation the code was

still stable. In spite of the free surface instabilities, the pressure and the wall

force were predicted with as much accuracy as the results presented in section

5, that were obtained by the �nal version of the code, which included the

full implicit scheme, the smoothing treatment of the free surface and a more

realistic initial condition. The range of validity of the model, as far as the wall

force is concerned, is much larger than it could be initially suspected: even

an initial condition as unrealistic as the "face-to-face" impact (a rectangular

domain with constant velocity everywhere) was capable of giving the wall

force evolution of �g. 9, apart from the very early stage of the impact. The

air entrainment in the bore, before and after the impact, has been neglected

in the numerical simulation and yet the wall force is reproduced accurately;

so it is suggested that as long as the air concentration in the toe is low, as

it was in the present experimental runs, air entrainment has no e�ect on the

wall quantities.
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While the present numerical model needs to be thoroughly corroborated

by more realistic 2{D initial conditions, it seems capable of reproducing with

accuracy the non{linear impact of a dam{break surge and so there are reasons

to believe that, at least as far as the wall force and bending moment are

concerned, meaningful predictions for the prototype can be obtained not

only from laboratory tests but also from numerical simulations, considering

also the order of magnitude of the errors involved even in the experimental

laboratory measurements.

The animation of the impact, based on the present numerical simulation,

can be watched and downloaded at the following URL :

http://www.ing.unitn.it/~bertolaz/numerical/index.html
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